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Numerical study of an effective interface model for the growth of wetting layers
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%'e present results from a numerical study of an effective interface model introduced by Lipowsky
for the growth of wetting layers under complete wetting conditions. Both the equilibrium and the
dynamical properties of the model are studied. The values of the scaling exponents are computed
when the bulk dimension of the system is either above or below the upper critical dimension. In
each case, we find good agreement with the theoretical predictions.

I. INTRODUCTION

The growth of wetting layers has received considerable
attention in recent years. ' Much of the effort has been
devoted to study the properties of wetting layers in
thermal equilibrium. More recently, however dynamical
properties of the layers, i.e., how the thickness of such
layers approach equilibrium from an initial nonequilibri-
um state, are also generating a lot of interest.

In this paper, we numerically study the equilibrium
and dynamical properties of an effective interface model
introduced by Lipowsky. ' In this model, a coarse-
grained description of the wetting layer is presented by
neglecting the intrinsic structure of the interface. On this
coarse-grained scale, the wetting layer is described by a
single variable I which measures the distance between the
solid-liquid and liquid-vapor interfaces. In general, this
distance deviates from its mean value due to thermal Auc-
tuations, and depends on the coordinates x parallel to the
substrate surface. Thus, l =l(x, ,x2, ———,xd, ) is the
distance between (d —I)-dimensional interfaces and d is
the bulk dimension.

We consider the model in both two and three bulk di-
mensions such that the interfaces are of dimension one or
two. The parameters of the model are chosen such that
the bulk dimensionality can be either above or below the
upper critical dimension d*. When d & d, the system is
said to be in the mean-field (MF) regime, otherwise the
system is in the fiuctuation (FL) regime. We calculate the
corresponding scaling exponents in both the MF and the
FL regimes, and find good agreements with the theoreti-
cal calculations in both the cases. The numerical deter-
mination of the MF exponents serves the purpose of
checking the validity and the feasibility of the numerical
procedures employed. The values of the scaling ex-
ponents calculated in the FL regime give strong support
to the scaling ideas used in their analytical evaluations.

The rest of the paper is organized as follows. In Sec. II
we discuss the effective interface model of Lipowsky in
more detail and give a summary of the theoretical predic-
tions of the model. In Section III we discuss the numeri-
cal procedures employed to calculate various quantities.

We present our results for both equilibrium and non-
equilibrium scaling exponents in Sec. IV and finally con-
clude with a brief summary and a conclusion in Sec. V.

II. THE EFFECTIVE INTERFACE MODEL

V(l) = Wl ~+(5p)l, (2)

where W is a positive (Hamaker) constant and 5p is the
deviation of the chemical potential from its value at coex-
istence. The dynamical model is then defined in terms of
a Langevin equation,

Bl (x, t) 5F [l ]
Bt 5I

where I is an Onsager coefficient and q is a Gaussian
noise given by

(q(x, t)q(x', t')) =2r5(x —x )5(t —t') .

The theoretical predictions of the mode1 are the follow-
ing.

Let us first consider the situation where 5p~O. Then
the effective interface potential V(l) [Eq. (2)] has only a
repulsive part and hence the mean thickness I,„of the
layer diverges as

The value of the exponent P, is different for spatial di-
mensions above or below the upper critical dimension
d*(p). The upper critical dimension d*(p) depends only
on the repulsive part of the interface potential [Eq. (2)]

In the effective interface model, one starts with the
free-energy functional (in units of ka T) as

F{l ]
=Id 'x [ ,'cr(V—/) + V(l)],

where l (x&,x2, ———,xd &) is the distance between the
d —I )-dimensional interfaces which bind the wetting lay-
er, o is the interfacial tension, and V(l) is an effective in-
terface potential. In general, V(l) consists of a repulsive
part and an attractive part. For complete wetting, one
considers
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and is given by

d* 2+3p
2+p

For example, when p =2, d* =2 and when

p =3, d =2.2. One usually defines two scaling regimes:
a mean-field regime for which d )d*(p) and a fiuctuation
regime for which d ~ d*(p). In the MF regime one has

1

(p +1) (7)

independent of d, and in the FL regime one has

0

111 6p

d=3

3 —d
8+1

independent of p. The same values of P, have been ob-
tained by several other methods. '

In order to study the dynamics of the growth of the
wetting layers, one considers a different situation. In this
case, the wetting layer has a small but finite thickness to
start with. The scaling field 6p is then turned ofF at t =0.
Since, again, the interface potential contains only repul-
sive terms in l, the thickness of the wetting layer (l(t) )
grows with time as

(t(r))-r" . (9)

d is the bulk dimension. The spatial discretization is
achieved by replacing the continuous space of position
vectors by a lattice of X =L" sites and lattice spacing a.
Periodic boundary conditions are assumed in order to
avoid surface efFects. We consider both d'=1 and 2 in
our simulations and write the Laplacian operator as

V' f(x ) = [f(x+a)+f (x —a) —2f (x )]1 (15)

FIG. 1. lnl«v ln6p for d = 3 (d' =2) and p =3. The slope of
the straight line is P, = —0.25+0.01. The corresponding MF
value for P, is ~.

For d )d*(p), a MF approximation to Eq. (3) provides

1n=
2+p

(10)
V' f (x,y) = [f(x+a,y)+f (x —a,y)+f (x,y +a)1

a

(l(r)) -1nt . (12)

In order to calculate n in the FL regime, one uses a scal-
ing argument for the long-time behavior and finds'

n =—„'(3—d) (13)

independent of all p, including the short-range interac-
tions in Eq. (11) for which p = 00. In particular then, for
d =2 and p ~2, the wetting layer grows as t" with the
universal value n =

—,'. We intend to check some of these
predictions in our numerical calculations.

III. NUMERICAL PROCEDURE

independent of the spatial dimension d. For short-range
forces, however, the interface potential has the form

V(l) = IVe 'i~+(5p)l,

where g is the bulk correlation length. The correspond-
ing MF approximation yields

+f (x,y —a) —4f (x,y)]

for d'= 1 and 2, respectively.
We employ a simple Euler scheme for the integration'

with a time step ht and write, at each lattice point i,

BV(l;)
l, (r +br) =1,(t)+At V'l, —

1

++6,t rI, (t) . (17)

2.0

1.5—

d=2
p=3

The Gaussian random numbers g; are generated by using
the standard Box-Muller formula. We have considered
a = 1 and At =0.01 in our simulations. We have checked
that smaller values of ht do not change the measured
quantities appreciably.

We consider the Langevin equation (3) for l(x, t) with
the free-energy I' I l I given by Eq. (1). For 'the interface
potential V(l), we consider both the forms given by Eqs.
(2) and (11). We set o.= 1, 8' = 1, g = 1, and I = 1 in the
above equations. Thus, one gets the following equation:

al(x t) V'l —a V+ (14)
Bt Bl

1.0—

0.5
-5 -2

for the evolution of l (x, t). In order to integrate Eq. (14),
we employ a finite-difference scheme for both the spatial
and temporal derivatives. As mentioned earlier, Eq. (14)
is defined over a d' = (d —1)-dimensional interface, where

FIG. 2. lnl, q v ln6p for d =2 (d' = 1) and p = 3. The slope of
the straight line is l3, = —0.32+0.01. The corresponding value
of I3, in the FL regime is —,

' .
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FICJ. 3. 1n[l(t) —lo) v 1nt for d =3 (d'=2) and p =2 (upper
curve) and p =3. The lattice size is 32X32 and the data are
averaged over 100 runs in each case. The slopes of the lines are
given by 0.26+0.01 and 0.21+0.01, respectively, which com-
pares favorably to the MF values of 4 and —,', respectively.

FICr. 5. 1n[l(t) Io]—vs lnt for d =2 (d'=1) and for p =2
{uppermost curve), 3, and 4, respectively. The lattice size is
L =500 and the data are averaged over 100 runs in each case.
The slopes of the straight lines are given by 0.26+0.01,
0.25+0.01, and 0.25+0.01, respectively. The theoretical value
of the exponent is 4 independent ofp.

IV. RKSUI.TS

A. Equilibrium calculations

In order to calculate the exponent P, in different di-
mensions d, we start with a small value of 6p run the
Langevin equation (14) to equilibrium, and calculate the
equilibrium value of the thickness of the wetting layer /eq
as

(18)

where N is the number of lattice sites considered in the
simulation, and ( . ) is the ensemble average. For
d =3 (i.e., d'=2) the exponent P, is expected to be given
by mean-field calculations [Eq. (7)] for both p =2 and 3.
In d'=2 we consider a 10X 10 lattice for most of our cal-
culations, although lattice sizes of 16X 16 and 20X20 are
also used in some runs to check possible finite-size effects.
We always start with /, =/M„everywhere on the lattice
and then equilibrate the system. Here /MF is the mean-

field value of the equilibrium thickness of the wetting lay-
er, I.e.,

p8'
MF

' 1/(p + 1)

(19)

Runs over the first 5000 time units are discarded and
then /, is calculated over another t =5000. We comput-
ed /, for both p =2 and 3, although we show the results
for p =3 only in Fig. 1. Good agreement with the MF re-
sults are found in each case.

For d'=1, the system is expected to be in the FL re-
gime for both p =2 and 3 and the exponent P, is equal to

[Eq. (8)] independent of p. We check this result by
carrying out the numerical simulations in d'=1 for an
L, =100 lattice for several values of 6p and for both p =2
and 3. Again, good agreement with the theoretical calcu-
lation is found in each case. In Fig. 2 we show our results
only for p =3, however.
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FICx. 4. [l(t)—lo] vs 1nt for d =3 (d'=2) and for the in-
teraction potential given by Eq. (11). The lattice size is 32X32
and the data are averaged over 100 runs. In this case a log-log
plot shows considerable curvature.

FICx. 6. 1n[l(t) —lo] vs Int for d =2 (d'=1) and for the in-
teraction potential given by Eq. (11). The lattice size is L =500
and the data is averaged over 100 runs. The slope of the
straight line is 0.26+0.01 whereas the theoretical value for the
exponent in this case is 4.
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B. Dynamics of growth

As discussed earlier, the system is in the MF regime for
d =3 and the growth exponent n is given by Eq. (10).
Our results for p =2 and 3 are shown in Fig. 3. In all of
these cases, we start with an L =32 X 32 lattice, set
l, (t =0)=lo =1 everywhere as our initial condition, and
integrate Eq. (3) with 5p=0. We then define the layer
thickness at any time t as

(20)

where ( . ) denotes an average over the noise. We
then look for a growth exponent n by plotting [l (t) —lo]
versus t in a log-log plot and finding the slope of the
straight line. As can be seen in Fig. 3, our results agree
very well with the MF results. For d =3 the system is in
the MF regime even for p = ~ (i.e., short-ranged interac-
tion potential) and one expects a logarithmic growth with
time. We show such a plot of [I (t) —lo ) versus lnt in Fig.
4 for the interaction potential given by Eq. (11). In this
case a log-log plot shows considerable curvature.

For d'=1 the system is in the FL regime and the
growth-law exponent n is found to be —,

' independent of p.
In order to study the growth in the FL regime we start
with an L, =500 lattice and set 6p=0. We calculate the
growth exponents for p =2,3 and 4 (Fig. 5) and p = co

(Fig. 6). In each case we get n =
—,
' within our numerical

accuracy.

chosen the e6'ective interface potentials V(l) both of the
type V(l)-l ~ and V(l)-e ' ~. The cases p =2 and 3

correspond to van der Waals and retarded van der Waals
potentials and are of physical interest.

In equilibrium situations, we find that the thickness of
the film /, „scales as (5p) ' '~+'1 in the mean-field re-
gime. In the Auctuation regime, the corresponding scal-
ing behavior is given by l, —(5p) r"+'. For nonequili-
brium situations, the thickness of the film scales t" with
time. In the mean-field regime we find I =1/2+p for

p =2 and 3. When the effective potential is given by
e ' ~ we find that the thickness of the film grows as lnt in
the MF regime. In the fluctuation regime we study the
growth behavior for several different interface potentials
and find n —

—,
' in each case. All of these results are in

very good agreement with the theoretical predictions. '

In summary, then, we conclude that numerical simula-
tion of Langevin-type models can be effectively used to
calculate both equilibrium and nonequilibrium properties
of wetting films in the complete wetting conditions.
Langevin models to study critical wetting have also been
proposed by Lipowsky. ' Moreover, similar models have
also been worked out ' ' for the unbinding transition of
polymerized membranes and these models are amenable
to similar kinds of numerical studies. Works in these
directions are already in progress and the results are
planned to be published elsewhere.
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