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Magnetoelastic anomalies in Fe-Ni Invar alloys
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The Fe-Ni alloy is simulated by four ordered structures, whose total energies are obtained as a
function of volume and magnetic moment by band-structure calculations employing the Axed-spin-
moment (FSM) method. An analytic fit of these E(M, V) surfaces is made and permits an interpola-
tion for varying Ni concentration. These parametrized surfaces allow the introduction of the ther-
modynamics of spin Auctuations. Among others, the following characteristic Invar properties are
calculated: the magnetic contribution to the thermal expansion coeScient a, the critical pressure
for the disappearance of magnetism P„ the pressure dependence of the Curie temperature dTc/dP,
and the high-field susceptibility. These quantities agree well with experiment, especially their varia-
tion with Ni content. The key quantity is n, which shows a narrow minimum as a function of the
Ni concentration before the o.'~y (bcc~fcc) phase transition occurs. Near the Invar composition
the large negative contribution n compensates the positive phonon part so that the total thermal
expansion nearly vanishes near room temperature. The present combination of models provides
new insight into the nature of the Invar effect.

I. INTRODUCTION

The explanation of the Invar effect has been a chal-
lenge for solid-state physics since Guillaume reported his
findings in 1897 that fcc Fe-Ni alloys at a concentration
around Fe65Ni35 show almost no thermal expansion at
about room temperature and thus this alloy is "invari-
ant". Since then, many attempts have been made to un-
derstand this unique behavior and several models have
been proposed, the most prominent being the 2y state
model by Weiss. He assumed two magnetically ordered
localized states, a ferromagnetic one with a large volume
and an antiferromagnetic one with a smaller volume,
where the latter can be thermally excited and thus com-
pensates the thermal expansion caused by phonons. This
model, however, makes no direct connection with elec-
tronic structure theory. Williams et al. used band-
structure calculations to give this phenomenological ap-
proach a quantum-mechanical basis and to provide an
itinerant-electron interpretation. They used an ordered
Fe3Ni structure to simulate the Invar alloy and found
that a ferromagnetic ground state has its equilibrium
volume at a larger volume than the nonmagnetic state
which lies only slightly higher in energy. Furthermore,
they have shown that this energy difference depends on
the Fe-Ni composition and is small for Fe3Ni. Such a sit-
uation is very similar to an ordinary ferromagnet near the
Curie temperature where a paramagnetic energy
minimum is very close to the two ferromagnetic minima
(with +M) of the Landau free energy. One may therefore
suspect that fluctuations are important in these systems
over the whole temperature range 0 + T ~ T~ and that
this mechanism could qualitatively explain the small

thermal expansion and other effects related to Invar. Re-
cently Moroni and Jarlborg calculated the thermal exci-
tation between these two itinerant magnetic states and
found qualitative agreement with experiment. However,
the nature of the mixing between these two magnetic
states remained unclear in all the models mentioned
above.

In a system as complicated as an Invar-alloy, many
phenomena occur, such as order-disorder, o.~y phase
transition, deviation from the Slater-Pauling curve, and
so on. In a recent review Wassermann has summarized
many physical properties and has categorized them into
those which are characteristic for Invar alloys and those
which are not.

In order to understand the essential properties we first
keep the composition fixed and combine quantum-
mechanical band-structure results with the thermo-
dynamics of Auctuations of magnetization and volume, so
that the effects of finite temperature can be included. In
a second step, parametrization of these results permits
the investigation of the important concentration depen-
dence. This combination of different physical models
offers an explanation of the unusual properties of Invar-
type alloys.

II. MODELS
OF FINITE TEMPERATURE MAGNETISM

After the disappointing results of the Stoner theory for
treating finite-temperature magnetism, the problem
remained unattempted for a long time. In the mid-70's
the first self-consistent spin-polarized band-structure cal-
culations of the ground state of transition metals were
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performed, using the local spin-density approximation to
treat exchange and correlation effects. These calculations
yielded satisfactory values for the magnetic moment, the
exchange splitting, and the cohesive energy. However,
any attempt to explain the finite-temperature behavior
from these results failed. Nowadays it has become clear
(see e.g. , Shimizu's review article ) that the problem is
caused by imposing the translational symmetry of the
spin-density, an assumption which is violated for T)0.
This breakdown of the conventional band picture has led
to two main directions to go beyond it.

(i) In the Murata-Doniach approach (also applied in
the present paper) the properties of the magnetic systems
are described via a Landau-Ginzburg expansion of the
free energy. The effect of spin fluctuations is formulated
via randomly fluctuating local magnetic moments. Al-
though these local moments m (r) are vectors, the averag-
ing process using Gaussian' statistics (valid outside the
critical region) leads to scalar quantities (m (r) )
which simply renormalize the original Landau-Ginzburg
expansion. This scheme was successfully applied by Lon-
zarich and Taillefer" to ferromagnetic and nearly fer-
romagnetic metals.

(ii) In the disordered local moment approach, the mag-
netic moments on individual atoms are allowed to have
random orientations in the sense described by Hubbard'
or Hasegawa. ' Pindor et al. ' implemented this model
in a self-consistent Korringa-Kohn-Rostoker (KKR)
Coherent-Potential-Approximation (CPA) calculation to
simulate the magnetic properties of the transition metals
at finite temperature. Bloch symmetry is no necessary
constraint in the CPA formalism, so that Stauton et al. '

could calculate the temperature-dependent spin density
and the wave-vector-dependent susceptibility y(q). With
their model they obtained Curie temperatures of 1260
and 225 K for iron and nickel which should be compared
to the experimental values of 1043 and 630 K, respective-
ly. The discrepancy between their theory and the experi-
ment could be caused by the assumption that directional
disorder is complete above Tc, so that effects of short-
range order are neglected, but could be important as sug-
gested by Prange and Korenmann' and Capellman. '

The CPA calculations have clearly shown that the densi-
ty of states remains virtually unchanged for temperatures
well above the Curie point.

In both models the dynamics of the thermal excitations
of the spin system are described via the susceptibility
y(q). One finds that the magnitude of the averaged
square of the locally fluctuating magnetic moment and
the value of the Curie temperature are closely related to
the q-space integral over y(q). Since the first-principles
KKR-CPA calculation could not determine the Curie
temperature in close agreement with experiment, we cir-
cumvent this problem by using the Landau-6inzburg
model in which y(q) is approximated by

where pa=a(q=O) is the exchange-enhanced susceptibil-
ity of the ground state and o. is the real-space parameter'
which is related to the correlation length and can be

determined from neutron-diffraction experiments. In this
approximation the q-space integral diverges so that its
value has to be made finite by introducing a cutoff vector
q, . With this choice, both the fluctuating magnetic mo-
ment and the Curie temperature depend directly on q, .
In a number of applications of spin fluctuation theory, q,
has been used as an adjustable parameter to fit experi-
ments (see Ref. 8 and references therein).

All these results justify the combination of ground-
state quantum-mechanical calculations at T=O with a
finite-temperature Landau-Ginzburg model as presented
here. We combine the best part of both models: the
ground-state properties are determined via a parameter-
free first-principles band calculation, whose results enter
the thermodynamical description of the fluctuations
which are scaled by a single parameter q, fitted to the ex-
perimental Tc.

III. FIXED-SPIN MOMENT CALCULATIONS
AND SPIN FLUCTUATIONS

The spin-density-functional theory has shown that the
total energy of a system is rigorously defined when the
spin-density is known. Practical application of this
theory in the form of band-structure calculations (using
the local spin-density approximation) yields the well-
established Stoner theory of itinerant magnetism which
works well at T =0 K. This quantum-mechanical treat-
ment was extended by the fixed-spin-moment (FSM)
method' ' which allows us to compute the total energy
as a function of magnetic moment and volume.

An analytic treatment of the magnetovolume effects
within the Landau theory of phase transitions requires
that such energy surfaces E(M, V) are fitted to a polyno-
mial in the bulk magnetization M and the volume V:

E (M, V) =ED+ AM +BM +f3V +y V +5M V,

where the number of parameters is kept to a minimum so
that they are directly related to physical properties.
Since the energy can be taken with respect to ED only five
parameters are needed to describe most systems. The
quality of such a fit has been demonstrated by Entel
et a/. ' who could reproduce such energy surfaces to
within 0.1 mRy in the important M, V range.

In order to introduce the effects of finite temperature,
Wagner has shown how to combine quantum-
mechanically derived FSM results with a thermodynamic
model of locally Auctuating magnetic moments. His an-
satz includes both longitudinal and transverse magnetic,
as well as volume fluctuations, and thus goes beyond the
pioneering work by Murata and Doniach who assumed
only longitudinal magnetic fluctuations.

Wagner has obtained a formula for the free energy
[see Eqs. (5)—(7) of Ref. 22j, but here we keep only those
terms which depend on M and V and thus enter the equa-
tions of state. This part of the free energy is denoted AF:
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~F =~(M'+2&m,')+&m2l, ))
+B[M'+M'(6(m')+4(m') )+8(m')'

+3& ', )'+4&

+Eo+/3V +y V +5V(M +2(m i ) + (m
ii

) ) .

(2)

dV 1 4B5(m, ) /Tc
3 Vo d T 3 A 5—2B (/3+ P)

(ii) The critical pressure for the disappearance of
magnetism

2y 3 —/35
C

P=/3—+2y V+5(M +2(mi~ )+(m2ll ) ) . (4)

At the Curie temperature Tc, the bulk magnetization M
vanishes and (m

~~

) and (mi ), the longitudinal and
transverse magnetic fluctuations, become equal. From
this condition we calculate the value of the mean-square
of the fiuctuating magnetic moment ( m, ) at Tc to be

The equations of state for the magnetic field H and the
pressure P become

H =2AM +4BM +2BM(6 m
II

+4 m ) )+25VM,

(3)
d Tc Tc
dP P,

(10)

(iv) The high-field susceptibility y„f taken at constant
pressure

Xhf Xp XV9

P 1—25
P C Tc

(jjj) The pressure dependence of the Curie temperature
which follows from the assumed pressure independence
of (m, )/Tc [Eq. (6)]:

( 2) 2y 3 5(/3+P)—
36 —20yB

Previously we have applied Wagner's formalism to
the Fe3Ni case and have solved it numerically. It was
found that ( m i

~~

) varies (to a good approximation)
linearly with temperature and that the transverse and
longitudinal fiuctuations (mi ) and (m

ll
) are essentially

equal over the whole temperature range. This leads to
the simplified ansatz

(m,' )=(m,')(P=O) =(m, )(P) . (6)T (P=o)

Since (m ) is a purely local quantity it may be assumed
that the linear dependence on temperature of (m ) is not
changed by changing the pressure or the strength of the
magnetic field. It turns out that, in a self-consistent treat-
ment, this approximation is equivalent to neglecting the
small dependence of the fluctuations on the magnetiza-
tio11 M.

The minor loss in accuracy of this simpler approach
with respect to the numerical treatment is by far compen-
sated by the advantage of obtaining analytic solutions.
Within these approximations the following five properties
can be derived easily.

(i) The magnetic contribution to the thermal expan-
sion coeScient a (T) is defined as

1 dV 1 4B5&m, )/Tc
a (T)=

3 A5 2B(P+P)+4B5(—m, ) T/Tc

some authors make use of a slightly different definition of
the thermal expansion coefficient by relating the volume
change to the volume Vo (at T =0) instead of V as in Eq.
(7). With this alternative definition a becomes indepen-
dent of temperature and reads

y~'=8BM

$21—
4By

where g~ is the susceptibility at constant volume, and q
is a temperature-independent magnetomechanical
enhancement factor. The importance of the magne-
tomechanical susceptibility enhancement has already
been recognized by Shimizu who has shown that, for the
Fe-Ni system, q becomes anomalously large in the vicini-
ty of the Invar composition.

(v) The forced magnetostriction h:

dc@ 1 dV 1 dV dM dao dM
dH VdH VdM dH p dM dH

which reduces for T =P =H =0 according Eq. (11) to

Mo

2VO
(13)

IV. APPLICATION TO THE Fe-Ni INVAR SYSTEM

The Invar effect occurs only in a relatively small con-
centration range of the Fe-Ni alloy. Since order-disorder
should not play a crucial role, the following ordered
structures (based on the fcc lattice) can represent the Ni
concentrations of 0, 25, 50, and 100 at. %, respectively:
fcc Fe, Fe3Ni (Cu3Au structure), FeNi (CuAu structure),
and fcc Ni. The FSM energy surfaces E(M, V) of these

Note that all quantities defined by Eqs. (5)—(13) depend
essentially on the ground-state properties of the system,
i.e., on quantities which are available from FSM band-
structure calculations, while the magnetic fluctuations
scale according to Eq. (6) with the Curie temperature Tc,
which must be taken from experiment.
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whole concentration range, the Fe-Ni alloy would under-
go a transition from a magnetic to a nonmagnetic state.
However, before the magnetic moment vanishes, a phase
transition to bcc (y~a) occurs which stabilizes the mo-
ment again, but this transition is not included in the
present study. In our model P, is given by

2b, Es—/b, VM and thus does not depend on the actual
value of the Curie temperature, but is entirely determined
by the FSM results. The AV~ and AE& values indicate
the different behavior of the three systems and lead to a
strong variation of P, with the Ni concentration (Table
I). For Fe3Ni and fcc Ni, AEs is of the same order of
magnitude, but the extremely small value of 6 VM for Ni
brings its critical pressure up to more than 4 Mbar. The
AV~ value is almost the same for Fe3Ni and FeNi, but
the much higher stabilization energy of FeNi increases P,
with respect to Fe3Ni.

The most striking result is found for u which shows a
narrow minimum near the Invar composition (Fig. 2).
Our lowest value is —23X10 K ' (at 300 K) (for 27
at. % Ni) in fair agreement with the experimental esti-
mate6 of about —15 X 10 K ' (for 35 at. % Ni).
Kakehashi calculated the thermal expansion of the Fe-
Ni system by using the Liberman-Pettifor virial
theorem and a CPA static approximation in the function-
al integral method. ' His results for e as a function of
the Ni concentration are very similar to the present
work.

The third quantity shown in Fig. 2 is the pressure
dependence of the Curie temperature d Tc /dP which is
large and negative near the Invar composition and has a
value of about —5.5 K/kbar close to the experimental
value of —5.0 K/kbar. Although dTC/dP is scaled by
the Curie temperature (taken from experiment, see Table
I), we obtain the same dependence on the Ni concentra-
tion as the experiment (see Fig. 26 of Ref. 6). The two
quantities a and dT&ldP were also evaluated for Ni
and are connected to the corresponding values for FeNi
by smooth curves (intermediate values were not comput-
ed).

Wassermann lists two other properties to be charac-

teristic for Invar alloys: the high-field susceptibility ghf
and the forced magnetostriction h =des/dH, both of
which should be anomalous, since they are strongly
enhanced at room temperature. In Fig. 3 we show them
at T=O and 300 K and find that the respective 300-K
curves rise much faster in the Invar region than they do
at larger Ni concentrations. From Eqs. (11) and (13) one
sees that the behavior of both quantities can be traced to
the small value of the critical pressure P, in the Invar re-
gion (see also Table I). The actual values compare well in
trend with experiment (see Fig. 10 of Ref. 27). For the
divergence at low Ni concentrations, the same argument
concerning the @~a phase transition, as given above, is
valid. Although the ground-state property dc@/dM (inset
in Fig. 3) shows a pronounced maximum around the In-
var composition, this feature is not seen in the forced
magnetostriction, since h is dominated by the sharply ris-
ing susceptibility g according to Eq. (12).

The quantity dec/dM determines the thermal expan-
sion coe%cient o; when it is written as

11dV 1dco 1d~dM
3 V dT 3 dT 3 dM dT p

P —P, Pp+ —P,+
3Tc Tc Po Po+P,

(14)

where P& =2y Vo is the bulk modulus of the magnetic
ground state and Po is the pressure required to force the
paramagnetic system to change from volume Vo to
volume V„ thus given by Po = —

/3( Vo/V, —1). Equation
(14) does not only show the influence of the external pres-
sure P, but also accounts for the fact that for some sys-
tems the magnetic contribution to the thermal expansion
coeKcient changes sign at finite temperatures below Tc.

In Eq. (14) dM/dT varies moderately so that the max-
imum in den/dM leads to the minimum in a (Fig. 2) and
thus den/dM is an important quantity for the Invar be-
havior. Rewriting Eq. (14) gives an expression for the
spontaneous magnetostriction

30 -300

co,0=3f a(T)dT= —ln 1+y
T

] Tc
(15)

(D
D

15-

o
3

0
Fe

300K

OK
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(a.u. )

FeNi

Ni
0

'"-150
Ni

Cf

where a(T) is taken from Eq. (7). The parameter y

Po+ —'P.
Po Po+P,

(16)

is a quantity which is specific for a material. For Fe3Ni
we obtain a value of A, = —0.04 for P =0. From Eq. (15)
taking T, near room temperature (300 K), we find

co,o=2.2X10 which is in good agreement with the
value of 1.9 X 10 estimated experimentally.

FIG. 3. Forced rnagnetostriction h =dc'/dH (solid curve),
and high-field susceptibility gh& (dotted curve). For the inset see
text. The dashed-dotted curves show the extrapolation to the
respective values for pure Ni.

V. SPIN FLUCTUATIONS AND THE FREE ENERGY

The introduction of spin fluctuations in a Landau-
Ginzburg free-energy expression leads to a spin-
Auctuation-dependent contribution to the free energy hF
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and volume Auctuations are essential for an understand-
ing of the magnetovolume effects. Vhth rising tempera-
ture, the Auctuations modify this effective energy surface
continuously and concomitantly change the average
volume and magnetic moment. The formulation via a re-
normalization of the Landau-Ginzburg coefficients of the
ground state describes the infiuence of the spin Auctua-
tions on microscopic quantities (such as the susceptibili-
ty) which are directly related to the band structure. With
these quantities we calculate the thermodynamic vari-
ables from a "ground state" for which 6nite temperature
is an external constraint. In this sense our description of
the thermal properties of magnetic systems is comparable
to the disordered local moment model where the local
moments affect the electronic states and thus the related
macroscopic thermodynamic quantities. Both our model
and the disordered local moment scheme describe Auc-
tuations on a microscopic level in contrast to previous
theoretical attempts which rely on a mixed magnetic
state being composed either of two localized or two
itinerant ' magnetic states (phases) between which
thermal excitations are assumed.

The characteristic Invar quantities can be expressed in

terms of the FSM energy surface which, in the present
analytic representation, requires five parameters. For a
ferromagnetic system there exists a minimum with Mo
and Vo and a saddle point at M =0 with V&. Together
with the energy difference of these two special points and
the bulk modulus (at M =0 and V, ) the five parameters
of the FSM surface are determined. Only cases near a
magnetic instability could lead to Invar behavior which
requires a small AEz and a large AV~ as found in the
Fe-Ni system for certain Ni concentrations. In a more
general situation, a Hat energy surface between two mini-
ma at different moments (and volumes) could also cause
the Invar effect, which could occur in the Fe-Pt system
where recent experiments found evidence for a pressure-
induced transition from a high-moment to a low-moment
state.
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