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We develop a detailed finite-size-scaling theory at a general, asymmetric, temperature-driven,
strongly first-order phase transition in a system with periodic boundary conditions. We compute
scaling functions for various cumulants of energy in the form U(L, t) = Uo(tL )+L U](tL ) with
t = 1 —T, /T. In particular, we consider the specific heat and Binder's fourth cumulant and show
this has a minimum value of —,

—(e
& /e2 —e~ /e

&
)'/12+ 0 (L ") at a temperature

T,' '(L) —T, =O(L "). Various other pseudocritical temperatures corresponding to extrema of
other cumulants are evaluated. We compare these theoretical predictions with extensive Monte
Carlo simulations of the nominally strong first-order transitions in the eight- and ten-state Potts
models in two dimensions for system sizes L ~ 50. The ten-state simulations agree with theory in all
details in contrast to the eight-state data, and we give estimates for the bulk specific heats at T, us-

ing all exactly known analytic results. A criterion is developed to estimate numerically whether or
not system sizes used in a simulation of a first-order transition are in the finite-size-scaling regime.

I. INTRODUCTION

This paper is concerned with the analysis of Monte
Carlo (MC) data on well-equilibrated finite systems
which, in the thermodynamic limit, undergo a first-order
phase transition. We consider only systems with periodic
boundary conditions with linear size L and volume L".
In a simulation one is always faced with the problem that
computer time is limited and, consequently, system sizes
are also limited. There are two issues to be faced in such
simulations. The first is to identify the nature of the tran-
sition by purely numerical methods in a finite-sized sys-
tem and the second is to determine quantitatively various
thermodynamic quantities at the transition. These are,
for example, the equilibrium magnetizations and suscep-
tibilities just above and below the transition line in a field
driven case and, in a temperature driven transition, the
energies, specific heats, and latent heat at T, . To evalu-
ate these requires extrapolation from finite size to the
thermodynamic limit. In principle, this problem has
been solved by using finite-size scaling' ' but one must
still know if the system sizes used in the simulations are
sufficiently large so that leading-order finite-size correc-
tions are enough to perform the extrapolation. For ex-
ample, it is difficult to even see the first-order nature in
the five-state Potts model. "' In particular, we demon-
strate that, in reasonably sized systems with I. ~50, the
ten-state Potts model' in two dimensions obeys finite-size
scaling very well but the eight-state model, although ap-
parently scaling as predicted by theory, is misleading and
leading-order finite-size corrections are quite inadequate.

In Sec. II we summarize a recent method' to identify
the nature of the transition by purely numerical means
which can also indicate if the system sizes used are
sufficiently large to enable comparison with finite-scaling
predictions. This involves the simulation of the probabil-
ity distribution of energy whose logarithm will have a

double-peaked structure at a first-order transition. For
finite-size scaling to work, the difference between the
maxima and minima must both scale as L" ' and also
must be sufficiently large so that contributions to esti-
rnates of thermodynamic quantities are completely dom-
inated by the minima. For example, for accessible system
sizes, simulations on the three-state Potts model in three
dimensions' show that this scales as L but is still too
small numerically for agreement with analytic finite-size-
scaling theory. For a five-state model in two dimensions,
this never scales as I. for accessible system sizes so that
comparison with finite-size scaling is pointless. -

In Sec. III, we discuss theoretical predictions for
several quantities which have characteristic behavior in
finite systems which have a first-order transition in the
thermodynamic limit. The mimic partition function is
defined for a q-state Potts model and, using this, the
specific heat of a finite system is calculated up to O(L )

as is Binder's fourth cumulant of energy. ' In particular,
we derive a corrected value of the minimum which differs
significantly from that quoted earlier. ' ' Various
characteristic temperatures T, (L) are defined, all of
which tend, as L —+ ~, to the bulk critical temperature
and are calculated to O(L "). Although the bulk of the
theoretical discussion and all the simulations are on cu-
mulants of energy for the Potts model, we also briefly dis-
cuss order-parameter cumulants ' for both symmetric
and asymmetric first-order transitions.

Section IV discusses extensive MC simulations for the
q =8 and 10 state Potts models in two dimensions for sys-
tem sizes up to L =50. Detailed comparison with finite-
size-scaling theory is made and it is found that there is
excellent agreement for q = 10 but there is serious
disagreement for q=8, although the latter has a strong
first-order transition. This comparison is made using all
available exact results to reduce the number of fitting pa-
rameters to a minimum. It turns out that some quantities
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such as the specific-heat maximum can be analytically
determined to leading order in terms of exactly known
quantities and the next order correction in terms of one
unknown bulk specific heat. This enables quite accurate
estimates of this to be made. In Sec. V we summarize our
theoretical and numerical results and discuss their impli-
cations, and in the Appendix we summarize some of the
tedious calculations.

We note that many of the theoretical results obtained
in this paper were independently obtained recently by
Borgs' et ah. , especially the value of the minimum of
Binder's fourth-order cumulant' and the full scaling
form of the specific heat to leading order in L

II. FIRST-ORDER TRANSITIONS AND SIMULATIONS

Many methods have been proposed to distinguish nu-
merically between continuous and first-order transitions.
They depend either on the hysteresis at first-order transi-
tions or on being able to detect unambiguously first-order
finite-size scaling of the form L ". However, hysteresis
may be present at a continuous transition for small sys-
tems at short times but if one runs for a sufficiently long
time one will explore all of phase space and there will be
no hysteresis. Hysteresis is then dificult to detect in an
unambiguous way because its presence or absence will de-
pend on the rate of cooling or heating. Finite-size scaling
of the form L "will be present even when the finite sys-
tem is well equilibrated and does explore all of phase
space but will set in only for system size L )&g, where g
is the correlation length at the transition. Since g may be
many lattice spacings as, for example, in the q-state Potts
models where g(q =5)-2000 (Ref. 11) and g(q =8)-20,
very large systems and prohibitive amounts of computer
time may be required.

Recently' the problem of detecting a temperature-
driven first-order transition by MC in a finite system of
volume L" with periodic boundary conditions has been
solved by computing the histogram of energy distribu-
tion' '

N(E;/3, L ) =JVZ '(13,L )Q(E,L )exp —PE, (2.1)

A (E;P,L,A ) A(Ei,'P, L, JV) =b—F(L ), (2.2)

where bF(L) is a bulk free-energy barrier between the
states and is independent of JV. At a continuous transi-

where JV is the number of MC sweeps, Z is the partition
function, and Q(E,L ) is the number of states of energy
E. For a field-driven transition, one computes the corre-
sponding order-parameter distribution. For q-state Potts
models with q equivalent ordered and one disordered
state, N(E;P, L ) has a characteristic double-peak struc-
ture in the vicinity of T, . The two peaks at E, (L) and
E2(L) corresponding, respectively, to the ordered and
disordered states are separated by a minimum at E (L).
Defining

A (E;P,L,JV)—: lnN(E;P, L ), —

it is easy to see that, at f3=f3, (L ) defined by
A(Ei, p, L ) = A(E2,'I3, L ),

tion, b,F(L) is independent of L and at a first-order tran-
sition is an increasing function of L which, for L )&g,
b.F(L)-L '. This follows because, at a first-order
transition, the free energy as a function of E has the ex-
pansion

F(E,L)=L f0(E)+L 'f, (E)+ (2.3)

bF(L)=F(E,L ) F(Ei,L—)-L" (2.4)

In the vicinity of a critical point, bF(L) grows more
slowly than this at a rate controlled by the critical point
for L &g. ' Under the assumption that L is sufficiently
large so that irrelevant fields have scaled away so that the
only fields left are those relevant at the critical point, this
constitutes an unambiguous method of numerically
detecting a first-order transition. Then, at P, (L ),
A(E;13,L) develops deeper minima and higher barriers
as L is increased so, if a set of minima is detected for
some L and the barriers grow with L, then the transition
is first order. This has been checked numerically for the
q =5 and 6 Potts models in d =2 for system sizes up to
L =60 (Ref. 14) and for q =3 in d =3 up to L = 14 (Ref.
15). In all cases, b,F(L) increases monotonically with L
as expected, although L & g.

For the q =8 and 10 state models in d =2 analyzed in
detail in this paper, we find that for q = 10,
AF(L)-L" ' but, for q =8, hF is increasing more slow-
ly for L ~ 50. We therefore expect that, although
AF/kT, is quite large in both cases, the ten-state model
will obey first-order finite scaling well but the eight-state
model will show significant departures from theory. As
we shall see in Sec. IV, these expectations are borne out
when detailed comparisons with theory are made. This is
not too surprising in view of the fact that one may esti-
mate the correlation lengths as g(10)=9 and g(8) =22 by
defining the correlation length by bF(L =g) = 1 in d =2.
This estimate follows from N(E )/N(E, )=1/e, where
N(E) is defined in Eq. (2.1). These numbers are almost
the same as those of Peczak and Landau" who define
their g(10)=6 by fitting the cluster size to an assumed
Ornstein-Zernicke form.

III. THEORY

Given that the system of interest undergoes a strong
first-order transition in the thermodynamic limit, the 6-
function singularities in, for example, the specific heat,
will be smeared out' over a temperature range
T—T, -L ". There is no critical temperature but one
may define a size-dependent temperature T, (L) which

where f0(E) is the bulk free energy which is a minimum
and constant for E, & E & E2 and f, (E) is a surface free
energy which has a maximum at E . Then F(E,L) has
minima at

Ei(L)=Ei O(L—')

and at

E2(L) =E2+0(L ')

with a maximum at E (L), so that



43 FINITE-SIZE SCALING AND MONTE CARLO SIMULATIONS. . . 3267

tends to the bulk T, as L —+ ~. The definition of T, (L) is
somewhat arbitrary and differs according to the quantity
being considered. In this paper, we consider three
different cumulants of energy: the specific heat per site

C(L)L-'—=(«2&, —&~)2, )/T',

U, (L)=&&') /&E)'

and

U, (L)—= &E'&, /&E'&',

which have maxima at T,' '(L), T,'"(L), and T,' '(L), re-
spectively. All these maxima tend to finite constants at
T, as L but with different slopes as do T,"(L). In this
section, we calculate the C(L)L, etc., up to O(L ")
and T,"—T, up to O(L ) and in the next section we
compare with simulation results.

It has been rigorously established that, at a general
first-order transition where k bulk phases coexist, the
partition function of a finite system of linear size L with
periodic boundary conditions may be written as

k
Z = g exp —P,f;(P, )L",

where P, =l/kT, is the bulk critical temperature and

f; (P) is the free energy per site of the ith bulk phase in
the thermodynamic limit. At the transition, all f, (P, )

are equal, so each phase contributes equally to Z. We
make the very plausible assumption, as done by other
workers, ' ' that, in the immediate vicinity of T„all
thermodynamic averages may be calculated from Eq.
(3.1) with p, replaced by p. Since the q ordered states
of the Potts model are all equivalent

pf, (p)=p, f, (p, ) p, e,—r ,'C, t—2+—O(r'),

where e; =B(Pf, )/BP &
and

c, = p,'a'(—py, )/ap'~,

(3.3)

are the energy and specific heat of the ith bulk phase.
Defining new variables x =P,eitL, a =Ci /P, e iL",
r =e2/e, & 1, andy =C2/C„using Eq. (3.3) we can write
the partition function of Eq. (3.2) as

Z=q exp(x+ —,'ax )+exp(rx+ —,'ayx ), (3.4)

where we have ignored an overall multiplicative constant
of expj p, f(p, )—L "j. In the temperature range of in-
terest, t =O(L ), since e; and C; are finite at the bulk
transition, the quantities x, r, y are O(1) and a =O(L ")
so we can expand in powers of a to evaluate quantities
calculated from Eq. (3.4) to the desired order in L

Before performing such calculations, we note that the
form of Z of Eq. (3.4) implies that the probability distri-
bution of energy P(E) is a normalized sum of individually
normalized Gaussians. This is easily seen by regarding
Z(p) as the Laplace transform of Q(E) and inverting.
After performing the straightforward algebra we obtain

Z(P, L ) =q exp —Pf i(P)L "+exp P—f2(P)L, (3.2)

where f, is the free energy of an ordered state and f2

that of the disordered state. When fi&f2, the partition
function of Eq. (3.2) reduces to that of a single phase
when L ~~. We shall use the subscript 1 (2) to denote
an ordered (disordered) phase.

Near T„when t= 1 —T, /T«1, the free energies

f, (p) may be Taylor expanded in t about p, where

fi(P, )=f2(P, ),

p2L c$

E —ei—
2C, ' P,

exp—

p'L" C2r
exp — E—ez-

2C2 P,

in
C

(2~)' 2 cosh'
p2L d 1/2

C

C2
(3.5)

where

6=
—,
'

( e i
—e 2 )/3, tL +—'( C i

—C2 )t L + —,
' lnq .

This generalization of the form used by Challa et al. is,
of course, equivalent to Eq. (3.4) but differs from that of
Ref. 5 where the Gaussians were not individually normal-
ized. From Eq. (3.5), it is obvious that we are approxi-
mating the true P(E) by a superposition of Gaussians
which ignores in the statistical sum the effects of domain
walls with energy —L" '. Thus, for theoretical esti-
mates of cumulants derived from Eq. (3.4) or (3.5) to be
accurate approximations of their actual values, the mini-
ma in P(E) corresponding to stable phases, must be
separated by suKciently high barriers. A necessary con-
dition in a simulation is that AF(L) )) 1 jsee Eq. (2.2)].
This is not sufficient as b,F(L)—L" ' must also hold for

I

a strong first-order transition.
We choose to use Eq. (3.4) to calculate the energy cu-

mulants as these are obtained by differentiating Z with
respect to x which is a straightforward (but tedious) pro-
cedure. We first study the ratio of cumulants

U. (L)=—&E'&, /&E'),',
which is related to Binder's fourth cumulant'

V4(L)=1 —U„(L)/3 .

This was introduced as a quantity which could distin-
guish between first- and second-order transitions since it
will have a nontrivial value at a first-order transition. In
either a disordered or ordered phase, TAT„Vz(L) =

—,
' in

the thermodynamic limit but, at T„all phases contribute
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to V4(L) so it will have a minimum value. However, the
value quoted in earlier works,

V4( ~ ) = —,
' —(e, —e2 ) /3(e, +e & ) (3.6)

is derived on the assumption that, at the transition, P (E)
is a sum of equally weighted Gaussians or 6 functions.
There is no a priori reason to assume equal weighting
since all that is required is that, as L —+ ~, only the disor-
dered state contributes for T & T, and only the ordered
state for T (T, . Any superposition of Gaussians will do
this provided only that the weighted of the unstable
phase vanishes as L ~ ~. In a finite system in the tem-
perature range tL =0 ( 1 ), all states will contribute
significantly and, to obtain the O(L ") corrections, it is
vital that the relative weights are chosen correctly.

To obtain the correct value of V4( Oo ), all that is neces-
sary is to take a form of the probability distribution
which, when L ~ ~, becomes a combination of 5 func-
tions of the form

P(E)= [K(tL")5(E—e, )+5(E—e2) ]i[1+K(tL )],
(3.7)

—p2 2 [Z(2)/Z (Z(1)/Z)2] (3.13)

where (E ) is the average of the total energy and we find,
for the specific-heat maximum,

C(L)L "~,„=(e,—e2) l4T,

+ ,'L "[C—,+C2

+(C2 —C(+P, e( —P, e2)lnq],

(3.14)

where B( ( is given by Eq. (A19). Note that the leading
terms of Eqs. (3.11) and (3.12) are exactly known for the
q-state Potts models in d=2 since e„e2, and T, are
known. ' Since A ' ' and B' ' depend on the bulk specific
heats C, and Cz, they cannot be exactly calculated but
depend on one unknown parameter which must be deter-
mined from simulations.

The specific heat per site C(L) of a finite system of
volume L" is given by

C(L)L d=P2L 2d((E2) —(E ) )

where K(x)—+ ~ as x —+ —~ and K(x)~0 as x ~ oo.
Both the probability distribution of Eq. (3.5) and that of
Eq. (1) of Ref. 5 are of this form. From Eq. (3.7) we im-
mediately obtain

which occurs at T,' '(L) given by

[T, (L)/T, —1]L"=T, (e2 —
e& ) 'lnq+B' L

(3.15)

V4(L ) =1—(1+K)(Ke
& +e2 )/(Ke

& +e2 ) (3.8)

Minimizing this with respect to t or, equivalently, K, one
obtains

V~(L);„=—,
' —(e, le2 —e2/e, ) /12, (3.9)

U (L)=(E ) /(E ) =ZZ' '(Z' ') (3.10)

where Z("'=B"Z/(lx". To find the minimum of V4(L),
we maximize U4(L) of Eq. (3.10) and, after some rather
tedious but straightforward algebra (see the Appendix),
we find

which differs significantly from the previously quoted
value of Eq. (3.6). The next correction of O(L ") de-
pends on the detailed form of P(E) and, since the form
chosen by Challa et al. differs from Eq. (3.5) or (3.4), we
obtain different results. The value given by Eq. (3.9)
agrees very well with our simulations, while Eq. (3.6) is
inconsistent.

We choose to calculate the cumulants from the parti-
tion function Z of Eq. (3.4) rather than the probability
distribution function of Eq. (3.5) and the fourth-order cu-
mulant ratio U4(L) is given by

U, (L)= (E'), /(E),',
which have a maximum at T,"'(L),

[T,'"(L)/T, —1]L = T, (e2 —e() 'lnqe(/e2+B" L

with a maximum value

(3.16)

U' '( L)~,„=(e (+e 2) l4e, e2+ A'"L (3.17)

A ' '( and B'"are given by Eqs. (A16) and (A17).
The form of the probability distribution P(E) used by

Challa et a/. will, in fact, give identical results to ours
for the leading terms of the maxima of C(L)L ", U2(L),
and U~(L) but different results for the L corrections
and for T,"(L). We also calculate the complete scaling
function for the specific heat

where B' ' is given by Eq. (A22). Note that the form of
the L " correction to the specific-heat maximum differs
from that of Challa et al. Note also that the leading-
order expressions for T,' ' and T,' ' differ from each other.

Similar results follow for the ratio of second cumulants

V4(L ) ~;„=—', —(e
&
le 2

—e2 /e ( ) /12+ A ' 'L (3.11)
,(e, —e2)

CIL)L
4cosh [—,'(P, —P)(e( —e2)L + —,'lnq]

[T,' '(L )/T, —1]Ld

=T, (e2 —e() 'lnqe le +B' 'L (3.12)

The coefficient 3 ' ' is a rather complicated expression in-
volving C„C2, e„ez, and P, and is given by Eq. (A18).
The temperature T,' '(L ) at which V4(L) is a minimum is

+O(L ) . (3.18)

This agrees with Ref. 5 at the maximum only and differs
at all other temperatures. We note that, including the
O(L "), corrections given by Eq. (A21) give excellent
agreement with our simulation results for q = 10 as do the
expressions for T,"(L).
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Although all our simulations discussed in Sec. IV are
for energy cumulants only, it is of some interest to calcu-
late the order-parameter cumulants simulated in Ref. 5
such as

has a maximum value

g(L)L " „=Pm +yL "+O(L ")

V4(L)=1 —(m )I /3(m )~ . (3.19)
at h, =0. However, the fourth cumulant used in Ref. 4
defined by

For the Potts models, we define the order parameter Ib' V(c)(L) (S4)c/3(S2)2

where the connected cumulant

(3.25)

m =(qN, „L —1)/(q —1), (3.20)
&s'&"=&s') —3(s'&' —4(s &(s'&

where X,„=max(Xi, X2 X~) and X, is the number
of spins in the ith state. The partition function is now
written as

Z=q exp —/3g, (P, h )L "+exp —/3g2(P, h )L" (3.21)

0 lnm,
+htP, m, 1+

8ln t3,

—
—,'/l, X;h ',

(3.22)

where m, is the magnetization of the ith phase (m~ =0)
and y; =Bm; /Bh is the susceptibility of the ith bulk phase
at the transition point. Using Eqs. (3.21) and (3.22) one
may readily calculate the cumulants. We find that V4(L)
has a minimum at T, (L) ) T, at

T, (L)/T, —1=(dL lnL )/P, (ez —ei )+ (3.23)

with a value

with g;(/3, h ) the Gibbs potential of the ith bulk phase.
Expanding g, (/3, h ) about the transition point /3=/3„
h=0,

Pg, (/3, h ) =/3, g, (/3„0) /3, e; t —,'C, t——/3,m, —h

+12(s') (s ) ' —6(s )'
has nontrivial behavior at fixed P)P, as a function of h.
At the bulk transition point h =0 it has the value
—', —O(L ") and vanishes as L —+ ~ in both bulk phases
h WO. For finite L, V4" (L) has minima at

+h, (/3, L )=aiL "//3m a~yL— //3 m

where the numbers ai and az can be calculated exactly
by the methods of this paper to be ai =1.1462. . . and
a@=1.4720. . . . At the minima

V4'(L) ~,„=——,'+a3gL //3m +O(L ) (3.26)

with a =4[1+V2/31n(5+2V6)I/9=1. 2763. . . . It is
interesting to note that the leading term ——', in Eq. (3.26)
is exact and independent of the bulk thermodynamic pa-
rameters m and y, in contrast to the expression of V4(L)
of Eq. (3.11). Also, at low temperatures, /3) P, in the Is-
ing model y(/3) will also be small so that the O(L )

term of Eq. (3.26) will be numerically negligible. Inspec-
tion of Fig. 4 of Ref. 4 shows that the simulations agree
very well with theory.

V4(L) = —(/3, m, /4y2)L" . (3.24)

This behavior may already have been seen in the sirnula-
tions of Ref. 5 in Fig. 16 where a deep minimum is ap-
parent. However, at T) T, (L), the simulations show
that V4(L)) 0 while this simple theory predicts that it
should tend to zero from below as t(L)L "~oo. There
are several effects not taken into account by the partition
function of Eqs. (3.21) and (3.22) which may be responsi-
ble for this discrepancy.

The special case of a symmetric first-order transition
between two phases, as in the field-driven transition in an
Ising model at fixed T (T, and magnetic field h =0 stud-
ied extensively by Binder and Landau, is a simpler spe-
cial case and must be studied separately. The order pa-
rameters of the bulk phases at the transition are related
by m i (/3) = —m ~ (/3) =m and the susceptibilities
gi(P) =g2(/3)—:g and the partition function of Eqs. (3.21)
and (3.22) simplifies to

Z =2 cosh/3mhL "exp —,'Pyh L

From this it is trivial to show that the finite-size suscepti-
bility defined by

y(L) =/3L 8 1nZ/B(Ph )

IV. SIMULATION RESULTS

A sufficiently large system undergoing a first-order
transition in the L —+ ~ limit should be described in de-
tail by the partition function of Eq. (3.4) and, in principle,
the five thermodynamic parameters such as T„e,, and C,-
should be obtainable from simulations using the leading-
order finite-size-scaling corrections of O(L ). We test-
ed this by performing extensive MC simulations on the
q = 8 and 10 state Potts models in d =2 for which four of
the five parameters are exactly known. ' ' ' We restrict-
ed ourselves to system sizes L ~ 50 since, to obtain good
statistics, the amount of computer time required becomes
prohibitive for larger L. However, since both these mod-
els undergo a rather strong first-order transition, one
might expect these system sizes to agree well with our
simple-minded finite-size-scaling theory. To our surprise,
we find that, for q = 10, the agreement with theory is ex-
cellent but for q=8 there is essentially no agreement.
The implications of this are that, for q =8, one requires
much larger system sizes but, more seriously, to evaluate
all the thermodynamic quantities from MC data seems to
require a transition at least as strong as in the q=10
model.

We simulated the probability distribution of energy by
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performing about 5 X 10 Monte Carlo steps (MCS) per
site on the local IMB 3090. From the histograms of ener-
gy at carefully chosen temperatures near the bulk T, at
which the double-peak structure was very apparent, ex-
trapolations in T were performed using the method due
to Ferrenberg and Swendsen' to obtain, from the same
data, probability distributions at nearby T. The validity
of the extrapolation from T to T+hT depends on the
variation in the Boltzmann factor —exp' TL " being
sufficiently small compared to Q(E), the number of states
of energy E. Since 6T-L " in the range of interest, the
Boltzmann factor varied by about 10 while A(E) was typ-
ically —10 . However, as L is increased, the system will
stay longer in one of the bulk states so that, during a fixed
number of MCS, it flips between the ordered and disor-
dered states less frequently. The statistics become rather
poor for L =50 for the q =10 model. This problem was
alleviated to some extent by using the algorithm due to
Swendsen and Wang to reduce the time spent in one
bulk state, but even this requires more computer time
than was available to us to make a major improvement in
the statistics for the largest systems. For example, for the
q = 10 model with L =50 there were less than ten Aips be-
tween ordered and disordered states in 5X10 MCS.
This causes a systematic error in t(L) of about 3 X 10
However, one of the major advantages of the
Ferrenberg-Swendsen extrapolation method is that the
systematic error at every temperature is about the same
so that a curve for, say, the specific heat, is bodily
translated in temperature. Curves for different L values
may be compared by superposing them, allowing for a
bodily shift of temperature.

We assessed the strength of the transition by the
methods described in Sec. II demanding that, for all L,
bF(L) ) 1 and bF(L)L +' is constant. In Fig. 1, we
show one plot of —lnP(E) for L =32 X 32 and q =8, and
in Fig. 2 is shown b,F(L)/L against L . From these we
see that the q = 10 data, although rather noisy due to the
small number of events at the minimum of P(E), gives a
constant AF/L to within errors for L ) 18. On the other
hand, AF/L for q =8 has not settled down to a constant
even for the largest L. Note that the errors for q =8 are

I
I I

I
I

0. 10

hF//L

0.05 q=8

0.00
0.02

I I I I

0.04
L

0.06

FIG. 2. The plots of barrier heights AF(L)L "+' for the
q =8 and 10 Potts models.

so that the positions of the minima E;(L) should tend to
the bulk energies e; linearly in L ' if the systems are all
in the strongly first-order region. From the linear extra-
polation to the known values of e; shown in Fig. 3, we
conclude that this system should obey the finite-size-
scaling formulas of the previous section. We note that
the corresponding plots of the q = 8 data (not shown) do
not lie on straight lines for the L values simulated and we
do not expect this system to agree with the theoretical
formulas.

The ferromagnetic q-state Potts model is defined by the
Hamiltonian

H /kii T = —P g 5(o;,o.
~ ),

(I,j)
(4.1)

where 5(cr &, o 2) is a Kronecker 5 function, P= 1/k&T,
and (ij ) denotes nearest-neighbor pairs. Baxter ' has

smaller than for q = 10 because of the greater number of
Aips and the consequent better statistics. As a final
check, we plot in Fig. 3 the positions of the minima E; (L)
of lnPI (E) fo—r q = 10. From Eq. (2.3) it is clear that

E, (L)—e, =O(L ')

I I I

I
I I I I

I
I I 1 I

A(t.) 1.5

q=10

E, (L)

~E(L) 1.0 E,(L)

E (L)

I

1.5

E, (L)

l

0.02

E, (L) —E2(L)
I

0.04 0.06

FIG. 1. A typical plot of A(L):——lnPI (E) for the q=8
Potts model with L =32. Units of the energy per site E are such
that E= —2 for a completely ordered state.

FIG. 3. The energy minima E;(L) of —lnP&(E). Arrows
denote exact values at L = ~.
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shown that the model has a continuous transition for
q + 4 and a first order for q & 4 in two dimensions.
Several physical quantities are known exactly' ' ' at T,
in units of k~ =1 and for completeness we list them
below:

P, =In(1+&q ), (4.2a)

e2 —e, =2(1+q ' )tanh —,'8 Q tanh2n8,
n=1

2 coshO=q'

e, +e~= —2(1+q '~ ),
C~ —C, =(e2 —e, )/3, q

(4.2b)

(4.2c)

(4.2d)

Numerical values for the d=2, q =8 and 10 models are
listed in Table I. Note that Cp C& &0.5 in these units,
whereas our best estimates give the individual C; an or-
der of magnitude larger which greatly simplifies the
analysis of the data. The only undetermined parameter is

FIG. 4. The fourth-order cumulant ratio minima V~(L)~
for q=10. The lower arrow is the exact value from Eq. (3.9)
and the upper arrow is from Eq. (3.6). The solid line is the best
straight-line fit according to Eq. (3.11). The inset shows data for
L ~ 6 and the lack of scaling for L ( 18.

FIG. 5. V~(L) ~;„ for q =8. The solid straight line is drawn
according to procedure described in the text.

C& = 10.7+1.0 C2 =C& +0.45 (4.3)

In contrast to the ten-state data, the q =8 data shown
in Fig. 5 do not scale as L "for the values of L used in
the simulations and it is not possible to distinguish be-
tween the theoretical values for V4( cc )~;„ofEqs. (3.6)

(say) Ct so these models are an excellent testing ground
to compare simulations with theory.

We first investigate the scaling of the minimum of
Binder's fourth cumulant' and in Figs. 4 and 5 are
shown plots of V4(L) ~;„against L . For q = 10, the
data for 18 ~L ~ 50 fits very well to a straight line and
extrapolates well to the theoretical L = ~ value of Eq.
(3.9) denoted by the lower arrow in Fig. 4 and is clearly
inconsistent with the value of Eq. (3.6) shown by the
upper arrow. In the inset of Fig. 4 is shown the simula-
tion results including system sizes L (18=2/(10), for
which bF(L) ( 1. As expected, the small systems do not
obey the finite-size-scaling predictions. The solid line is
the best fit to the data with a slope of —9.5+1 obtained
by demanding it passes through the known L = ~ value.
Using Eqs. (4.2d) and (A18), this value of the slope yields
values for the bulk specific heats

TABLE I. Previously known exact results in units in which J= 1=k& and some thermodynamic
quantities evaluated from the theory and simulations of this paper.

el
e2
r =ez/e&
T.
V~(oo )~;„=—', —(r —r ') /12
U2(~ )~,„=(1+r)'l4r
C2 —C, =(e2 —e, )/T, &q
C& [from V~(L)]
C, [from U2(L)]
lim[C(L) —AL ]
( T' ' —T' ")L"

'From Refs. 21 and 22.
This work.

q =10
—1.664 25
—0.96820 .

0.581 76
0.70123 .
0.558 9
1.075 1

0.4476 . .
10.6+1
10.7+1b
10.3+1
0.382 6+7.8L b

q=8
—1.596 73
—1.11037

0.695 40
0.744 90
0.6207 .

1.0333 .
0.3098 .

22.8+3'
23.2+3b
22.8+3b

~ ~ ~

b

b

~ ~

a

a
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1.09
C(L) .„
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1.07
0.001 L-d 0.002 0.003

0
0 1000 Ld 2000

FIG. 6. The maxima of U2(L)—:(E')r /(E&' Ifor q =10.
The arrow at L = ~ is the exact value (el +ez ) /4e& e2 and the
solid line is the best fit according to Eq. (3.17).

FIG. 8. C(L)~,„as function of L for q=8 and 10. The
solid lines are drawn with theoretical slope (e2 —el ) /4T, and
the intercepts according to Eq. (3.14) using our best estimates of
C) and C2.

and (3.9) from the data. In view of our estimates of the
correlation length g( 8 ) =22, this is not surprising since
the largest system L =42 for q=8 corresponds roughly
to L = 18 for q = 10 and the data behaves similarly to the
small-L data of the latter as shown in the inset of Fig. 4.
We can obtain an estimate for C, (q =8) by drawing the
solid line in Fig. 5 through its known value at L = ~ and
the L =42 point yielding a slope of —15+2. This yields

C, (8)=23+3, C~(8) =C, (8)+0.31 .

The maximum of the second cumulant

U, (L)=(E'& /(E&,'

(4.4)

shows similar behavior and is shown in Fig. 6 for q =10
and Fig. 7 for q =8. As expected, the q =10 data scales
well with L " and extrapolates to the theoretical L = ~
value of (e&+ez) /4e, e2 [Eq. (3.17)]. Using the same
procedure as above, the best straight-line fit has a slope of
6.5+0.5 which yields a value of C1=10.7+0.9 with the
aid of Eq. (A16). The q =8 data of Fig. 7 shows distinct
curvature but, using the same reasoning as before, the
same estimate of C, as Eq. (4.4) is obtained.

In principle, very accurate values of C, and C2 could
be obtained by this procedure but very accurate estimates
of the L " corrections are required. This would need
much larger system sizes for the q=8 model, up to
L = 120, and better statistics for the q = 10 model, both of
which imply a much larger investment in computer time
that we could afford.

We now turn to a discussion of the specific-heat simu-
lations which we analyzed and compared to theoretical
predictions in considerably more detail than for the cu-
mulant ratios V4 and U2. The specific-heat maximum is
predicted to scale as I "with a known coefficient given by
Eq. (3.14) and our data is shown in Fig. 8. The solid lines
are theoretical fits using the known values of the slopes
(e, —e2 ) P, /4 and the intercepts at L =0 from Eq. (3.14)
and our previous estimates of Ci 2. Again, the ten-state
data are very good fits but the eight-state data show
definite deviations from theory at small L as expected. A
more detailed At of the data is shown in Fig. 9 in which
the exactly known L" contribution to C(L)~,„ is sub-
tracted and the constant (according to theory) residue

I I I I

I

I I I I

I

I I I I

I

I I I I

1.06

U (L)

20—

1.05

1.04 q=10

1.03
0

I I I I I I I I I I I I I I I I i I I

0.001 d 0.002 0.003 0,004

0 t I I I I I I i I I t I 1 I I I I ( I

0 0,001 L-d 0.002 0.003 O. O04

FIG. 7. U, (L)~,„ for q = 8. The solid line is drawn accord-
ing to procedure described in the text.

FIG. 9. The plot of C(L)~,„—(e2 —e, ) L /4T, . The arrows
at L = ~ are according to Eq. (3.14) using our best estimates of
C& ( 8)=23 CI ( 10)= 10.7.
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0.3

=10

0.2

Cl /L

0. 1

0.0
(T-V, ) L'

FIG. 10. The plot of the specific heat C( T,L )L against the
scaling variable ( T—T, )L" for q = 10 with system sizes L =50,
40, and 34. The solid curve is the theoretical curve of Eq. (3.18)
at L = ~. The data points are from simulations with the L
correction according to Eq. (A21) removed using the best esti-
mates of C& {see the text).

plotted against L ". Because of the lack of statistics for
the q=10 model, there is some numerical uncertainty
here, but, to within numerical error, this is constant and
agrees with Eq. (A23) using the estimates of C; of Eq.
(4.3). The q =8 data have better statistics but are not in
the scaling regime. The arrows indicate our estimates of

C(L)~,„—P, (e, —e~) L"/4

at L = (x) .
A more detailed comparison of the simulation data for

the full temperature-dependent specific heat is shown in
Fig. 10 for q = 10 and Fig. 11 for q =8 in which C(L)L
is plotted against the scaling variable (T T, )L . Th—e
theoretical prediction for C(L)L is given by Eq. (A21)
which may be written as

C(L)L = ,'P, (e, ——e~)sech [—,'(e, —ez)(P, P)L—

where the O(L ) term is a complicated expression given
by Eq. (A21). The solid line of Fig. 10 is the L = ao limit
of Eq. (4.5) given by the first term only and the data
points for L =50, 40, and 34 are obtained by subtracting
from each raw data point the O(L ") correction as com-
puted from Eq. (A21). Each curve for the different L
values is obtained by extrapolation in temperature from a
single simulation for each L at one temperature. ' As
discussed earlier, this procedure leads to a systematic er-
ror in temperature of O(10 ) and, to eliminate this,
each curve was shifted bodily in temperature to attempt
to superimpose it on the theoretical L = ~ curve. The
result of this procedure causes a very good data collapse
in excellent agreement with theory. The identical pro-
cedure for q =8 was carried out for only one system size,
L =42, and, as expected, there are significant deviations
from the theoretical L = ~ curve.

The final test of the theory of Sec. III is a study of the
size dependence of the pseudocritical temperatures
T,"(L) where the cumulants C(L)L, Uz(L), and
U4(L) have maxima. These all tend to the bulk critical
temperature T, as L ~~ with different slopes given by
Eqs. (3.12), (3.15), and (3.16) which may be summarized
by

T,"(L)/T, —1=L ~T, (e, —e, ) 'lnq(e& /e&)'

+g (I )L —2d (4.6)

0.710

where i =0, 1,2 and B"are given by Eqs. (A22), (A19),
and (A17). The comparison between the theoretical pre-
diction of Eq. (4.6) and the simulations for q =10 is
shown in Fig. 12 and for q =8 in Fig. 13. To within nu-
merical uncertainty, the data points lie on very good
straight lines when T,"(L) is plotted against L and ex-
trapolate to the bulk T, =1/In(1+&q ) for both q =10
and 8. However, the leading-order corrections in L

+ —,'lnq ]

+I "A [(P,—P)L "j, (4 5)
T()(L)

0.705

0.10

C„/L

0.05
0,700 I. . . , I. . . , I

0.001 L 0.002 0.003

0.00
0

(T-V, ) Ld 5

FIG. 11. The specific heat C(T,L)L for q=8. The solid
curve is the theoretical L= ao curve and the crosses are the
corrected data points for L =42.

FIG. 12. The pseudocritical temperatures T,"{L)for the
q=10 model. The arrow is exact T,(~)=1/ln(1+&q ). The
plus signs (+) denote T,' '(L), maxima of C(L )L "; the crosses
( X) denote T,"'(L), maxima of (E')I /(E)i; the open dia-
monds (()) denote T,"'(L), maxima of (E4)I /(E') f The.
solid lines are the exact theoretical leading-order L correc-
tions of slope T, (e& —

e& ) 'lnq(e&/e~)' and the dotted lines in-
clude the theoretical L " corrections of the Appendix. These
are ordered bottom (T,' ') to top (T,' ').
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FIG. 13. The pseudocritical temperatures for the q =8 mod-
el. The data points and theoretical curves are as for Fig. 12.
Note that the data points lie on good straight lines extrapolating
to known T, but the slopes disagree badly with theory.

are known exactly in Eq. (4.6) and are shown as solid
lines in Figs. 12 and 13. The next order corrections using
our best estimates for the specific heats are shown as dot-
ted lines and are about 6% for the smallest L for q =10
but as large as 25% for q=8. The agreement between
theory and simulations is very good for q = 10 but nonex-
istent for q=8 despite the linear extrapolation to T, in

"because our L values are too small for comparison
with strong first-order finite-size scaling in this case. An
inspection of the —inP(E) curves of Fig. 1 shows that
they are highly asymmetric. Since the bulk specific heats
C1 and Cz are controlled by the curvature at the minima
and C2 )C1 from known exact results, as L —+ ~ the
ordered phase minimum should be the narrower. How-
ever, for L &42, the relative width of the minima is re-
versed which has the effect of lowering T,"(L) below its
theoretical value. However, the contribution to the sta-
tistical sums from the region between the minima is quite
large, the effect of which is not taken into account by our
theoretical analysis.

The absolute values of the data points for T,"(L) are
subject to some systematic errors due to the limited
statistics of the histograms. However, because T,' '(L),
T,'"(L), and T,' '(L) for the same L are generated from
the same data extrapolated to the appropriate values of
T, much of these systematic errors will be eliminated by
considering the differences

[T,"(L)—T,' '(L)]L

In Fig. 14 we plot ( T,' ' —T,"')L"which, as L —+ oo, tends
to the known value

T2(e2 —ei ) 'lne& /e2-0. 3827

and the slope from Eqs. (A17) and (A19), drawn as the
straight line. Although the errors in Fig. 14 appear to be
very large, there is a factor of L"multiplying the temper-
ature differences and the error in b, TL" is only about 3%%uo.

The agreement between the simulation data and theory
for this L correction may be taken as very satisfacto-
ry.

0.41

0.40

0.39—

0.38

q=10

0.37
0 0.001 L-d 0.002 0.003

FICs. 14. The plot of [T,' '(L) —T,'"(L)]L to estimate the
L "corrections to T, (L) for the q=10 model. The arrow is
the exactly known value T, (e~ —e&) 'lne, /e&=0. 38267 and
the solid line is the theoretical line according to Eqs. (A17) and
(A19). Error bars seem large because of the expanded scale and
correspond to the uncertainty in hTL of 3%%uo (see the text).

V. CONCLUSIONS

We have developed a detailed theory of finite-size scal-
ing for systems with periodic BC which undergo a strong
first-order transition and calculated the scaling form for
various thermodynamic quantities U, such as the specific
heat, to O(L ) in the form

U(T, L)=Uo(tL )+L U, (tL ),
where t:—1 —T, /T. For the Potts models in two dimen-
sions, the leading term Uo(tL ) is known in terms of the
exactly known quantities e1, e2, and T, while the next
correction Ui(tL") also depends on the bulk specific
heats C, and C2 of the ordered and disordered phases.
The ratio of fourth-order cumulants of energy introduced
by Binder' as a quantity to distinguish between a first-
order and continuous transition is reconsidered and a
corrected value for the minimum calculated. Explicit ex-
pressions for various pseudocritical temperatures T,"(L)
at which the quantities U(T, L) have maxima are given
and it is found that they all differ, depending on the
definition of U(L). Deviations from the bulk T, are
computed to O(L "). The corresponding cumulants of
the order parameter in the Potts models and in the sym-
metric field-driven transition in an Ising model are also
briefly discussed and some features of earlier simulations
explained.

Extensive MC simulations on the two-dimensional
q =8 and 10 Potts models for system sizes up to 50 X 50
and a detailed comparison with finite-size-scaling theory
are reported. Although both models supposedly have
very strong first-order transitions, for these sizes, the
agreement with theory is good only for q = 10 but not for
q =8. The lack of agreement for the latter model is ex-
plained in terms of our simulations of the energy distribu-
tion function P (E) from which all quantities are calculat-
ed. These latter simulations allow for an immediate as-
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sessrnent of the validity of finite-size scaling by studying
the height of the free-energy barrier between the bulk
states. We find that this barrier AF(L) must be both nu-
merically much larger than unity and also must scale as
L" '. The ten-state model obeys both criteria and agrees
well with theory while the eight-state model violates both
and disagrees with theory for our system sizes. We note
that the scaling of several quantities should be studied be-
cause, although the eight-state model seems to obey
T, (L) T, -—L very well, the coefficient is incorrect
and this apparent agreement with finite-size scaling is ac-
cidental. Estimates for the bulk specific heats are also ob-
tained from the simulations by comparing with theoreti-
cal expressions. We also note that, to evaluate all bulk
quantities such as T„e;, and C, from simulation data
alone, it is essential to verify that one is in the strong
first-order scaling regime and that one has very accurate
data with excellent statistics.

Several of our theoretical results were independently
obtained by Borgs et al. ' from a more rigorous point of
view. They restricted themselves to a calculation of the
leading finite-size-scaling expressions Uo(tL ) and our re-
sults are identical to theirs. To compare with simulation
data, the next order correction Ui(tL ) improves the
agreement considerably and we have checked in several
cases that the numerical data and the theory for U& agree
with each other.

There is one discrepancy between theory and simula-
tion that is still a puzzle despite the excellent agreement
for the thermodynamic averages. In Sec. III, we derived
the probability distribution of energy P(E) of Eq. (3.5)
which is exactly equivalent to the partition function of
Eq. (3.4) from which all theoretical expressions are de-
rived. The minima of —lnP(E) are at ei+O(exp —L )

and e2 —O(exp L"). Howe—ver, from the discussion of
Sec. II one concludes that the minima are at
E, (L)=e, —A, L ' and E2(L)=ez+A2L ' with
Ai 2) 0 which agrees rather well with our simulation
data of Fig. 3 in which it is clear that the E;(L) certainly
do not scale as exp —L"but rather as L ', at least for the
L values of the simulations. This discrepancy between
the direction of the finite-size shifts and the L dependence
of these shifts is unexplained. Presumably this is due to
surface or domain-wall corrections in the simulations
which are not included in the analytic theory of Sec. III.
However, the thermodynamic averages U;(L) as calculat-
ed from the simulated distribution of energy Ps(E) agree
well with those calculated from the analytic distribution
P~ (E) of Eq. (3.5) despite the rather significant
differences in detailed shapes of Ps(E) and Pz(E). The
main ones are in the positions of the minima and in the
curvatures at the minima which seem to behave opposite-
ly in the two cases. We have no understanding of how
the overall behaviors of Pz(E) and P~(E) conspire to
give such good agreement for the cumulants U, (L) and
leave this point as an interesting puzzle.
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APPENDIX

Z= g exp Pfk(P)L—
k

(A2)

where fk(p) is the free energy of the kth bulk phase, L is
the system size, and d is the spatial dimension. We take
the free energies to be analytic expansions about p„

pfI, (p)=p, fq(p, ) p, ekt ,'Ckt +——O—(t ), (A3)

where

t= 1 —P/P, =1—T, /T .

ek and Ck are the energy and specific heat of the kth bulk
phase

e„=a(pf„)/ap~, , C„= p', de„/ap~, —. (A4)

In the above we have used units of k~=1. Since the
rounding of the transition takes place over a range
t -L ", we rewrite the partition function in terms of

x =P,e, tL", a =L C, /e, P, ,

r =e2/e& &1, y =C2/Ci ) 1
(A5)

where e i and C& are the energy and specific heat of the q
equivalent ordered states and e2 and C2 are for the disor-
dered state. In terms of these variables, the partition
function becomes

Z e x+(1/2)ax + rx+(1/2)ayx

=qe"+e " + —,
' ax ( qe "+ye ""

) +0 ( a ) .

Since x =O(1) and a =O(L "), we may calculate the
O(L ") corrections to C(L), etc., by expanding to O(a).

We first consider the second energy curnulant

U, (I.)=&E'& /&E&' =zz'"/(z"')' (A7)

where Z'"'=8"Z/Bx". Expanding to O(L "), we may

This appendix is devoted to the simple but tedious cal-
culations involved in computing the finite-size corrections
to the various quantities discussed in the body of the pa-
per:

C(L)=(&E ) —&E) )/T2L

U (L):—&E'&, /&E&',

U, (L)=—&E'), /&E'&', .

We assume that the system is in the strong first-order re-
gime L ))g, where the partition function is a superposi-
tion of partition functions of the q+ 1 bulk phases in the
vicinity of the bulk transition temperature T, . In this re-
gion, we may write
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write

U2(x) =g(x) [1+ah (x)],
where

(AS)

In the thermodynamic limit I = ~, a =0 at which point

g'(xo) =0 and g'(x) =g "(xo)(x—xo) .

Then, from Eq. (Al 1) we obtain

g(x) =(qe"+e" )(qe"+r e"")(qe"+e"") (A9) x, —xo= —ag(xo)h'(xo)/g "(xo)+O(a ) (A12)

qe "+ye "" qe"+y r e " 2( qe" +yre "
)

qe" +e"" qe"+r e"" qe +re'"

and

U2(x)l, „=g(xo)[1+ah(xo)]+O(a ) . (A13)

qe +yre' qe +ye"
qe +e" qe +re" + qe" +ye"

qe +r e""
From Eq. (A9) we find that, in the thermodynamic limit
I.—+ oo,

(A10)
xo" = —(lnq Ir )l(1 r) (—0 (A14)

Uz(x) =g'(x)+a [g'(x)h (x)+g(x)h'(x)] =0 . (A 1 1)

We wish to find the maximum of U2(x) which occurs at
x =x, . To find these we maximize Eq. (AS) with respect
tox:

and

U2(xo)=(1+r) l4r . (A15)

The O(L ") corrections are very tedious but straightfor-
ward to evaluate and the results are

U2(x, L ) lm„=
(1+r )

4r

X X(&) (&)—
c 0

+ a(1+r )
[(y r)lnq—lr + r +y ],4r

'2
a

—,'(1 —y) ln — + 2(1+r)+(1 r)ln ——+q (y r)— q 2(y —r )

(1—r) r r r r

(A16)

(A17)

Using the identical procedure to evaluate the minimum of Binder s fourth cumulant, we find, for
V =1—(E )/3(E')'

Vq(x, L ) I

2
1 1 a 1r —— ——1+

12 r 6 r2
1+—(y —r)ln +3(1+y)——,'(y+r ) 1+1 q 1

r r 2 r2
(A18)

which occurs at x =x,' ', where

and

X X(2) (2)
c 0

2
a 1—(1 —y) ln

z
+ (1 —r )ln +2+2r + 10—q 2(y r) 2

—
q 2 y

(1 —r ) 2 r~ r(1+r ) (1+r)
1 —r

r2
(A19)

xo '= —(lnqlr )l(1—r) .

The last quantity we evaluate is the specific heat:

(A20)

p ( )2qe(r+i)x
C(x,L )L qe

( ex+ rx)2 L d (qe x+ e rx)2

1 2 (y —1)(1—r) (qe"—e"")
(qe"+e" )

+2x [(y —1)(r—1)—(1 r) e,P, /C, ]+— (A21)
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This gives the full scaling form of the specific heat which
we use to obtain the plots shown in Figs. 10 and 11. The
maximum of C(x,L )L occurs at

C(x,L )L ~,„=—,'P, (e, —ez)

+ ,'L —[(C2—C&+P,e, —P, e2)lnq

+C2+C)] . (A23)

x,' '= — —2a, [3——'(lnq)']ln ( —1)
1 —r (1—r)

2P, e,+
C, (1 r)—

with a value

(A22)

Note that, in the thermodynamic limit, this is related to
the latent heat e2 —e, but the correction term depends
not only on the combination C&+C2 but also on the
difFerence C, —C2. Note also that Eqs. (A17), (A19), and
(A22) give corrections to p, (L) p, ( —~ ) up to O(L )

which may be obtained from an expansion of the parti-
tion function up to O(a) because the leading O(L )

correction to p, (L) is obtained from the leading O(1) ex-
pressions for xo(L).

~Y. Imry, Phys. Rev. B 21, 2042 (1980).
M. E. Fisher and A. N. Berker, Phys. Rev. B 26, 2507 {1982):

V. Privman and M. E. Fisher, J. Stat. Phys. 33, 385 {1983);
Phys. Rev. B 32, 447 (1985).

M. N. Barber, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New York,
1983), Vol. 8, p. 145.

4K. Binder and D. P. Landau, Phys. Rev. B 30, 1477 (1984).
5M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34,

1841 (1986).
K. Binder, Rep. Prog. Phys. 50, 783 (1987).
For recent reviews, see, Finite Size Scaling and Numerical

Simulation of Statistical Systems, edited by V. Privman
(World Scientific, Singapore, 1990).

C. Borgs and J. Imbrie, Commun. Math. Phys. 123, 305 (1989).
C. Borgs and R. Kotecki (unpublished).
OC. Borgs, R. Kotecki, and S. Miracle-Sole (unpublished).

~ P. Peczak and D. P. Landau, Phys. Rev. B 39, 11932 (1989).
J. F. McCarthy, Phys. Rev. B 41, 9530 (1990).
R. B. Potts, Proc. Cambridge Philos. Soc. 48, 106 (1952); F. Y.
Wu, Rev. Mod. Phys. 54, 235 (1982).

~J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).
J. Lee and J. M. Kosterlitz, Phys. Rev. B (to be published).
K. Binder, Z. Phys. B 43, 119 (1981).

~7A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61,
2635 (1988).

The histogram method of analyzing simulation data has a long
history. Some early work was done by Z. W. Salsburg, J. D.

Jackson, W. Fickett, and W. W. Wood, J. Chem. Phys. 30, 65
(1959); D. A. Chestnut and Z. W. Salsburg, ibid. 38, 2861
(1963). To our knowledge, the first use of extrapolation
methods was by I. R. McDonald and K. Singer, Discuss.
Faraday Soc. 43, 40 (1967); J. Chem. Phys. 47, 4766 (1967).
The method was rediscovered, refined, and extended in vari-
ous ways: J. Valleau and D. N. Card, J. Chem. Phys. 57, 5457
(1972); G. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578
(1974); M. Falconi, E. Marinari, M. L. Paciello, G. Parisi, and
B. Taglienti, Phys. Lett. 108B, 331 (1982); E. Marinari, Nucl.
Phys. 8235, 123 (1984); G. Bhanot, S. Black, P. Carter, and
R. Salvador, Phys. Lett. B 183, 331 (1987); G. Bhanot, K. M.
Bitar, and R. Salvador, ibid. 188, 246 (1987); G. Bhanot, R.
Salvador, S. Black, P. Carter, and R. Toral, Phys. Rev. Lett.
59, 803 (1987); A. M. Ferrenberg and R. H. Swendsen, ibid.
63, 1195 (1989); A. N. Alves, B. A. Berg, and R. Villanova,
Phys. Rev. B 41, 383 (1990).

' V. L. Privman, in Finite Size Scahng and Numerical Simula-
tion of Statistical Systems, Ref. 7.

0Very recently (since this work was completed) this assumption
has been placed on a rigorous basis in Refs. 9 and 10, al-

though it was foreshadowed by Ref. 8.
R. J. Baxter, J. Phys. C 6, L445 (1973).
T. Kihara, Y. Midzuno, and T. Shizume, J. Phys. Soc. Jpn. 9,
681(1954).
R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86
(1987).


