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Spin-wave modes in layered magnetic sandwich structures
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A calculation of spin-wave propagation through a nearly nonmagnetic film sandwiched between
two magnetic films is given as a function of the thickness of the nonmagnetic film and of a parame-
ter that describes the decay of the exchange through this film and can be related to structural
features such as interface roughness or spin-polarization penetration depth. The comparison with
experiment enables us to determine this exchange decay parameter for a series of experiments in
Permalloy-copper-Perrnalloy sandwiches prepared in an UHV system.

INTRODUCTION

Recently, many spin-wave-resonance experiments have
been performed in thin sandwiches where a nonmagnetic
film is inserted between two magnetic films, ' in order
to study their coupling from a dynamical point of view.
For all these samples, it has been observed that, when the
nonmagnetic film is thin enough, exchange spin waves
propagate through the nonmagnetic film in between.
This has been demonstrated by comparing the spin-wave
spectra obtained for given thicknesses of the magnetic
films as a function of the thickness of the nonmagnetic
film. This defines the first goal of this paper: to find a
model which can follow this transition from coupling to
decoupling. A second point which appears as an experi-
mental evidence is the effective unpinning at the internal
surfaces when the coupling of the two magnetic films is
very weak but nonzero. The understanding of this ex-
perimental feature is the other goal of this paper.

The problem of exchange spin-wave modes in
"sandwiches" can be considered as a one-dimensional
problem where the relevant dimension is defined by the
common normal to the sandwich. As a matter of fact,
the nonhomogeneity of the interfilm can be accounted for
in a layered way which describes the diffusion profile of
the spins through the nonmagnetic interlayers, or the ex-
change process through this interfilm. For instance, the
spacing of these fictitious layers of spins in the nonmag-
netic interlayer can be taken as equal to the spacing of
layers, i.e., successive planes, in the magnetic regions. In
this layered picture of the central part of the sandwich,
the simple model used here consists of introducing two
exchange parameters J. . . and J, ;+ &

which couple the
layer i to the layers i —1 and i +1, respectively, when
coupling occurs only between nearest layers. These ex-
change parameters can be estimated from the local ex-
change parameter J and the densities of spins in layers
i —1, i, and i + 1. In other words, these J, ;+, mainly de-

pend on the diffusion profiles, and are symmetric, i.e.,
J + ]

=J + ] ~ These exchange parameters through the

interfilm region can also be defined more directly from
electronic properties, through this interfilm. From the
phenomenological point of view used here, the interfilm is
still characterized by the set of exchange constants J;;+,
where i names a layer of the interfilm.

This one-dimensional problem can be solved by means
of an overall method, i.e., the method of the dynamical
matrix D, with the facilities of the Green-function
method. This approach was used in the seventies for
spin-wave resonance in thin films. " An alternative ap-
proach is that of a local method, namely, the transfer-
matrix method. ' ' This method is founded upon the
local character of the spin-wave equation which, in the
case of a layer-to-nearest-layer coupling, means that if the
wave amplitude is known on two neighboring layers, this
wave amplitude is known everywhere. Another, more lo-
cal version consists in knowing the amplitude and the
gradient of amplitude on one layer and then deriving
both the amplitude and its gradient everywhere, for a
standing wave. With this very local definition, the
method of transfer matrix was developed in mechanics by
Poincare' and has been used in many fields since
then. ' ' However, it must be acknowledged that for nu-
merical applications, if there is any approximation, i.e.,
any error, it can be quite strongly amplified far from the
initial layer. This remark encouraged the use of a more
global method such as that of the dynamical matrix. Yet,
analytical checks of the accuracy can be derived and
used, and with care, the method of transfer matrix can be
quite useful, since it is more easily tractable than an
overall method. Moreover, in the case of interest for us,
this limit of accuracy can be used to demonstrate a possi-
ble decoupling of the two films separated by the interfilm
as will be seen in Sec. III. As a matter of fact, only such
a local analysis can demonstrate the occurrence of a bad
coupling or of a decoupling since when using an overall
method, the existence of the coupling is assumed from
the very beginning. Furthermore, these comments about
weak coupling, partial decoupling, and complete decou-
pling point out the part of the physical noise for such
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standing waves, and this will be useful in the discussion
on experimental results.

The main point of the propagation through the
interfilm, i.e., a highly inhomogeneous medium, consists
in observing a profile of the J +& s. It can be easily as-
sumed that these exchange parameters decrease as their
sites become more remote from a magnetic film. This
leads to the definition of a decay rate a per layer and re-
sults in a hyperbolic cosine for the profile of the J, , +, 's.
As already said such a profile can come from purely
structural features or from purely electronic features or
from a mixture of both. The transfer-matrix method is a
useful tool to determine the eigen modes of this set of
spins, since the overall problem is quite complex. One
main result both analytical and numerical, is that, as the
decay rate o. is reduced to 0, the decoupling between the
two films leads to a situation of effective unpinning for
each of the surfaces of the two magnetic Alms, i.e., spins
in the last layer of the magnetic film have a large devia-
tion amplitude. Of course, this effective unpinning at the
inner surfaces is due to the weak exchange coupling
through the nonmagnetic region. And qualitatively this
effective unpinning is well understood since on one side
there is a weak exchange stiffness, the mechanical analo-

gy suggests the existence of a large oscillation amplitude
at this surface. The numerical computations provide a
description of the full variation of o; from 0 to 1. This
unpinning on the internal surface leads to selection rules
for spin waves which are well observed at the experimen-
tal level. This feature is interesting since without any
coupling a surface may be expected to be a pinning condi-
tion to the spin waves. ' Thus the transition from no
coupling at all to very weak coupling but mainly decou-
pled, is expected to be a rather abrupt transition from
pinning to unpinning. This also occurs experimentally.

In Sec. I, the spin Hamiltonian is defined and the equa-
tion of motion of spins are derived from it, while Sec. II
deals with the transfer matrices and the characteristic
equations for standing spin waves. Finally the computa-
tions of field spectra, spin-wave mode patterns and spin-
wave-resonance (SWR) line intensities are given in Sec.
III.

~Zeeman P g zSf (2)

where Sf is the spin vector of the electron located at site
f, Jf~ is the exchange integral for sites f and g and z is
the axis normal to the film, while H, is the intensity of
the effective magnetic Geld in the z direction. This
effective field accounts for the magnetostatic correction.

With the previous considerations, the axis z is collinear
with the equilbrium orientation of all Sf. We change
from spin- —,

' operators Sf to Pauli operators bf with

Sf"=7'(bf+ f ) (3a)

l

f 2 f fS» = (b b), — —

Sf' z bf &f

(3b)

(3c)

B. The equations of motion of spins

large and all the spins can be considered statically as
parallel to the external Geld. This avoids the complex
problem of the detailed magnetic structure and rearrange-
ment. Further the anisotropic interactions can be
neglected except for the surface anisotropy which is re-
sponsible for the spin-wave pinning at the external sur-
faces. In this calculation, the spin-wave pinning or un-
pinning at the external surfaces can be introduced easily
at a later stage in the calculation, so we neglect all aniso-
tropies. Magnetostatic interactions are weak and long
ranged, they are responsible for magnetostatic modes, but
these modes can be separated from the exchange modes
by using appropriate radiofrequencies. Consequently, we
will assume that magnetostatic effect occurs only via a
uniform magnetic field, the demagnetizing field, and not
at all with a detailed local picture. Then the spin Hamil-
tonian reduces to two parts, the exchange part &,„and
the Zeeman part Az„,„,with

&,„=—(1/2) g Jf Sf S
fr

and

I. THE SPIN HAMILTONIAN
AND THE EQUATIONS OF MOTION OF SPINS

A. The spin Hamiltonian

Four kinds of interaction for spins are usually dis-
tinguished: the exchange interaction between spins,
which is strong for permalloy (Nio sFeo z) and short
ranged; the anisotropy interaction which is rather weak
in this case and short ranged, being mainly due to intra-
atomic spin orbit coupling; the magnetostatic interaction
which is long ranged and the Zeeman effect with the
external field. In this complex case of propagation of
spin waves through an inhomogeneous system, it is very
necessary to have a simple configuration and to avoid any
subsidiary complications. Such a simple case occurs
when the external magnetic field is normal to the sample,
then the magnetic field required for resonance is rather

From the commutation relations between Pauli opera-
tors, the equations of motion of the Pauli operators are
easily derived when considering the restricted Hamiltoni-
an && which is quadratic in Pauli operators and neglects
interactions via more than two Pauli operators. This is a
low temperture approximation which is quite usual for
spin-wave resonance. Then the equation of motion
reads:

i (bs)=hbg+ —,
' g Jfs(b bf)— (4)

with the time dependence of a standing wave in
exp( —i cot), the secular equation is derived:

cob =hbs+ —,
' g Jf (bg bf)—

f
when summing over all the spins g which belong to the
same layer I, it reads
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g (co —h)bs =
—,
' g Jfs(b b—f )

g,fCl —1

(6)

b, +A,(b, —bo) =0

instead of

g,fEl+1

where the symmetric terms with g and f in the same lay-
er l disappear. It reduces to a one-dimensional problem
which can be written as:

b1
b, +Ac =0 (Ref. 5)

and similarly:

2(~—h)bt=(bt bI —I)Jt i —i+(bt bi+—i)Jt I+I, (7)
be+a (b~ be—i) (12)

where the bI's are averaged over the layers and the J& I+1
are also averaged over the two layers.

With this definition of the averaged Pauli operators
which is valid for spin-wave resonance since there is a
selection rule for propagation only normal to the film, in
the bulk of a ferromagnetic film,

B. The characteristic equations

A,p1 2 @HER+ A, r i rI 0 (13)

When fulfilling both the pinning conditions at the
external surfaces, the characteristic equation is obtained,
as an equation on h for a given co:

(&)
with the classical examples

where J is the bulk exchange integral P is the number of
nearest neighbors in a nearest layer. The general equa-
tion (7) links the spin deviations of a third layer to the
spin deviations in the two previous layers, and thus leads
to a transfer-matrix form by means of two by two ma-
trices.

—both perfect pinning

A, =p=0 and ~1=0

—both perfect unpinning

(14)

II. THE TRANSFER MATRICES

A. Definition of the transfer matrix

The previous reference to the Poincare's transfer ma-
trices' leads us to define as a vector, the set
(b„,b„b„,) of t—he spin-wave amplitude b„and its
difference between two neighboring layers. With this re-
mark, the equation of motion [Eq. (7)] of spin deviations
reads for the layer n:

'=p '=0 and wz=0

perfect pinning and perfect unpinning

A. =p '=0 and ran=0 .

C. The realistic transfer matrices, and their properties

The bulk transfer matrix of a ferromagnetic film

(15)

(16)

b. +1 b„

b„+1—b„—" b„—b„=T. (9)

if both n and n+1 belong to the multilayered system.
Starting from the layer l and finishing at the layer N
defines the complete transfer matrix ~:

In the bulk, the sample is homogeneous andJ„„,=J„„+,=J which is the bulk exchange integral,
the transfer matrix T „no longer depends on n and may
be written as defined by equations (9),

2a+1 1

b

bN —bN, — b, —bo
(loa)

where

2Q 1
(17)

(10b) a =(h — )/toJ . (17a)

where bo has been formally introduced. The equations of
motion for the external layers 1 and X define the spin pin-
ning conditions, in the Spark's approach:

Then detT = 1, T is a unitary matrix and can be easily
diagonalized with the eigenvalues a +1+x, where x =a
(a +2). The calculation of T leads to the Kittel's modes
for perfect pinning of one film' and to other classical
modes for more complex pinnings of one film:

(a +x)(a +x + 1) —(a —x)(a —x + 1) (a +x + 1) —(a —x +1)
(x —a )[(a+x+1) —(a —X+1) ] (x —a)(a+x+1) +(a+x)(a —x+1)
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2. The transfer matricesin the inter+1m

In this case, each transfer matrix is no longer unitary,
which means there is an asymmetry in the propagation,
with:

2Q
k — + 1 0.'k —i

2Q
k —i

(24)

J„„
detT „=

n, n+1
(19) Finally the complete transfer matrix r reads

p+k+1, p+kJ
det~' = J

Jp+1,P J
Jp+2, p Jp+1,p

(20)

and the overall propagation through the interfilm
remains symmetric.

In order to introduce the chosen parameter of the
problem, i.e., the decay rate o., the geometry of the bifilm
must be defined precisely. The first film has P layers la-
beled from 1 to P. The interfilm has k layers labeled from
P+1 to P+k. The final film has X layers labeled form
P+k+1 to P+k+N.

If k is odd and equal to 2q+1, the first new transfer
matrix 8 1 appears when going from layer P to layer
P + 1, and from the definition of o.

Jp, p+1=&Jp, p —1=~J .

Thus, 8 1 reads

2Q 1

81=
2Q

(21)

More generally, when 0(i ~q+1, the transfer matrix
8; for the transition from layer P+i —1 to layer P+i,
with Jp+i p+, 1=AJP+, 1 p+, 2=O' J reads

2Q+1 1

a' CX

As a consequence, if the spin wave starts from a given
ferromagnetic film I of P layers and, after an interfilm of
k layers, goes through a ferromagnetic film similar to I,
the overall transfer matrix ~' of the interfilm is unitary

TN —lA . . . 3 C 8 '''8 Tp —1—0 —q —q+1—q+1 (25)

III. RESULTS OF SPIN-WAVE SPECTRA
AND BEHAVIOR OF SPIN WAVES

A. Spin-wave spectra: The partial decoupling

When the decay rate parameter u is decreased from 1

to zero, the spin-wave spectrum goes from that of a
X+k +P layer film to the superposition of one film of N
layers and one film of P layer. This is the decoupling, but
this decoupling depends not only on o. but also on k as
seen in Fig. 1 where the spin-wave spectrum h (k) is
given for X =P =400 and, respectively, a=0.2 [Fig.
1(a)]; 0.3 [Fig. 1(b)]; 0.5 [Fig. 1(c)];while co=10 G. Here
k + 1 is the number of perturbed interlayers and while k
is the number of perturbed layers. For all parts of Figs.
1, both external surfaces are unpinned, as suggested from
experimental observation.

If k is even and equal to 2q, when 1 ~i ~ q + 1 the same
transfer matrix 8; appears for the transition from layer
P +i —1 to layer P +i, as defined by Eq. (21). And when
i runs from q +2 to k + 1 =2q + 1, there is a transfer ma-
trix 3 ~k;+, j which describes the transition from layer
P+i —1 to layer P+i, as defined in Eq. (24). And the
complete transfer matrix ~ reads here

T '3 3 8 . 8 T—0 —q —q+1 —1—

The calculation of the spin-wave amplitudes b, and
differences of amplitude (b; b; &)

t—hroughout the film is
obviously obtained by truncating the complete transfer
matrix w of the film. The normalization of the magnons
and calculations of the spin-wave-resonance line intensi-
ties can be easily achieved.

B;=
2Q 1

(22) B. Spin-wave behavior. The unpinning

The transition from layer P+q+1 to layer P+q+2,
with Jp+q+2 p+q+1 Jp+q+1 p+q a J defines theq+1

matrix C +, with

—q+1C
, +1 1

2Q
q+1

(23)

The transition from layer P+i to layer P+i +1 when
k ~i )q +1, with

k —i y-

JP+i —1,P+i +~P+i, p+i +1

defines the transfer matrix A k, , with

The numerical results for the spin-wave patterns are
shown in the symmetric case X =P =400, with a normal-
ization of the maximum amplitude, with both external
surfaces pinned with, respectively, a=0. 8 [Fig. 2(a)] and
0.2 [Fig. 2(b)] while k =2. In Fig. 2(a), a is near enough
to 1, and there is nearly no deviation from the spin-wave
pattern of a uniform film. Quite differently in Fig. 2(b), a
is low enough, and among the eigen modes shown, the
even ones show nearly a discontinuity at the interfilm. It
can be noticed that both even and odd modes look nearly
unpinned on the surfaces of the magnetic films which are
adjacent to the nonmagnetic film. This is the effective
unpinning effect which can be described in general terms
as follows. When the decay parameter a approaches
zero, the spin-wave amplitude of the eigen modes goes to
a maximum value on the internal surfaces of the films.
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(b) o.=0.3
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FIG. 1. Spin-wave spectra h (k) with the resonant field h as a function of the number k of nonmagnetic, N =P =400 layers, with
m=10 G and J=10 G, when both the external surfaces of the two magnetic films are unpinned. The decay parameter a takes the
respective values, 0.2 (la), 0.3 (1b), and 0.5 (1c). The transition from perfect coupling which occurs when there is no interlayer, i.e.,
k = 1, to more or less weak coupling which occurs for k large, can be seen for odd modes only.
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(a) o(=0.8

IX,IL, IL, ILLJ LJ

LI LI

This unpinning condition can be easily demonstrated
to occur, as follows. We must study the behavior of the
surface of a magnetic film weakly connected to another
magnetic film. The spin-wave amplitude o. and diff'erence
of amplitude, o. —o' on the surface is described by the
product of an 3 0 transfer matrix times the amplitude,
difference of amplitude in the interfilm layer. For a Ni-
Fe magnetic film and a mode of large enough field as ob-
served, a is very weak and noted as c. It reads:

2c+ 1 cx

2E, a s —s' (27)

200 400 600 800

LZ LI L/

The amplitude s and difference of amplitude s —s' are
not known, but both are of order unity. It comes out ob-
viously that o is of the same order of magnitude as s, but
that cr —o' is nearly zero. This probes the effective un-
pinning character of this weak connection. Conversely
on the other surface, a matrix B ' must be used, and the
same eff'ective unpinning property appears.

Finally, the practical decoupling, more exactly weak or
bad coupling can be seen on the numerical results in the
inequality of the amplitudes of sinusoidal variations in
the two films. Since the transfer matrix through the in-
terface is unitary and thus symmetric, this inequality is
due to numerical approximations, and because of the
high level of accuracy of this numerical work, it means
that the definition of an eigen mode is quite unstable, and
that practically the mode will be more or less localized on
one side of the interfilm.

C. Experimental determination of a—experimental results

200 400 600 800

FIG. 2. Spin-wave patterns b (x) with X=P =400, k =2,
~=10 G, and J =10 G. Both the external surfaces of the
magnetic film are pinned. The decay parameter e takes the
respective values 0.8 (2a) and 0.2 (2b). The first seven modes are
shown from the bottom of the figure, with the same amplitude
normalization. In Fig. 2(a), there is a nearly perfect coupling
between the two magnetic films, while in 2(b) even modes are
badly coupled in the two films. In (b) the rather strong unpin-

ning condition at the internal surfaces can be noticed, as ex-
plained in the text.

In order to explore the theoretical features outlined in
Secs. III A and III 8, we have studied Permalloy
(Ni80Fezo) bilayers separated by films of either carbon,
or copper. Here we concentrate on those structures
with copper interfilms.

The films were prepared by electron beam evaporation
onto Corning 0211 glass substrates at room temperature
in a UHV system. RHEED data indicated that all the
films were polycrystalline (further details are given in
Ref. 2). Investigation of the continuity of the interfilm by
Auger spectroscopy indicates that copper grows on Per-
malloy according to the Stranski-Krastanov growth
mode, in which the first two layers grow as complete lay-
ers, after which subsequent growth results in the forma-
tion of islands. This behavior has also been reported for
ion-scattering-spectroscopy measurements of copper
grown on nickel. ' Thus the evidence is against direct
contact between the two Permalloy films via pinholes in
the copper interfilm.

The spin-wave-resonance (SWR) spectra were mea-
sured using a 16.5-GHz reAection spectrometer.

Figure 3 shows the resonant field values of the SWR
spectra as a function of the copper interfilm thickness for
the magnetic field applied along the normal to the bi-
layer. For all the bilayers each Permalloy film was 600 A
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will not be the uniform mode (wavevector 0) and other
spin-wave modes will be excited as are observed. The in-
troduction of the coupling and the consequent unpinning
of the interface spins will cause the values of the
wavevector to decrease with the result that the resonant
field positions will increase.

Further reduction of the copper interfilm thickness
leads to a splitting of the resonance lines into pairs, one
of which remains relatively constant whilst the other de-
creases in field position. This region covers the range of
k from ten to zero, the latter limit corresponding to a sin-
gle film with 2V'+P =2%=475 layers. Comparison of
the experimental field shifts with theoretical results of the
form represented by Fig. 1(b) gives a best fit value of
a =0.3.

Additional magnetostatic measurements support the
onset of exchange coupling as discussed in Ref. 2.

FIG. 3. The resonant field values of the SWR spectra of two
Permalloy films separated by a copper interfilm of variable
thickness k, when %=I' =238 and the thickness c of layer is

0
2.52 A. The transition between coupling and very weak cou-

0
pling is seen to occur from kc =0 to kc =14 A. Then the tran-
sition from very weak coupling to uncoupling is seen to occur
from kc =25 A to kc =36 A.

(i.e., N =P). It can be seen that the resonant field posi-
tions move to higher field values as the copper interfilm
thickness decreases from 37 to 26 A. This behavior can
be understood in terms of the induced unpinning of spins
at the interfilm interfaces as the coupling between the
magnetic films is "turned on" (Sec. III B). If, in the ab-
sence of coupling, there is partial pinning of the spins at
the two interfilm interfaces then the lowest-order mode

CONCLUDING REMARKS

Firstly the experimental observation of the turning on
of the coupling confirms the remark about the effective
unpinning and also lies a little beyond the scope of the
present model since this model always assumes the ex-
istence of such a coupling, even if weak. Secondly this
unpinning of spin waves must lead to magnetization
effects at finite temperature, i.e., at rather high tempera-
ture the magnetization near the interface must be weaker
than in the bulk of the film, as suggested by Prinz.

ACKNOWLEDGMENTS

This work has been done under the support of EEC by
Contract No. ST2 P-0382-C (EDB).

M. Vohl, J. Barnas, and P. Grunberg, Phys. Rev. B 39, 12003
(1989).

J. S. S. Whiting, M. L. Watson, A. Chambers, I. B. Puchalska,
H. Niedoba, H. O. Gupta, L. J. Heyderman, J. C. S. Levy,
and D. Mercier (unpublished).

A. Layadi, J. O. Artrnan, R. A. HoA'man, C. Jensen, D. A.
Saunders, and B.O. Hall, J. Appl. Phys. 67, 4451 (1990).

4R. E. de Warnes and T. Wolfram, Phys. Rev. 185, 720 (1969).
sD. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [Sov. Phys. Usp.

3, 320 (1960)j.
A. A. Maradudin and D. L. Mills, J. Phys. Chem. Solids 18,

1855 (1967).
7J. C. S. Levy, Surf. Sci. Rep. I, 39 (1981).
~M. Sparks, Phys. Rev. B 1, 3831 (1970); 1, 3856 (1970); 1, 4439

(1970).
J. C. S. Levy and J. L. Motchane, J. Vac. Sci. Technol. 9, 721

(1972).
A. Corciovei, G. Costache, and D. Varnanu, Solid State Phys.

27, 237 (1972).
"J.C. S. Levy, J. L. Motchane, and E. Gallais, J. Phys. C 7, 761

(1974).
J. C. S. Levy, Phys. Rev. B 25, 2893 (1982).

' J. C. S. Levy and C. Vittoria, E. MRS Strasbourg, 91 (1986).
' R. P. Van Stapele, F. J. A. M. Greidanus, and J. W. Smits, J.

Appl ~ Phys. 57, 1282 (1985).
'5C. Vittoria, Phys. Rev. B 32, 1679 (1985).
' H. Poincare, Acta. Math. 13, 1 (1890).
~7J. Moser, Stable and Random Motion in Dynamical Systems

(Princeton University Press, Princeton, NJ, 1973).
S. Aubry, J. Phys. (Paris) 44, 147 (1983).
C. Kittel, Phys. Rev. 110, 1295 (1958).
H. Niedoba, H. O. Gupta, L. Heyderman, I. B. Puchalska, A.
Chambers, M. L. Watson, and J. S. S. Whiting, J. Magn.
Magn. Mater. 83, 89 (1990).
V. Rodge and H. Neddermeyer, Phys. Rev. B 40, 7559 (1989).
Q. Prinz (private communication).


