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Interpretation of a Schrodinger-like equation derived from a non-Markovian process
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Hydrodynamical equations for the probability density p and the local velocity v of a non-

Markovian stochastic process have been recently obtained. The corresponding complex equation in

terms of the wave function t/r coincides with the Schrodinger equation if the first-order terms only
are retained. The second-order terms vanish and the third-order terms could be considered as
QED-type corrections. To obtain the coefficient D4 of the third-order term the probability density p
for a free particle is obtained by stochastic electrodynamics. This solution is substituted in the new

complex equation, thus obtaining D4. By this coeScient the calculation of the Lyman-a wavelength
is in agreement with the best direct measurements for the transition 2P~1S. The 1S displacement
is 1% of the QED value for the Lamb shift. It is suggested how the new negative contribution could
be the difference between the ( 1+0.01) QED value for the 3S state and the corresponding experi-
mental value, which is 20% less than that given by QED.

I. INTRODUCTION

In a recent paper' the density-gradient expansion has
been rigorously proved, and the conditions (or limita-
tions) under which the expansion is valid have been
given. The validity of the density-gradient expansion has
been extended to non-Markovian stochastic processes
and, as an application, new hydrodynamical equations for
the probability density p and the local average velocity
(v) have been derived. In a motion with inertia and
without friction it holds ( v ) =Vy where y is the velocity
potential and the derived hydrodynamical equations are'

The first two terms of Eq. (4) lead to Eqs. (I) and (2)
without the terms in the large square brackets. These
two real equations are equivalent to a single
Schrodinger-like, complex equation

iD, a, lt = —
—,'D', v'q+ V

m

as can be shown by the position

g=p' exp(iy/D2) .

(5)

(6)

Full agreement with the Schrodinger equation is obtained
if

a,p+v (pvq)=o,
2

3A'

mc

a, q+ ,'(vq)'+v+ ,'-D,'—'-
2 p p

—V V p+V —V p — (Vp)
4p p p p

where we have neglected the terms in D4 because, a pos-
teriori, they give negligible corrections and

D2 3 kc~ D4: 3o X c

A, being the mean free path (or extintion length for the
memory of diffusion) of the random-walk equivalent to
the considered stochastic process and V the external po-
tential per unit mass.

To derive Eqs. (I)—(3) use has been made of the Taylor
expansion of the probability density p

p(r —A, ) =p(r ) —A. Vp+ —'A A, :Vvp

hence,

D2=

Let us retain four terms of the expansion as explicity
written in Eq. (4). The contributions coming from the
third term of Eq. (4) vanish and those coming from the
fourth term are contained in the second set of large
square brackets of Eq. (2).

To solve Eqs. (I) and (2) it is convenient to eliminate ip

and the following equation has been derived' by the posi-
tion (6):

Q~h
iA = — V g+mgV

at 2m

p2q2'
p

——'A, A, A, ' VVVP+ (4)
+V —V p — (Vp)

p p2
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9
4 10

(9)

By assuming the same extintion length A.z=X4=A, for
both Dz and D4, the following expression for D4 has been
obtained in Ref. 1 by Eqs. (3) and (7):

superposition of pure states u„& with u, oo and then by
taking p averaged over its angular part.

However, it is not necessary to exploit these cases since
the first two mentioned cases give results which are not in
agreement with experiments. In fact, Eq. (12) applied to
the ground state of a hydrogen atom gives

As a remark, we observe that, even by a position more
general than (6), it is not possible to obtain an equation in

P only (i.e., without p), for instance, of the kind

6w& —cx w~1

and applied to the first excited l state gives

(13)

iD, d, g= ,'D2V —g—+VQ —,'D2D—4V V Q, (10) (14)

4=p'"exp[iF(V»]

where F(y) is an a priori arbitrary function of cp, imply
an equation containing terms such as V' g, V' V' f,
V (1/p)(Vp), V' [(1/p)V p] and a combination of B,P
and Vg whose coeKcient's ratio is —im /F'. The condi-
tion that this ratio be as in the Schrodinger equation im-
plies F =pm/A, i.e. , position (6) with D2 as in (7). As a
consequence no additional terms arise from the general
position to eliminate the explicit p dependence and one is
left with just Eq. (8) once the terms in D4 have been
neglected.

By the same argument, the further generalized position

y=p'~ exp[iF(p, (p)]

implies F = (m /fi)g+ 3 (p), 3 (p) being an arbitrary
function of p. The condition of the existence of just the
term —A' V' g/2m implies 2 =0.

II. PERTURBATIVE CALCULATIONS
FOR THE HYDROGEN ATOM

Equation (8) can be formally treated as a Schrodinger
equation with perturbation H&(p) given by

9A VV p+V —V' p
—

~
(Vp—)

40m c p P p
H, (p)g=—

with p =p1it*.
To evaluate the contribution of this term to the energy

levels of the hydrogen atom, standard nondegenerate per-
turbation theory can be applied once M, (p) shows invari-
ance under rotations and the divergences [a priori
present in Eq. (11)] are integrable. This is certainly true
for the energy levels w, and wz relative to the states u2&

by using the averaged expression

p2/ I I u2/~ I'd&/4~

In these cases the corrections to the energy levels are
given by

nw„= Jd'xu„*, (x)H, (p„, )u„, (x) . (12)

The other cases could be treated by using nonvanishing

which is the equation which generates hydrodynamical
equations most similar (but not just equal) to Eqs. (1) and
(2).

In fact, Eqs. (1) and (2) together with the general posi-
tion

o.=e /Ac being the fine-structure constant and
w, = —Rhc the ground energy level of the hydrogen atom
(R is the Rydberg constant). We notice that the result
(13) is quite different from the fine-structure result
6w, D

=
—,'a w i derived from the Dirac equation.

If one considers the wavelength relative to the transi-
tion 2I' ~1S

bw =wz+5w2 —w, —5w, =Rhc(0. 75+ —5,7a ), (15)

with R =R m /(m, +m ), one finds the value 1215.0(7)
A by using the recent values of R, while the generally
admitted experimental value ' is 1215.6(8) A. The fifth
significant figure is different and this is sufficient to rule
out the validity of the correction terms. The explanation
of this disagreement lies in the doubt already expressed
after Eq. (38) of Ref. 1, i.e. , that the number of adjacent
cells (across which the diffusion is considered) is not well
specified. In other words, what is unknown is the dis-
tance 1 (called mean free path) at which there is extintion
of the diffusion memory. In terms of the equivalent ran-
dom walk, A, corresponds to a deviation of the initial ve-
locity by an angle ~/2. This uncertainty is already con-
tained in the first coefficient D2 and that is why, in
preceding works D2 has been left unknown and deter-
mined experimentally (i.e. , to be equal to that contained
in the Schrodinger equation). Now the point is that the
extintion length A, 2 for the first coefficient D2 may be
different from A,4 relevant to D4. To have an indication
of the D4 value we find, in the next section, the correct
solution of the free particle in stochastic electrodynamics
(SED). This solution has its own validity since we have
never seen it published in international journals.

III. THE PROPAGATOR OF A FREE PARTICLE
IN STOCHASTIC ELECTRODYNAMICS

The free diffusion in SED has been studied by Pesquera
and Santos as the limit of a harmonically bound electron
when its characteristic frequency goes to zero. However,
this is not correct because the stochastic process for both
velocity and position is stationary in a bound state but
not for a free particle. The propagator for a free particle
has also been given by one of us well aware of this fact
[see what is said between Eqs. (9) and (10) of Ref. 8]. The
stochastic process for the velocity was related in Ref. 8 to
that of the acceleration whose process is stationary. Con-
sequently, the solution for the velocity was correct. But
then, also because the same formal connection appeared
between position and velocity, the inverse Wiener-
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Khintchin relation was applied to connect the dispersion
in position to the velocity correlation. But the latter is
not correct and the leading term proportional to t was
missing. Fortunately, although what was called the "ele-
mentary" propagator was wrong, what was called the
"effective" propagator was correct because the initial dis-
tribution of the velocities and the main motion with iner-
tia implied the missing term proportional to t .

A correct procedure to obtain the propagator has been
given by de la Pena in a preprint never published. How-
ever, de la Pena ascribed the difficulties of SED to the use
of the Abraham-Lorentz equation and used, instead, an
integral equation with consequent mass renormalization
and Yukawa distribution for probability density of the
electron charge. All this is useless. What is important is
the truncation of the zero-point-field (ZPF) spectral prob-
ability density which has to occur in correspondence of
the spin frequency co, =mc /A because this is the max-
imum frequency radiated by the electron if it has a realis-
tic version of Dirac's Zitterbewegung. The ZPF spec-
trum could also be increasing after m, because of the ra-
diation of the quark's Zitterbewegung, but the effect of
this additional radiation is negligible in correspondence
of the atomic frequencies. The effect of the truncation at
m, has already been studied and a new effect has been
foreseen. ' Vice versa, the simple assumption of a trun-
cation at co, eliminates any divergence and leads to what

is called the Zitterbewegung assumption because the con-
sequent mean-square value of the speed is so high that it
is practically not inAuenced by the nucleus and the other
electrons in an atom. Once assumed the truncation at co,
the use of either the Abraham-Lorentz equation or of an
integral equation (as used in Refs. 9 and 10) only gives
negligible corrections compared with the results obtain-
able from Newton's law we might adopt in the following:

v(t)=v(0)+ f dt'E(t'),
Pl 0

r(t)=r(0)+v(0)t+ f dt'f dt"E(t") .I 0 0

(17)

(18)

Taking the ensemble averages of Eqs. (17) and (18) gives

(v(t)) =v(0),
(r(t) ) = ( r(0) ) + ( v(0) ) t =ro+ vot,

(19)

(20)

because (E(t) ) =0.
We now consider the component along the x axis of

Eq. (18) and calculate the mean-square deviation

a(t) =eE(t)/m,
where a, e, m are the acceleration, the charge, and the
mass, respectively, of an electron in the stochastic field E.
The time integrations over t give

b, x = (x (t) ) —(x(t) )

= x 0 +2x 0 U 0 t +U 0 t + dt' dt" dt"' dt"" E t E t xp 2xpUpt Upt

(21)

We now exploit the power spectral density of the ZPF
and its consequent correlation with the assumed cutoff

(E (t")E„(t'"))= dco co cos[co(t" t'"')] . —"c 2g
3~c

(22)

Substituting Eq. (22) in Eq. (21) and performing the easy
integrations over t gives

bx, =bxo+2b(xo, uo)t +du ot

dx~=hx2+Av~ t2

+ [2@+2ln(co, t) —2 Ci(co, t)
2e A

37Tm C

+2[cos(co, t) —1]+,'co, t ], (24)—
where Ci is the cosine integral and y =0.5772 is the Euler
constant.

1
b,x, =b,xo+t (b,u o+ ac ),

e "c 2R 2+,f 'dco, —[1 cos(cot)]—I o 3~c m, t))1 .
(25)

2t sin(cot)+cot2—

(23)

where b (xo, uo ) = ( x (0)u (0) ) —( x (0) ) ( u (0) ) is usually

small. Neglecting it and integrating over co gives

For co, t «1 it is more convenient to start from Eq. (23)
in which we expand 1 cos(cot) —and t sin(cot) to the
fourth order in t. The easy integration gives

+6 +t 0 xp 6 c

~ t((1.
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IV. EVALUATION OF THE COEFFICIENT D4

Our claim is that Eq. (8) is more refined than
Schrodinger's and that the small corrective terms have to
be added to all the others found in quantum mechanics.
What was wrong in Ref. 1 was the assumption that the
extinction length for A, 2 in D2= —,'A, 2c was equal to the A,4

in D4 gp At4c. We have found in Sec. III an explicit solu-

tion for the free particle in the context of the same sto-
chastic process with inertia by which Eq. (8) has been de-
rived. We therefore exploit this solution to evaluate the
unknown coefficient D4.

Since x(t) and U„(t) in Sec. III are both linear func-
tionals of E„(t) [see Eqs. (17) and (18)] and E (t) is
Gaussian, all the moments of x and v are related by the
laws that correspond to a bivariate Gaussian distribution.
We are interested here in the marginal probability density
of x only, given by

m/2
R, = dOsinOR, cosO= —,'R, =

0 2mc

Taking b,xa=R„Eq. (33) gives

cz

36~ m'c'

(34)

(35)

which is a/(32. 4m) times the preceding value used in
Ref. 1. The corresponding increase of the 1S state is
given by Eq. (13) multiplied by a/(32. 4'). The result in
frequency is

packet having the minimum initial indetermination, the
«0 has to be equal to the Compton radius R, because all
of our procedure is based on the realistic interpretation of
the Dirac's Zitterbewegung. The Compton radius R, can
be related to the spin radius R, =A/mc by assuming a
uniform distribution of the spin axes between 0=0 and
m. /2

1 x
p(x, t)= exp

(2vr)' bx 2bx
(27) v=h '5m& = e Rc =90.3875 MHz,1

12m
(36)

where Ax, is given by Eq. (24) and we have chosen, for
simplicity, xo =v0=0. For long times «, is given by Eq.
(25) which is just equal to the solution of the only leading
part of Eq. (8), i.e., of the Schrodinger equation. The cor-
responding solution for g is

—1/2

g(x, t)= (2~)' hx„ 1+ (bp*) t
2l

mh

X exp j 1+2i(bp*) t/ Rm]4«o
(28)

where

(bp*) =bp0+ m c3' (29)

The above solution is obtainable from the Schrodinger
equation and initial conditions characterized by a disper-
sion b,x(0) in position and a dispersion bp* in momem-
tum related by

«o~p *=fz/2 (30)

The correction terms due to D~ in the complete Eq. (8)
reduce appreciably the diffusion for short times but they
are negligible for long times as appears from the compar-
ison of Eq. (24) with Eq. (25). For short times we have
still the solution (28) but with [see Eq. (26)]

(b,p,
" 0) =(b,p0) + m c co, t (31)

(bp0) IRm =2bx0(Rlm) 3&~lhx0 . —

By Eqs. (29) and (30) we get bp0 so that Eq. (32) gives

24a mc
& 4

4
— Xo

(32)

(33)

Since the solution obtained corresponds to the wave

Substituting Eq, (28) with Eqs. (29) and (31) in Eq. (8)
gives, for x ~0 and in the limit for short t values,

which is 1% of the Lamb shift for the IS state. "
At this small level the wavelength corresponding to the

2P~1S transition is in agreement with the direct mea-
surement. We now have to compare our results with the
Lamb shift values.

Our contribution is additional to all known contribu-
tions, as the Darwin term, the spin-orbit coupling, the
relativistic corrections, the Lamb shift. The first men-
tioned contribution also came from a first-order expan-
sion of a stochastic process and we trust them. The
Lamb shift should be calculated in the same framework
of a stochastic process. If we consider as exact the QED
calculations of the Lamb shift, the agreement between the
experimental and QED values for the 1S state is such
that our additional contribution should be ruled out.
However, it is known that the Lamb shift for the 3S state
calculated by QED is 20% higher than the experimental
value. ' Our negative result (reduced for the 3S state) is
such that a better agreement between theory and experi-
ment should be found for the 3S state. It is therefore
reasonable to raise the doubt on the Lamb shift calcula-
tions. It would be a sufficient increase of 1% to have
agreement with the experimental value for the 1S state if
we include our negative contribution. A rough estima-
tion for 2S and 3S states gives a positive answer. To cal-
culate our contribution for these states in a reliable value
we are developing a new perturbative method because the
standard procedure cannot be applied to the "mixed" Eq.
(8), partially in P and partially in p.

V. CONCLUSIONS

The high value for D4 found in Ref. 1 is due to the as-
sumption of a mean free path (or extinction length for the
memory) A, & equal to kz (where Dz= —,'A.zc). This high
value can be excluded by the calculation of the wave-
length associated to the transition 2P —1S which is in
disagreement with the direct experimental value for this
transition, as shown in Sec. II. The mean-square disper-
sion Ax, for a free particle in the environment of stochas-
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tic electrodynamics has been calculated in Sec. III. This
has its own interest because there was not a correct treat-
ment in the international literature.

The result of Sec. III has been used in Sec. IV to evalu-
ate the coefficient D~ on the basis that Eq. (8) has been
obtained by the same stochastic process that leads to the
solution (27) for the probability density p of a free parti-
cle. For both co, t )) 1 and co, t « 1 (where co, is the spin
frequency mc /A'), our solution (27) for p is approximate-
ly equal to that of a free particle obtained by the "pure"
Schrodinger equation [given by the leading part of our
Eq. (8)]. The correction due to D4 vanishes for co, t ))1
while it is important, and negative, for co, t ((1. We
therefore took the uncertainty principle to connect the
dispersions hxo and Ap* in correspondence of the solu-
tion for co, t))1. Then we substituted the solution for
co, t « 1 in Eq. (8) and we got Eq. (33) and finally Eq. (35)
by choosing Axo=R, where R, is the Compton radius.
By this value Eq. (8) becomes

iA' = — 7 i(b+mfV
Bt 2m

a A 1VV
144~ m c p

p

We claim that this should be a quantum equation more
reined than Schrodinger's. Obviously the electron has a
polarizable spin, then the relativistic corrections should
be taken into account so that a better, and we consider
exhaustive, first ord-er quantum equation is that of Dirac.
Since the correction terms due to Eq. (37) are very small,
they can simply be added to those given by the Dirac
equation. Then there are the radiative QED corrections
due to the vacuum fluctuations. In order to be coherent
with the stochastic approach, the radiactive corrections
should be calculated by the zero-point field acting on an
electron moving along a circle with the light speed, in
agreement with the Zitterbewegung obtained from the
Dirac equation. ' If we consider the QED calculations
for the Lamb's shift, there is agreement between QED
and experiments for the 1S and 2S states but the QED
value is 20% higher than the experimental value for the
3S state. We suggest that another increase of 1% plus
our negative contribution can give agreement with all the
states. To have a sure answer we are developing a new
perturbative method because the standard one is not
applicable to Eq. (37), in which p appears in the denomi-
nator, for the 2S and 3S states.

+V' —V'p —,(V'p)'
p p

(37)
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