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Recent experiments show that axially symmetric integer-spin antiferromagnetic chains undergo a
phase transition at a critical applied magnetic field. It was argued, using Landau-Ginzburg theory,
that this is one-dimensional Bose condensation. The theory is further analyzed at the mean-field
and Gaussian level. Then some exact results concerning the critical behavior are determined using
known results on one-dimensional Bose fluids. These are shown to be consistent with recent numer-

ical simulations on spin chains.
dimensional Ising transition.

I. INTRODUCTION

One-dimensional antiferromagnetic of integer spin
have an excitation gap,! A. The lowest excited state is a
triplet of massive bosons. As observed in recent experi-
ments>> on NENP the application of a magnetic field
causes a Zeeman splitting of the triplet with one member
crossing the ground state at a critical field, h,=A. As
was argued recently,* using a Landau-Ginsburg theory,
the ground state above 4, may be regarded as a Bose con-
densate of the low-energy boson. Varying the magnetic
field is equivalent to varying the chemical potential for
this boson and the (uniform) magnetization corresponds
to the boson number.

The microscopic Hamiltonian under consideration is
the integer spin antiferromagnetic chain in an applied
field with crystal field anisotropy:

H=3(S;'S; 1 +D(S+E[(SF)’—(S?)?]—h-S;} .

(1

(Exchange anisotropy can also be included and does not
change any of the basic conclusions. We adsorb the Bohr
magneton and the g factors into the definition of the mag-
netic field, h and set #=1.) As discussed in Ref. 4, a
Landau-Ginsburg formulation of the model, based on the
large-s continuum limit, gives a Hamiltonian density:
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Here ¢ is the staggered magnetization density and II is
the momentum canonically conjugate to ¢; v, A; are phe-
nomenological parameters representing the spin-wave ve-
locity, and the gaps for staggered magnetization fluctua-
tions with polarization i. The ¢* term is included for sta-
bility. In Ref. 4 only a partial mean-field and Gaussian
analysis of the Landau-Ginsburg model was reported,
referring primarily to the region A <h,. Since then, a
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Breaking of axial symmetry produces crossover to a two-

different approximate theory, based on a fermionic rather
than bosonic representation was presented.’ Further-
more some numerical results were reported.*’ The pur-
pose of this paper is twofold. A more complete mean
field and Gaussian analysis of the Landau-Ginsburg
theory will be presented for both phases. Furthermore,
some exact results concerning the critical behavior of this
theory will be derived.

The critical behavior is deduced from the following ob-
servation. Since two elements of the triplet of excited
states have an excitation gap at A, they are irrelevant
and may be integrated out. Furthermore, near h,, we
may approximate the dispersion relation for the low-
energy magnon by E(k)=A-+v2k?/2A. The effective
low-energy Landau-Ginsburg Lagrangian then becomes
precisely the standard one used to study Bose condensa-
tion in a nonrelativistic Bose fluid with 8-function repul-
sion. This model has been studied extensively in one di-
mension.®® Although true off-diagonal long-range order
does not occur quasi-long-range phase coherence does.
This corresponds to power-law decay of the staggered
magnetization orthogonal to the applied field, with a con-
tinuously varying exponent 7. In the limit of zero density
(h—h,) the Bose system becomes equivalent to a system
of free fermions and’ 17— 4, in agreement with calcula-
tions on finite spin-1 chains.” The known result for the
ground-state energy as a function of density in the Bose
fluid® determines the magnetization near A,:

(h —h.)2A
M=Z_____._”.___ . (3)
mv

7

Note that this is different than the mean-field Landau-
Ginsburg result M «(h —h,) given in Ref. 4. It agrees
with the free fermion result suggested by a different type
of approximate theory in Ref. 5, but disagrees with the
form suggested in Ref. 6.

These results should be exact in the limit of axial sym-
metry. This symmetry can be broken either by crystal
field anisotropy [the E term of Eq. (1)] or by the applica-
tion of the external field along a direction other than the
symmetry axis. Such anisotropy can be studied using the
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Haldane formalism® for the one-dimensional Bose fluid.
It is a relevant perturbation, producing long-range Ising
order above 4, (it also leads to nontrivial renormalization
of the value of h.). The correlation length thus becomes
finite above h,; it scales as a power v of the inverse an-
isotropy with a density dependent exponent, which ap-
proaches 1 as the density goes to zero. The Ising transi-
tion itself is in the fwo-dimensional universality class
(since time plays the role of a second dimension here). As
was pointed out in Ref. 7 three-dimensional couplings
tend to produce true long-range off-diagonal order (.e.,
Bose condensation) even without anlsotropy

A rough picture of the various phases is as follows. In
the axially symmetric case, for h <h,_, there is no magnet-
ic moment (uniform or alternating) on length scales long
compared to the correlation length (about seven lattice
sites for the isotropic spin-1 case). Above A, there is a
uniform magnetic moment in the direction of the applied
field (taken to be the 3-axis), corresponding to the canted
spin structure shown in Fig. 1(a). However, the spins un-
dergo long wavelength precession about the 3-axis, so
that there is only quasi-long-range order (i.e., power-law
decay) of the alternating transverse spin components, i.e.,

(S?)=const
4)
Bab
li—jl"
Weak three-dimensional couplings will make this into
true long-range order. Axial symmetry breaking terms in
the Hamiltonian pick out two preferred orientations of

(SfSPy = (—1)~/ (a,b=1,2) .

=l 2 ==

(a)

(b)

FIG. 1. (a) Spin configuration in axially symmetric case:
there is a static uniform component in the 3 direction and a pre-
cessing alternating component in the 1-2 plane. (b) Spin
configuration with axial symmetry breaking: there is a static
uniform component in the 3 direction and a static alternating
component in the 1 direction.
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canted spins (for example, lying in the 1-3 plane) as
shown in Fig. 1(b). Below h,, fluctuations produce a
finite correlation length for alternating order of three
transverse spin components, but allow a finite uniform
magnetization in the field direction. Above 4, both the
uniform 3-component and the staggered transverse com-
ponent have long-range order, i.e.,

(S,-3 ) =const
o (5)
(S})=constX(—1) 7/

In Sec. II we analyze the Landau-Ginsburg model in
the mean-field and Gaussian approximations, with and
without axial symmetry. Section III then takes into ac-
count the one-dimensional fluctuation effects using
Haldane’s method,” deriving various exact results. Sec-
tion IV contains conclusions and a comparison of these
predictions with numerical simulations and experiment.
Some of the details of the Gaussian approximation calcu-
lations of Sec. II are relegated to the Appendix.

II. MEAN-FIELD AND GAUSSIAN
APPROXIMATIONS

A simple way of performing a mean-field analysis of
the Landau-Ginsburg model, is to first make a canonical
transformation to the Lagrangian density:

—%?=vn+¢><h, (6)
2 2 2
8¢ v |3 | A,
o +hXé¢ 5 | x Z’l o di—Are* .
(7)

We see that the magnetic field adds a quadratic term to
the effective potential:

V= 2—452 So(hX ¢’ +gt. 8)

i= 1
For small fields the minimum of V is at ¢ =0 but above a
critical field the minimum occurs at nonzero ¢.

A. Axially symmetric case

Let us first consider the simplest case where the field is
applied along a symmetry axis, corresponding approxi-
mately to a field applied along the b axis in NENP. We
assume that A;=A,=A and that the field points along
the 3-axis. We see from V that the phase transition
occurs at i, =A. Beyond the critical field the symmetry
of rotation about the z axis is spontaneously broken (in
mean-field theory) and ¢ has a nonzero (constant) expec-
tation value lying in the xy plane of magnitude:

- (hZ_AZ)
%o 4uA

We may immediately calculate the magnetization, M,
from Egq. (6):

9

¢o (h%—A?)

M= [¢XT=Lh—=Lh-" —=—, (10)
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where L is the length of the system. Note that, in mean-
field theory, M is linear in A —h_, as announced in Ref. 4.

We may calculate the excitation spectrum in the stan-
dard harmonic approximation by expanding .L to quadra-
tic order in the small fluctuations around the classical
ground state. Fluctuations of ¢ in the 3-direction are
completely unaffected by the applied field. On the other
hand planar fluctuations consist of a Goldstone phase
mode together with a finite-gap longitudinal mode. We
introduce amplitude and phase fluctuations, ¢’ and 6, re-
spectively, writing ¢ as

¢=[(do+ &' )cosh,(dy+ ¢ )sinb, ¢;] . an
The terms in .L of quadratic order in 6, ¢’ are
2 2 2 , 2
_ % (a0 | _ v (a0 | 1 [ag
2v | ot 2 |ox 2v | ot
2
v 3¢ | (=AY ,, 2héo 36 ,
2 | ox v ¢ v at¢ ) (12)

Solving the resulting classical equations of motion gives
frequencies

03 =(3h2—A%)+v?k £V (3h2— A2 +4v2h%k? . (13)

The lower frequency solution is the sound or Goldstone
mode. At k —0, this frequency approaches

272032 A2
o V=AY ”
3h°—A
Thus the speed of sound is v, =vV (h2—A?)/(3h2—A?),
which goes to zero as h —h,.

B. Axial symmetry breaking

We now wish to discuss the effects of breaking of axial
symmetry. We begin again with the Lagrangian of Eq.
(7) with the field in the 3-direction, but we now consider
the case A; <A,.

At the classical level, the transition looks essentially
the same as in the axially symmetric case. The potential
of Eq. (8) develops a minimum at nonzero ¢, for 7 > A,.
For h > h,, (¢,) is again given by Eq. (9) with A—>A,. A
difference appears, however, in the spectrum for A > h_.
All modes now have a gap. We now parametrize the
small fluctuations away from the ground state by

d=(doTd1,¢583) . (15)

As before ¢, is unaffected by the magnetic field at tree
level. The terms in the Lagrangian quadratic in ¢,,¢, are

1 {3 v [0 | n?-ad ,

2v ot 2 | ox v ¢
1[0 '[9 |7 (a3-ad ,
20 | ot 2 | ox v 2

h | 94, d¢,

) [? T M (16
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Solving for the dispersion relations we find that the lower
energy mode has a gap near s, of

_ (h*—A1(A3—AD
2h%+(A3—A) /2

w

(17)

We see that the gap rises as the square root of h —h,
times the square root of the anisotropy, in, the mean-field
theory.

Other effects of anisotropy immerge at the level of
one-loop corrections to mean-field theory (i.e., the Gauss-
ian approximation). These results are derived in the Ap-
pendix. In the axially symmetric case the magnetization
is strictly zero for h <h,. Above h, it rises linearly in the
mean-field approximation but has a finite jump at the
one-loop level (see Appendix). In the presence of anisot-
ropy there is a nonzero magnetization for all nonzero A.
In particular, as shown in Ref. 4 as #—0, M <h. The
slope of M at h =0 (i.e., the susceptibility) is proportional
to the square of the anisotropy.* M diverges logarithmic-
ally as & —h, from below or above. Furthermore, in the
presence of anisotropy there is field-dependent renormal-
ization of the gap parameters, so that higher-loop correc-
tions can shift 4., away from A;. Another striking effect
of anisotropy is on the static correlation function. In the
axially symmetric case the ground state is completely
unaffected by the field below 4, so the correlation length
remains unchanged (and equals v/A). Above h, it is
infinite. On the other hand, with anisotropy, the correla-
tion length diverges as h, is approached from below or
above: £« 1/\/ hf—hz, the standard mean-field result.
(See Appendix.)

III. FLUCTUATION EFFECTS AND EXACT RESULTS

A. Axially symmetric case

In order to go beyond the mean-field approximation, it
will be useful to discuss two different low-energy approxi-
mations to the Lagrangian of Eq. (7). The first approxi-
mation is valid only near A_.. It consists of simply drop-
ping the massive field, ¢* which is unaffected by the
external field, as well as dropping the terms quadratic in
time derivatives in the Lagrangian of Eq. (7). If we com-
bine ¢* and ¢” into a complex field

_¢ti¢”
d= VA (18)

then the Lagrangian becomes

2
L ih | 136 3" | _ |3
£ v{(bat o ?| 7" ax
2_12
S el S PYCBYPUTS (19)

v

This is precisely the standard nonrelativistic Lagrangian
for bosons with &-function repulsion. The upper mode of
frequency, o, has disappeared and we are left with only
the lower mode with a frequency which is now
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_ VR [2(h2— A?)+v2k?]
W= 211 .

This is the standard Bogliubov result; it reduces to
v2k2/2A at h—h,. It can be checked that this agrees
with Eq. (13) up to O(k*) for h close to h,. The second
approximation is valid for all A > h_, at low energies. It
consists of integrating out the amplitude oscillation ¢’ in
Eq. (12) obtaining an effective Lagrangian containing 6
only

(20)

2
_(h?=A?) ,, 2héod’ 30 K2 |06
v ¢ u ot 4v2p |or |’ @D
2 2
3h2—A% | 930 h2—A? | 36
L— 8vZA ot 8A ox (22)

The frequency obtained from the Lagrangian agrees with
w_ to O(k?), the result of Eq. (14). Note that the first
approximation, the Lagrangian of Eq. (19), was only valid
close to A, but was correct to O(k*) and described both
sides of the critical point while the second approxima-
tion, Eq. (22) is valid for all 2 > h_ but only to O(k?).

We now wish to go beyond the mean-field approxima-
tion. In particular we will be able to state some exact re-
sults in the limit of zero magnetization (i.e., density). It
can be seen that the mean-field theory is certainly not val-
id there since the dimensionless parameter which controls
perturbation theory is Av /(h 2—A?). In this limit, as dis-
cussed in Ref. 8, the Bose fluid with a §-function interac-
tion, or for that matter, any short-range interaction be-
comes equivalent to a Bose fluid with a hard-core repul-
sion, which in turn is equivalent to a free fermion gas in
one dimension. In this low-density limit the ground state
is obtained simply by arranging that the wave function
vanishes when any two particles are close to each other.
Such a wave function is equal to a free fermion wave
function times a sign function (i.e., a function which is
*1 everywhere) in one dimension. Such a wave function
has zero potential energy but has a kinetic energy of or-
der Nvp?/2A, where p is the density and N the number
of particles since the momenta of the bosons must be of
O(p). [A simple argument like this was constructed in
Ref. 6 but concluded that the ground-state energy was
proportional to Ne ~!/?¢ where £ is the range of the in-
teraction. The problem with that argument is that it ig-
nores the quantum mechanical nature of the particles and
assumes they can be localized on a length scale of O(§)
without any cost in kinetic energy resulting from the un-
certainty principle.] Explicitly, the kinetic energy of a
nonrelativistic free fermion gas of mass A, expressed in
terms of its density, p, is 72Nv?p?/6A. Including the rest
energy and the chemical potential, the energy as a func-
tion of density is

277,22
E=TMP L (a—n)N . (23)
6A
Thus the magnetization per unit length is

M/L=p=‘/—(h% . (24)
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A somewhat different free fermion approximation was
discussed in Ref. 5. The two models do not in general
agree in detail, but they do at the critical field, both giv-
ing Eq. (24) near h,. The above argument shows that this
result should be universal and exact, and not merely a
consequence of the approximations. Other critical prop-
erties of the one-dimensional Bose superfluid have been
calculated using a scaling theory.” The low-energy La-
grangian for the phase field, 6, of Eq. (22) is qualitatively
correct. However, long-range order does not occur due
to the logarithmic behavior of the propagator in two di-

mensions. In general, with the complex field ¢
parametrized as
¢~ poe’? (25)
and the low-energy effective Lagrangian written
2
1 1 | a6 a0
=—|—|=| = — 26
2m | oy |0t | | ox? 26)
The correlation function behaves as
<¢(x)f¢(0))~e—(9(x)6(0)>/2~e—n/nfx|: 1 27
x|’
where
n=%\/uN/uJ . (28)

The second term in this Lagrangian just comes from the
kinetic energy and is unaffected by the interactions (at
least in the nonrelativistic limit), hence

2

uJ:21rv¢0=2L;;£ . (29)
However, the first term, which arises from the interac-
tions, in general has a coefficient, which is much different
from the mean-field value of Eq. (22):

4p2A

m(3h1—A?)
In particular, Haldane argues’ using a Jordan-Wigner
transformation, that, at the critical point, n=4 and
hence vy =v;—0. Near h, the original spin correlation

functions have the behavior

9

($3(x)S%0)) =p?+ 77(2717x v |‘;°|‘}§f7 cos(2mpx), (31)
OO Gt VA
(8%x)S%0)) ~———— (a,b=1,2), (32)

X

where p=M /L, the magnetization per unit length. The
exponent 7 is given by

n=1-0(p) . (33)

B. Axial symmetry breaking

Finally we wish to consider fluctuation effects in the
presence of anisotropy. Since a Z, symmetry is being
broken in a (1+ 1)-dimensional quantum field theory, we
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expect the transition to be in the two-dimensional Ising
universality class. The external field plays the role of the
effective temperature, and the uniform magnetization is
hence the effective energy operator. The Ising order pa-
rameter is the staggered magnetization (in the x direc-
tion). We may now invoke various known results about
the two-dimensional Ising model. At the critical point
the staggered magnetization has a correlation exponent
7=+ and the uniform magnetization has 7=2. Since the
Ising model energy operator, corresponding to the uni-
form magnetization, has scaling dimension 1, the singular
part of the magnetization near h_, is linear in A —h_; i.e.,
the slope should be finite as 4, is approached from below
or above, but should be discontinuous at this point. The
correlation length diverges as £« |h —h,| ™! as h, is ap-
proached from below or above.

We may also specify a crossover exponent governing
the flow from the unstable axially symmetric critical line
to the Ising ordered phase in the presence of anisotropy.
For small anisotropy the critical behavior can be studied
using the nonrelativistic model discussed above [see Eq.
(19)]. The axial symmetry breaking modifies the La-
grangian to

2
_ih | 136 3" | _ |34
L ¢ at at ¢ v ox
AT+A3
_1 __1___1_]12]'9“2
v 2
AZ__AZ
+—Zzl7—‘(¢2+¢*2)—4x|¢l4 . (34)

The axial symmetry breaking adds an additional term to

the phase-field Lagrangian of Eq. (26):

2 2
—,, |28

dox

+A%_A% 20
5, Pcos26 .

1
2T

1

Un

20

L= ot

vy

(35)

The Ising symmetry breaking corresponds to the classical
ground states with 6=0,7. The anisotropy term has a
scaling dimension of 29=1/vy /v;, where 7 is the stag-
gered magnetization exponent in the absence of anisotro-
py. In the zero-density limit, this scaling dimension goes
to 1. Thus the anisotropy is indeed relevant along the
critical line.

IV. CONCLUSIONS

Here we briefly summarize the expected results based
on a combination of the mean-field/Gaussian analysis
and exact results in the critical region, and compare with
numerical simulations and experiments.

In the axially symmetric case, the magnetization is
rigorously zero below 4, =A and then rises as

M= V' (h—h,)2A 36

Y
near h, [Fig. 2(a)]. With broken axial symmetry, the
magnetization is nonzero at all A. It vanishes linearly as
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h —0 with a coefficient proportional to the square of the
anisotropy. It has a finite slope as 2 —h_ from below or
above, but the two slopes are not the same [Fig. 2(b)]. In
the axially symmetric case, the correlation length for the
alternating, transverse spin components is rigorously field
independent below 4, and then is strictly infinite above A,
[Fig. 3(a)] where power-law decay occurs with an ex-
ponent 7 which is exactly 1 at . and initially decreases
above h.. With axial symmetry breaking, the transverse
alternating spin correlation length is finite everywhere ex-
cept right at h.. It diverges linearly in 1/|h —h_| as h, is
approached from below or above [Fig. 3(b)]. It also
diverges linearly in the inverse anisotropy, just above A,.
At h,, n=1 for the alternating transverse spin com-
ponents and =2 for the uniform spin component paral-
lel to the applied field.

Finite-temperature effects should round off the discon-
tinuous derivative of M, produce a finite-correlation
length in the axially invariant superfluid phase (§<1/T),
and destroy the Ising order with axial symmetry break-
ing. In the strictly one-dimensional system this occurs at
T=0. Three-dimensional coupling will produce a finite
T,

c*

(b)

FIG. 2. (a) Qualitative sketch of the zero-temperature mag-
netization in the axially symmetric case. (b) Qualitative sketch
of the zero-temperature magnetization with axial symmetry
breaking.
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Numerical results on the magnetization were presented
in Ref. 6 for chains of length, L, up to 16, based on which
it was argued that the energy had an exponential depen-
dence on magnetization:

E(M)—MA < Me P . (37)

This disagrees with the cubic dependence of Eq. (23). We
believe that the results of Ref. 6 are dominated by finite-
size effects and do not reflect the true asymptotic behav-
ior. While the (M =1) energy gap can be determined to
about 10% accuracy from a chain of length 16 (and a few
percent for length 32) much longer chains will be neces-
sary to accurately determine the asymptotic form of the
magnetization. The reason for this is that the finite-
density corrections to Eq. (23) have the form of Eq. (37).
This follows, essentially from the argument of Ref. 6; the
typical distance between bosons is 1/p and the interac-
tion between the particles drops off with exponent §&. Un-
til these finite-density corrections become small the
asymptotic behavior cannot be deduced. This occurs
when p<<1/§, ie., L/M >>§£. For spin 1 this means

(a)

(b)

FIG. 3. (a) Correlation length in the axially symmetric case.
(b) Qualitative sketch of the correlation length with axial sym-
metry breaking.
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L>>7M. Since a reliable result for M =1 required
L=16-32, we might estimate that chains of length
16M —32M will be necessary. Of course the number of
states decreases with increasing M for fixed L so this may
not be hopeless. Numerical results on the transverse
correlation function are completely consistent with the
behavior derived here, and, in fact, the value n=1 at h,
was guessed from extrapolation of finite-size results in
Ref. 7.

Using the g factor g =2.2 and experimentally deter-
mined values'® of the velocity and gap

v=110K, A=14K, (38)

we obtain the behavior of the susceptibility at 7=0 for
NENTP for fields applied along the b axis ignoring any
breaking of axial symmetry:

M —0.041v"h —h, (ug per Ni** hin T) . (39)

Only a slight bump in dM /dh was observed in the experi-
ment of Ref. 3 and none whatever in that of Ref. 2. This
is presumably due to finite-temperature effects, axial sym-
metry breaking, and crystal defects.
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APPENDIX

Here we give more details of the one-loop corrections
to mean-field theory referred to in Sec. II. The one-loop
correction to the ground-state energy from the field-
dependent modes, w. is simply the harmonic oscillator
zero point energy:

L ¢ dk
(1) — &= hadA A
Eo 29 (2m)

The one-loop contribution to the magnetization is ob-
tained by differentiating E{':

dk |do_(k) do,(k)

—_1
M/L= 2f<zﬂ) ot . (41

[o_(kK)+w (k)] . (40)

The field-dependent energies below &, were discussed in
Ref. 4. In the isotropic limit they are simply

o, =V A+v2k*+h . (42)

Note that the w, and w_ contributions to M cancel.
With anisotropy, the energies are given by*

wi+w?
wi= 2 Lyn?
- 2
» 22 1/2
w;—
+ —iz——‘- +2h 2+ ed) |, (43)
where we have defined
0 (k)=V A2+v%k? (i=1,2). (44)
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Now, in general, the two terms in M /L of Eq. (41) do not *
cancel. In particular, as A —0, we have

WL —Wy,, O_—>0,
do? 3w+ w?
:_’ 22 21 ’ 43)
dh W5 — 0
dow* 3w+ o3
dh? - oi—w?
and hence
dk (=)
—_—— 46
M/L_)hf277' 20,05( 0, +o,) (46)

This agrees with the zero field susceptibility calculated in
Ref. 4, Eq. (3.26). On the other hand, when A —A;, M /L
blows up because @ _ —0 while dw? /dh? remains finite:

—1
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do’ wi—w?
— ’
dh? 30+ w3
AJ—A2 “n
2 281 co0p2 2 g2
Co>——[(vk*+(hi—h")] .
T 3alvAll e ThY]
There is a logarithmic divergence at k —0, h —h_, giving
O I e mu (h—h,)| (48)
T 4mv | 24342 " o

Above h., we must use Eq. (14) for the two frequencies,
in the axially symmetric case. @_—0 at k—0, as given
by Eq. (14), however, we see from this equation that
dw_/dh also goes to zero, so consequently M /L has a
finite limiting value as h. is approached from above.
Hence at the one-loop level there is a finite jump in M /L
at h,, in the axially symmetric case. With axial asym-
metry, w_ is only zero right at A, and dw_/dh is
nonzero there. Hence, there is again a logarithmic diver-
gence in M /L as h, is approached from above.

We now consider the transverse Green’s function in
the Gaussian approximation. The equal time Green’s
function is given by

24 2 32
G”(x):fddeeikx K +C()1 h th (il:l 2)
Y (27)? —2hk K+ w3—h? ’ ’
24 232 _
_ 1 f dk dKeikx K*+w;—h 2hk o)
(K242 NK2+o2) Y (27)? 2hk K*+wl—h?
—
Here « is the imaginary frequency. We may do the « in- Thus the correlation length diverges at A,:
tegral by the contour method. The encircled poles are at —
k=iw,. In the axially invariant case, we find the h- E—v/V hi—h*. (53)

independent result:

_‘ﬂ(_e ikx 1

27 VA %

This gives the standard two-dimensional relativistic prop-
agator, with asymptotic behavior:

Gijx=29; (50)

e —Alx|/v
— 2V27Alxlv

The correlation length is £=v /A, independent of 4. In
this case, the residue of the pole at k=iw_ is finite as
h—h, since the w_ factor in the denominator is can-
celled by a similar factor in the numerator. Such a can-
cellation does not occur when the axial symmetry is bro-
ken. Consequently the correlation length diverges as &,.
Keeping only the dominant contribution as 4 —h,, we
find

G(x) (51)

2 A2 1/
AZ A1

A+3A?

G, —L

2
dk 1
ij 2 e

21 2V (h2—hD)+uk?
(52)

Above h,, we see from Eq. (16) that the propagator is
again given by Eq. (49) except that now we must make
the replacements

AI—h252(h2 =AY, A3—h2AI—AT. (54)
In the axially symmetric case, w_—0 as k—0 for all
h > h.. The residue of the pole at w_ diverges as kK —0
since no cancellation of the w_ in the denominator

occurs. Hence the correlation length is infinite, the prop-
agator behaving as

dk g 1 « const+In|x/| .

55
27Te %] (55)

G(x)

With broken axial symmetry, the correlation length is
finite above A, but diverges as h —h,,
E—>v/V h*—h?, (56)

due to the behavior of w_ and the noncancellation of the
w_ factor in the denominator.
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