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We study the Anderson and SU(N) lattice models that describe the Kondo and intermediate-
valence systems, in the infinite-correlation limit ( U —+ ~ ), employing the functional expansion. We
use Hubbard operators that describe real electrons. In the lowest, nontrivial approximation, our ex-
pressions are similar to, but different from, those derived by several effective-Hamiltonian tech-
niques, like the mean-field slave-boson (MFSB) technique. In the usual large-X limit, our results
coincide with those of the equations of motion and Brillouin-Wigner expansions, which are exact in
that limit. Our results at T =0 K are compared to those of the MFSB quasiparticle description, and
we discuss the two approximations in the region in which they are different. We conclude that al-
though the quasiparticle description should give better results for the thermodynamic properties,
our treatment describes in a more physical way the overall behavior of the spectral density of the lo-
calized electrons. The structure near the chemical potential that is predicted in other methods is
not obtained in our treatment, but I believe that it would appear if a higher-order approximation
were employed.

I. INTRODUCTION

The study of heavy-fermion systems and high-T, su-
perconductivity has shown the importance of considering
the strong correlations between electrons for an under-
standing of these recently discovered phenomena. Exact
solutions are only known for a few limiting cases that do
not correspond to most situations of interest, and it is
essential to develop techniques for deriving adequate ap-
proximations. The limit of a narrow band was discussed
in a series of papers by Hubbard, ' and he introduced a
deceptively simple Hamiltonian to study the strong local
correlation between electrons at the same site. To de-
scribe the electronic states, he employed the X operators,
which are very adequate to study atomic states:
X~ &=

~ ja ) (j13~ transforms the local state p into the state
a, both at site j. Their use makes it possible to include
strong local correlations in an extremely simple Hamil-
tonian that has only the hopping term. These X opera-
tors are not fermions or bosons, so that Wick's theorem is
not valid, and the first treatments of the problem were
made by decoupling the Green's-function (GF) equations
of motion. Besides problems with the violation of spec-
tral sum rules in this method, the choice of the decou-
plings is rather arbitrary, and one would like a more sys-
tematic method; but we should mention a recent decou-
pling technique employed for the Anderson model that
seems rather promising.

Several methods have been used to study the Anderson
model: Let us mention (a) perturbation expansion with X
operators, (b) the Gutzwiller variational technique, and
(c) slave-boson methods. In these techniques one can use
the large-N approximation, based in the SU(N) model,
which is a natural extension of the Anderson model: The
Hamiltonian has X rather than only two channels for
both the localized and conduction electrons, with hybrid-
ization allowed only within each of the channels. An ex-

act solution is obtained by taking N~ ~ and keeping
NV =const (where V is the hybridization constant) and
the expansion is made about this limit with 1/X as a pa-
rameter. In method (c) an auxiliary boson field is added
to the Fermi field, and the correlation is forced on the
system by local constraints: The operators in the Hamil-
tonian are true fermions and bosons, and Wick's theorem
is satisfied. Both standard perturbation expansions and
functional integral methods have been employed to study
the slave-boson Hamiltonian, but in the lowest approxi-
mation one can use a rather simple mean-field slave-
boson (MFSB) method. In both the Gutzwiller and
MFSB approximations, the system is described by an
effective Hamiltonian, describing two hybridized bands
with renormalized localized energy E and hybridization
parameter V. There are small but important differences
in the two results, but it has been recently shown that a
modification of the MFSB treatment gives coincident re-
sults. In a recent paper the functional technique em-
ployed by Kadanoff and Baym' (KB) to expand GF was
applied by Ruckenstein and Schimtt-Rink (RS) to study
the Hubbard model. This method seemed to be particu-
larly suitable for our purposes, because it shows how to
obtain in a systematic way approximations that conserve
several important quantities.

In the present paper we shall study the Anderson mod-
el in the U~ ~ limit employing the KB technique. The
simplest nontrivial result is the analog of the Hartree-
Fock approximation, but applied to a self-energy term
and not to the U term of the Hubbard Hamiltonian: This
last approximation would have no sense in the U~ ~
limit. It seemed interesting to compare our results with
those of the MFSB approximation for arbitrary X, and
we studied the SU(N) model, which includes the Ander-
son model for X =2. The results we find employing the
KB expansion in the IV region are qualitatively similar to
those obtained by the "effective Hamiltonian" methods
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discussed above, but they are rather different in the Kon-
do region. To give a unified picture of these conAicting
results, we have compared them with those obtained by
the variational treatment of Brandow. " This technique
has the advantage of being variational, as the effective
Hamiltonians are, and at the same time using a variation-
al wave function with the f configuration automatically
empty, so that electronic correlations are satisfied
without having to enforce them by extra conditions at the
end of the calculation. This analysis leads us to believe
that the KB and MFSB treatments show complementary
aspects of the system in the Kondo region, each one
describing a different spectral region of the f spectral
density.

In Sec. II we apply to the SU(N) model the derivation
recently employed by RS to study the Hubbard model.
In Sec. III we consider in detail a particular model that
can be calculated analytically at T=O K and compare
the results with those of the MFSB method for the same
system. In Sec. IV we consider the apparent discrepancy
between our results and those of RS, who state that the
KB and MFSB methods give the same results in the
N~ ~ limit. In Sec. V we analyze the results obtained
with the KB method, giving particular attention to those
that seem to contradict the currently accepted picture.

II. FUNCTIONAL EXPANSION
FOR THE SU(X) MODEL

As the techniques employed in this section follow the
method' of KB employed by RS for the Hubbard mod-
el, we shall only give the main steps of the derivation, to
show the necessary differences to treat the SU(N) model.
As usual, we write the model Hamiltonian as
H =H0+H', with

Ho =g E (fj o)X +g E.
( kcr )C q Cq

J, CT k, o.

H'= g VJq X 0 Cq +H. c.
j,k, o.

To exclude multiple occupancy of f electrons at each
site, we have used the Hubbard operators mentioned in
the Introduction. The only localized states at site j are

~ j0) (no f electron) and the N states ~j
o. ) (one f electron

in channel o): All the X & operators that appear in our
model, besides their specific action, project out from any
local state at site j the components with more than one
electron at that site. The Ck are the usual Fermi opera-
tors of the conduction band.

To write more compact expressions, we introduce a
vector Y with components Y(y, o) that describes both
X 0 ( y =f,j) and conduction-electron operators C&
(y=c, k) as well as the vector Y, with components
I' (y, o.). The Hamiltonian then reads

H =Y E.Y+Y V Y,
where the matrix E is diagonal with components E (y, o )

and those of V are V(fj o,fj 'cr')= V(cko, ck'o')=0 and.

V(fj,cr, cko') = V*(cko', fj ~)
=

VJq 5 ~
= V/+N, exp(i k RJ ),

S(U)=exp+ f dr Y(r) U(r) Y(r) (4)

P= 1 /kT and the subindex + indicates r ordering to the
left. We introduce the matrix G(r&, r~) with components
G (1,2;U), and we shall leave the U implicit unless neces-
sary for clarity. The equation of motion of Cx can be put
in the form

a +E+V—U G(r, r')
O'T

pQ(r)5(—r v') —j—dr, X(v, r, )G(r„.r'), (5)
0

where the matrix

Q(r) = ((S(U) [ Y(r);Y(r)] ), ) /(S (U) )

is diagonal in y and symmetric in the o. indices because
of the anticommutator [; ]. The self-energy matrix
X(r, r')

X(r, r') =Pf A(r)V5(r r')—
+ J d Gi'( , rr)G '(r), r'),

0

where the inverse of G(r, r') is defined by

dr(G '(r, r)) G(r„r')=5(&—&')I,
0

and I is the identity matrix. The matrix P projects on
the subspace off operators:

5r&.5 for y = (fj ),
0 for y, y'=(c, k),

[ A(r)]r ~ =5r G(ycrr, yo'r+ )

—5 g G(ysr, ysr+)

and the components of G'(r, r') are

G'(yo r, y'o 'r') = g [5/5U, (yr)]

—5, g [5/5U„(yr)]

x[Pf V G(1-, 1.', U)], (10)

Although one does not know how to solve equations with
functional derivatives 5/5U, they provide a systematic
procedure to obtain "conserving" expansions' for the
GF. Employing G '(r, r') and the inverse of Q(r) at a

where Nz is the number of sites. To define the imaginary
time GF, we introduce A (r)=exp(rH)A exp( r—H) and
A (r) =exp(rH) A exp( r—H). Following KB, ' it is con-
venient to introduce an external potential U(r) with com-
ponents U .( y, r ),5r r and define the U-dependent GF:

6 (1,2;U) = —( (S(U) Y( I ) Y(2) )+ ) /(S(U) ), (3)

where we abbreviate Y(1)= Y(y, o, r):
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given r [i.e., Q(r) Q (r) = I], one can express G'( r, r') as
a function of functional derivatives 5Q(r ) /5 U and
5X(r, r')/5U. The lowest-order approximation neglects
these two functional derivatives: This corresponds to a
Hartree-Fock approximation for X(r, r'). Taking U =0,

Eq. (1) commutes with the spin components, and G, Q,
and Cx' are then diagonal in the spin index o' so we
denote their diagonal elements with G (cr; y r, y'r'),
Q(cr;yr), and G'(cr;yr, y', r') W. e obtain, in this approx-
imation,

G'(cr",fj r, y'r') =g g VG(s;ckr fj r)Q (s;fj) G(cr fj r, y'r'),
k sWo.

G'(cr; ckr, y'r') =0

(cf. the presence of P in G'). Because of the invariance
against time translation of the Hamiltonian

G(r, r') =G(7. r'), —

we define the Fourier transform

G(co )= J G(r, r')exp[ico (r r')—]drp

with co =(2v+1)vr/P, where v is an integer. For a uni-
form system,

6 ( o",ck, ck'/co ) = 5kk /(i co E) /b (
—ki co),

G(cr;fk, fk'/co )=5kk [ico„—E(kcr)]Q /b(k, ico„),
(12)

G(0;ck, fk'/co )=5&&,V*Q /b(k, ico ),
G(cr;fk, ck'lco, ) =5&I, (1—(N —1)(X„)) Vlb(k, i co,),
where

I

Q = 1 —g,~ (X„),which is also consistent with the
local completeness Xoo+ g X =I, in this case,
I
vI'= Q. I

vI'.

III. RESULTS FOR A SIMPLE MODEL

=E—D+[(D +E) +4V

2co =E+D+[(D E) +4V—]'
(18)

The cc = 1 (2) corresponds to the + ( —
) sign and is there-

fore the upper (lower) "band"; the e6'ective E is always in
the gap. The local spectral density of f electrons in the
model is

pf(co) =p QV'/(co E)' . — (19)

We present here results for T =0 K taking a rectangu-
lar conduction band of width 2D and centered at the ori-
gin (i.e., a density of states per channel p =1/2D). Each
"band" co (k) is in the interval [co,co M ], where

h(k, z) = (z E).[z E(ko. )
—]——VI

E =E(f )
—VQ ' y (x,', (j)c,),

saba

Q. =(x„)+&x..),

I
vI'=(1 —g &x„))I vI',

(14)

(16)

E=Ef+(N —1)I VI'p ln[(E —co2 )/(E —p)] &o,
n =Qp'I Vl'{ [1/(E —p)] —[1/(E —co )]I, (20)

n'=p (p —co~ ),

We give here results valid for the chemical potential p
inside the lower "band"; similar results hold in the other
cases:

and (X„)= (X.„)is independent ofj.
The operator C destroys an electron in the Wannier

state at site j, and in the uniform case all properties are
independent of the site. In the paramagnetic case the

becomes N —1 because the properties are indepen-
dent of the spin component and the calculation is
simpler.

The GF's in Eqs. (12)—(16) have poles at the solutions
co (k) (cc=1.2) of b, (k,z)=0. They correspond to the
dispersion relations of a band E(kcr) and a lattice of lo-
calized f electrons with energy E hybridized with a con-
stant V. The local spectral density of f electrons per
channel is

p (co) =(1/N, ) g ( —1/ir)ImG(cr;fk, fkl i(co+i0))—
(17)

It is clear that if the general property of GF,
Gzz(z) = G&t „t(z*) is satisfied, one must have

where n' and n are, respectively, the number of conduc-
tion and f electrons per channel per site, and we write
Ef =E (f) for convenience. In the N~ ~ limit these ex-
pressions are exactly those derived in several "effective
Hamiltonian" treatments' [cf. Eqs. (70), (72), and (74) in
Ref. 7], except that our expression for n has an extra
factor Q and we have (N —1) instead of N in E. This
rejects the fact that the effective 0 in those works de-
scribe two hybridized bands without correlation and with
an integrated f spectral density per channel equal to 1,
while in our case the spectral density integrates to Q ( 1

because of the f-electron local correlation. In the
effective Hamiltonian treatments, the correlation is
forced on the model through extra conditions, and the re-
sulting E is slightly above p when Ef (p so that the ener-
gy renormalization E—Ef -p —Ef when Ef is rather
below p. The uncorrelated fermions that appear in H de-
scribe quasiparticles, while the X operators in our GF
correspond to correlated f electrons and do not require
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extra conditions to keep the total number of electrons per
site less than 1. The X operators are not Fermion opera-
tors because the double occupancy has been projected
out, and one should not try to force them to have the full
spectral weight of the f electrons. In the large-N limit
(keeping NV constant), our f-electron GF tends to a 5
function at E with strength Q, which is the exact solution
in this limit. '

It is interesting to compare the results of the two types
of treatments for specific values of the parameters: We
shall keep V and the total number of electrons constant,
and plot the chemical potential p, the difference E —p,
the total number of f electrons n =Nn, and the f local
spectral density at the Fermi surface p =pf(p) as a func-
tion of the unrenormalized f-electron energy Ef. From
the practical point of view, it is easier to start from given
E, V, and (X ), take Q =1—(N —1)(X ), and calcu-
late V from Eq. (16); the value of p that gives (X ) is
then easily obtained. The f spectral density derived from
Eq. (12) always integrates to Q, and from this invariance
it follows that (Xoo) =Q —(X ) =1 N(X —), so that
the local completeness is automatically satisfied. The un-
renormalized Ef and n' are obtained from Eqs. (18), and
the total number of electrons per channel is n'=n'+n
a unique solution is obtained by this procedure, and the
value of p that gives the n ' we want is obtained by vary-
ing the starting (X ); one can then plot the different
parameters as a function of Ef. In a similar way we
study the MFSB approximation, but for given n' and
sufticiently low E there is no solution: In this case we em-

ploy the usual method to obtain E as a function of Ef.
In Fig. 1(a) we plot E —p and p as a function of Ef for

V=0.3, D =10, N=2, T=O K, and n'=0. 5. Here and
in what follows we employ the same energy unit in all pa-
rameters and variables, so that the unit of p is the in-
verse of the energy unit: The results are then invariant
against a change of the energy unit. The two graphs of
E —p and p are indistinguishable, except that in the
MFSB technique the p, (dashed line) remains near the
bottom of the conduction band when Ef goes below that
value: As discussed above, this is necessary to keep
nf & 1. In our calculation (KB) both E and p keep de-
creasing for Ef &D, giving again E —p —0. In Fig. 1(b)
we show p, the spectral density at p for both KB (solid
line) and MFSB (dotted line) methods, as well as the total
number n of f electrons (dashed line). It is then clear
that the properties that depend on p at p would be at
least qualitatively similar for the two methods in the re-
gion of interest (i.e., Ef inside the conduction band).
This type of behavior is repeated for n '& 0.5.

The situation is qualitatively different for n )0.5, as
shown in Figs. 1(c) and 1(d) for the same parameters, but
for n ' =0.7S (not the different scales employed for
n'=O. S). The two graphs of p are indistinguishable in
Fig. 2(a), but the E —p are different below a given energy
Ef as was discussed before. The plot shows that for the
KB method there is an interval of Ef in which E —p is
very close to zero, and this region coincides with the in-
terval in which p increases from one plateau to a higher
one. The interpretation is clear: This is the interval in

-1 0.0

—
I 0.0 —5.0 0.0 5.0

Ef (energy units)

FIG. 1. Parameters and units employed are discussed in the
text. (a) Chemical potential p and E —p are plotted as a func-
tion of the unrenormalized f energy Ef for both the KB and
MFSB methods. For Ef &10 the two p curves are di6'erent, the
solid line corresponds to the KB method. The two E —p curves
cannot be distinguished in the plot. (b) The total number of f
electrons nf=Nn (dashed line) and the f spectral densities pf
at p are plotted as a function of Ef for the MSFB method (dot-
ted line) and for the KB method (solid line). The two p have
been multiplied by 0.005 to fit the vertical scale.

which the f electrons are transferred into the conduction
band as Ef increases, and this is shown in Fig. 2(b),
where n and p are plotted against Ef for the two
methods. The KB value of p has a sharp maximum in
this interval, and we expect that the model would predict
heavy-fermion (HF) properties for the system in this re-
gion; inside this interval there is a smaller one in which
E &p&E.

Th«B spectral density in Fig. 2(b) is not monotonic
as in Fig. 1(b), but shows a very asymmetric peak. The
meaning of this asymmetry is traced back to the jump of
p from the upper band into the lower band: When Ef in-
creases, the number of conduction-band electrons also in-
creases and n decreases, as shown in the figure, until a
point in which the number of f electrons in the lower
band is enough to give the required n '= n +n '. This be-
havior cannot be present in the MFSB treatment because
p is always in the lower band to keep n & 1.

Figures 2—4 are the same as Figs. 1 and 2, but with
N =10. The same qualitative features are observed as in
Figs. 2(a) and 2(b), but the interval in which E —p-0 is
rather smaller than in Fig. 2: This is because the max-
irnum number off electrons per channel is I /N, and they
are all transferred to the conduction band in a smaller in-
terval of Ef when N increases (we have not plotted the
MFSB value of p in this figure for clarity). A behavior
similar to that of Fig. 1(b) would only occur for Nn ' & 1.
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(b) p~ (b)

5.0
(a3

&n 5Q

Q.Q

0)

-5.0
I

—5.0 0.0 5.Q
E& (energy units )

Q Q

~ -50

-5.0 0.0 5.0
E f (energy units)

FIG. 2. (a) Same plot as Fig. 1(a), but for n'=0. 75. Here the
two curves of E—p are different for Ef below —5 (the dashed
line corresponds to the MFSB method). Note the different scale
than in Fig. 1(a). (b) Same plot as Fig. 1(b), but for n'=0. 75.
Note again the different scales.

FIG. 3. All the parameters and curves correspond to those of
Fig. 1, but for N = 10.

Q =1 nf+—nf/N . (25)

IV. FUNCTIONAL EXPANSION
AND THE HUBBARD MODEL

H= —ggt; X;0 X 0
0 l, J

(21)

A very important point is the apparent discrepancy be-
tween our results and those derived by RS for the Hub-
bard model. They state that their results agree with
those of the MFSB method in the X—+ oo limit, while for
the Anderson model we have found that the KB and
MFSB methods give rather different results, particularly
in the Kondo limit. To study this problem we repeated
the calculations for the Hubbard model with the same ap-
proximations we have used for the Anderson model. For
infinite correlation (i.e., U~ ao), we write the Hubbard
Hamiltonian as

and

nf =Q (N/2D )(p —Eo+D ), (26)

QEO= —[(N —1)/2D][(EO p) l2 (D)—l2] . — (27)

n'
p' (b)

As a simple model, we assume that in the absence of
correlation (i.e., no f frepulsion-) we have a rectangular
band centered at the origin and with a half-width 2D (i.e.,
a density p =1/2D per channel). Equation (22) is pro-
portional to the GF of a band centered at Eo and with a
half-width of D =QD (the constant of proportionality is

Q). Following standard methods, we find

Gk (z)=Q/Iz —[E(k)+ED]],
where

(22)

where we assume that t =0 and cr=1,2, . . . , N (i.e.,
there are N channels). The derivation follows the same
steps as before, and the lowest nontrivial approximation
takes all the 6X/5U=6Q/SU=0. When the external
potential U is zero and the system is paramagnetic, we
can Fourier transform in space and imaginary time. One
then easily finds the CiF.

5.0
O~c

QQ
0)

-5.0

(a3

E(k)=QQ( t,, )exp[ —ik (R, —R, )]—,

QEO= —(N —1)g( —t, )(X Xto, 0 ), "

and

(23)

(24)

I l

-5.0 0.0 5.0
Et (energy units }

FIG. 4. All the parameters and curves correspond to those of
Fig. 2, but for N=10.
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QEO=(1 —1/N)Dn (1—n ),
while for the MFSB method we obtain

(28)

To compare with the MFSB results, we shall denote
with a prime the quantities that in the MFSB method
correspond to the unprimed unities of the KB, e.g. , we
shall use E o, Q', etc. , instead of Eo, Q, etc. In the MFSB
method Eqs. (26) and (27) are valid, but with the follow-
ing differences: The Q factor is missing in Eq. (26), there
is an N rather than N —1 in E o [cf. Eq. (27)], and instead
of Eq. (25) we have Q'= 1 n—I [cf. Eqs. (119),and (120) in
Ref. 7]. These are the same differences we have obtained
for the Anderson model, and one would naively expect
that different results would be again obtained, even in the
limit of N~ ~.

From Eqs. (26) and (27), one finds

To conclude, we may ask why the KB and MFSB
methods give the same results (except for nI=1) for the
Hubbard model and different ones for the Anderson mod-
el, when N~ ~. The basic reason is that the presence of
the conduction band in the Anderson model allows varia-
tion of the n when the total number of electrons Nn' is
fixed, while in the Hubbard model we have a fixed
n =Nn '. As p is determined by n ', all the differences be-
tween the KB and MFSB methods go to zero when
N~ ~ (except for n =1) in the Hubbard model. In the
Anderson model p is determined by n'+n /N, and in
the limit N~~ it is exclusively determined by n'. In
the Kondo region the E& is far below p, and to avoid
n ) 1 the renormalized E has to be very close to p in the
MFSB, while this condition is automatically satisfied in
the KB. This aspect is more thoroughly discussed in Sec.
V.

E O=Dn (1 —n IN). (29)

To study the N ~ ~ limit, we shall separately consider
the case n =1: for any given n &1, we obtain

E o=Eo=DnI,
Q'=Q =1—n/,

(30)

(31)

p'=p=Eo —D, (32)

thus confirming the statement of RS that the two
methods give coincident results for N~ ~.

The case n/=1 is rather awkward: From Eq. (28) we
obtain Eo =D if we first take N ~ ~ and then n ~ 1, but
the result is Eo =0 if we reverse the order of the two lim-
its. In the MFSB method we obtain instead the same re-
sult E 'o=D when the limit is taken in the two ways. We
shall prove that for N —+~ both the KB and MFSB
methods give the same relevant physical quantity, name-
ly, the ground-state energy Eg. From Eqs. (21) and (24),
it is clear that

E'= —(1—n )n (1 n /N)D = ——Q'Eo, (34)

and therefore Eg Eg in the limit N —+ ~.
It is clear that when n =1 all hopping is forbidden, and

the ground-state energy should be zero for any value of
N: this result follows from Eq. (33), because Q =1/N
and Eo =0, and from Eq. (34), because Q'=0 and
E O=D(1 —1/N). To discuss this difference we note that
in the MFSB method Eo has two roles in the effective
Hamiltoman [cf. Ref. 7, Eq. (110)]: (1) it shifts the center
of the band to E 0 and (2) it adds a constant term
E 0(Q' —1) that compensates for the energy contribution
of the band shift. One expects that for n =1 the shift of
the band should be zero, because all hopping is forbidden,
and the E o shift derived in the MFSB method seems
rather artificial, even if it is compensated by the constant
term in the effective Hamiltonian. I therefore believe
that the zero shift obtained by the KB method when
n = 1 gives a better description of the system.

Eg =(H) = —(1—1/N)QE0= Dn (1—n )—, (33)

while Newns and Read find the expression [cf. their Eq.
(124)]

V. DISCUSSION

In this section we shall discuss why the KB functional
expansion and the MFSB method give rather different re-
sults in the Kondo region. We shall concentrate on the
simple model presented in Sec. III, but our conclusions
are also valid in the general case.

The formulas for the KB method in Eqs. (20), differ ex-
plicitly from the corresponding ones in the MFSB
method only by the presence of an extra factor Q in the
expression for n and a (N —1) rather than N in that of
E. A second difference is hidden in Q itself, because its
actual expression differs in the two methods. These two
differences have separate effects on the spectral densities,
and we shall consider them one by one.

Consider first the factor Q =( V/V), which determines
the renormalization of the hybridization. In the KB
method we have the same Eq. (25) as in the Hubbard
method, while in the MFSB method we have Q =1—n~
and in the Gutzwiller method Q =(1—n )/(1 n). All-
these expressions coincide in the N~ ~ limit, but they
are rather different for the Anderson model (N =2). For
small n the KB expression coincides with Gutzwiller's
to 0~n ~, but in the Kondo region, i.e., for nI 1, the K-B
value for N =2 is Q -0.5, while in the two other
methods it is Q-0. When Q~O (i.e., V~O), the gap
tends to zero and the f spectral density p/(co) becomes a 5
function at E. In the KB the minimum is Q =0.5, and so
the hybridization is not canceled in the Kondo region
and the spectral density has instead an appreciable width.

Let us now consider the second difference, namely, the
presence of an extra Q in the KB expression for n [cf.
Eq. (20)]. This extra factor was already attributed in Sec.
III to the fact that the GF with Hubbard operators X de-
scribes correlated electrons, in contrast to the band of un-
correlated electrons of the "effective Hamiltonian" treat-
ments. The integrated spectral intensity per channel is Q
for the KB method, while it is 1 for the MFSB method,
and as a consequence, the relation n ~ 1 is automatically
satisfied in the KB method, even when E is far below p:
The resulting energy renormalization E —E& is even then
only moderate. To satisfy n ~ 1 in the MFSB method,
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the p has to be in the lower band for E& su%ciently low
and therefore E)p because E is always in the gap.
When n') 1/N we need at least n' —1/N conduction
electrons, so that p has also a minimum value indepen-
dent of E&, as shown in Figs. 1(c), 2(a), and 2(c). In that
case E —E&)p —E& can be rather large when E& is well
below p, as shown in the same figures. It is clear that this
large renormalization of the MFSB method is only a
consequence of the restrains that have to be imposed on
the otherwise uncorrelated band of electrons. At first
sight this large renormalization seems rather unphysical,
but we shall see below that it is necessary in the "effective
Hamiltonian" techniques to describe an important aspect
of the problem. From the considerations presented
above, it follows that the difference between the KB and
MFSB expressions for both n and Q have separate
effects in the Kondo limit: (1) The difference between the
two expressions of Q gives a peak of a much larger width
in the KB versus MFSB methods. (2) The difference in
the expression of n gives a much smaller energy renor-
malization E —E& in the KB versus MFSB methods.

At this point it is interesting to compare the KB and
MFSB results with those that Brandow" obtained by a
variational method (BVM) that imposes correlation
directly into the trial wave function. In his simplest one-
parameter theory, he finds a quasiparticle spectrum of the
same form obtained in the MFSB method, and with ener-
gy and hybridization renormalizations consistent with
those of that theory. The spectral density p (co) is con-
centrated around a renormalized energy c and consists of
two sharp peaks separated by a gap, but with a total f
spectral intensity of 1 —n, i.e., a rather drastic reduction
of the MFSB spectral intensity of 1. At the same time he
states that there is also a nonquasiparticle contribution to
p, and based on the formal similarity to the single-
impurity case, he conjectures that this contribution
should be a broad peak centered near E&.

The BVM as well as the different effective Hamiltoni-
an" theories are variational in nature, and they should
give the best possible description of the free energy, com-
patible with the approximation. When n —1 all these
variational techniques show a peak of p (co) close to p,
which strongly modifies the thermodynamic properties of
the system at low T. As stated by Brandow, "this peak
has, apart from the gap near its center, all the qualitative
features of the so called Kondo peak. " The absence of
this structure should therefore make the KB approxima-
tion worse than the variational ones with regard to the
thermodynamic properties. On the other hand, the BVM
shows that most of the f spectral weight is outside this
region (when n/- I) and, probably, in the form of a wide
structure around E&, just like in the KB expansion. My
conclusion from these facts is that in the region of n —1

the KB and MFSB theories give complementary aspects
of the f spectral function: The spectral density is
represented by the sum of the p derived from both
methods, with the MFSB spectral density reduced by a
factor 1 —n and therefore giving only a negligible contri-
bution to n . It was already stated above that both
theories are qualitatively similar outside the region of
n~-1.

We should also mention that the two peaks around E
obtained in BVM were also found by Grewe' by employ-
ing the same type of GF with Hubbard operators of the
present work. He uses at each site the single-impurity
GF calculated in the noncrossing approximation and
connecting all the sites with unperturbed GF of conduc-
tion electrons, but adding a self-exclusion term to avoid
overcounting processes already considered in the single-
impurity GF. In the exactly soluable case of a lattice of
resonant levels, he finds that the pole of the impurity GF
that produces a Lorentzian density of states is exactly
canceled. The lattice of resonant levels is described in
our model by a system with a single channel, and our
treatment gives an exact solution, with the same cancella-
tion discussed by Grewe. In the correlated case he finds
only a pseudogap, and he cannot definitely conclude that
the Kondo lattice possesses a real gap at T =0 K.

The results of the different methods discussed above
leave little doubt that when n —1 and T~O K there
should be a structure of p/(co) around p, probably with a
gap or pseudogap. This structure is absent in our ap-
proximation, but I believe that it should appear in a
higher-order calculation.

Another result that deserves further comment is the
maximum of p

—=p/(p) observed in the KB approxima-
tion when n') 1/N. This structure was explained in Sec.
III and gives a distorted picture of the p (co) when p
sweeps through the values of co. The shape of p (co) is de-
formed because also the renormalized E and V depend on
the value of p. In our theory there is only one broad
structure, centered at an E not very far from E&, and it is
then clear why the maximum of p coincides with the re-
gion of IV. The negligible value obtained in our method
for p in the Kondo region points out the main deficiency
of the KB approximation, namely, the corresponding
lack of a structure of p (co) close to the chemical potential
p. As discussed before, the MFSB method gives just that
structure and only that, when n —1, and it is therefore
clear why the p curves are so different in the KB versus
MFSB theories [cf. Figs. 1(b) and 2(b) where the two p
have been plotted].

It is also interesting to consider the single-impurity
case. The modifications to the calculation are straight-
forward, and one obtains

G (~,fj,fj /z) =Q [z —E —
I
VI'Eo(z) ] (35)

where

Fo(z) =(1/N, )g [z E(k, o )]-
k

(36)

and E, Q, and
I VI are given by the same Eqs. (14)—(16).

For the simple model of Sec. III, we find

F(co+iO) =po[ln[(D +co)/(D —co)]—i~ j, (37)

and the real part can be neglected when ~/D &&1, i.e.,
for frequencies co far from the ends of the conduction
band. We shall then use F(cu+iO) — ivrpo, and from-
Eq. (35) we find

p/(co) =(Q/~)b. [(co—E) +6 2]

with b, =Qb, and b, =~poV . The relation between the
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—tan '[ —(D+E)/b, ]] . (39)

The chemical potential p does not depend on n and is
given by

p=D(2n' —1) . (40)

If we apply Friedel's rule to this problem, ' we can
write

p =p (p, )=(1/tran)sin (trnf/K) .

We can now introduce n from Eq. (39) into Eq. (41)
and compare with Eq. (38) for ca =p given by Eq. (40).

Let us first consider the case of n « 1: We find

p = [vr(n )/b ](1 +O~ n ~), so that Friedel's rule is very
well satisfied in this limit. As the spectral density pf(co) is
a Lorentzian centered at E, the Kondo peak is absent in

MFSB and KB calculations for the impurity is the same
found for the lattice: The only difference is the actual ex-
pression of Q and an extra factor Q in the expression of
n . In the KB method we find, at T =0 K,

n =(1/~)Q I tan '[(p. E—)/5]

the n —1 limit, where Friedel's rule gives p —1/~A for
the Anderson model [cf. Eq. (41) for %=2]. As in the
lattice case, the KB treatment gives p —E)&A for the
impurity, and Friedel's rule is not satisfied because then
p «1/~A. It is interesting to note that it is only the
presence of Q in n [Eq. (39)] and not its actual value
that gives this result by making p —E »A. It is obvious
from Eq. (38) that Q cancels out when E-p, as in the
MFSB case, and the p =1/mh that satisfies Friedel's rule
is then obtained for any value of Q.

In the MFSB case the low-temperature thermodynamic
properties are optimized by the variational method, and
the whole spectral density described by a broad Lorentzi-
an is deformed and shifted so that it would mimic the
Kondo resonance. Between the two limits of n the KB
calculation gives increasing accord with Friedel's sum
rule when n decreases toward n «1.

In the present work we have not studied the stability of
the paramagnetic phase against other magnetic phases;
nor have we calculated thermodynamic properties: Con-
sideration of these topics and the inclusion of higher-
order approximations is under way.
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