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Surface electronic structure of Ce in the a and y phase
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The surface electronic structure of Ce in the a and y phase has been calculated using a film

linearized-muffin-tin-orbitals method. The bonding in Ce is found to be mainly metallic in charac-
ter. The width of the 4f band in a-Ce is found to be about 0.7 eV both in the bulk and at the sur-
face; in y-Ce it is slightly narrower, about 0.6 eV. The calculated work function of cx-Ce is in good
agreement with experimental data. Cross sections for the bremsstrahlung isocromat (BIS) processes
have been calculated in a fully relativistic framework, and good agreement with experiment is ob-
tained for the itinerant peak in the BIS data near EF. We find our results consistent with an
itinerant f-electron picture for a-Ce, and thereby consistent with a picture for the y~tz transition
that is from localized (and magnetic) to itinerant (bonding and nonmagnetic) f-electron behavior,
i.e., a Mott transition, as opposed to a Kondo volume collapse picture involving a transition be-
tween localized states of the f electrons. We also predict that the surface of a-cerium is y-like.

I. INTRODUCTION

Cerium, which is the first element in the lanthanide
series with a 4f electron, has a very complex phase dia-
gram. ' Depending on pressure and temperature it can be
either an antiferromagnet, a temperature-independent
paramagnet, or a superconductor. Furthermore, Ce is
the only pure element to exhibit a solid-solid critical
point. At atmospheric pressure and low temperatures the
a phase (fcc structure) is stable, and it behaves as an
enhanced Pauli paramagnet. With increasing tempera-
ture a-Ce transforms to the P phase (dhcp), and then to
the y phase (fcc). The P and y phases show magnetic be-
havior; their susceptibilities follow a Curie-Weiss law
with an effective Bohr magneton number close to the
free-ion value, which indicates that the 4f electrons are
localized. At room temperature and a pressure of 7 kbar
the trivalent low-density y phase collapses into the much
denser isostructural a phase, with a volume decrease of
about 14%. A further increase of pressure transforms
a-Ce to a'-Ce (orthorhombic) at 56 kbar or to a"-Ce
(body centered monoclinc) at 50 kbar. The a' phase has
been shown to exhibit superconductivity below 1.9 K.

Much of the theoretical work on this material has been
focused on the unusual isostructural y-a transition. In
this transition, not only are the volumes very different for
the two phases, but the magnetic and transport properties
change as well. For instance, as stated above, the suscep-
tibility of y-Ce obeys a Curie-Weiss law, whereas o:-Ce is
a temperature-independent paramagnet. Furthermore,
the electronic specific-heat coefficient is 12.8 mJ/g at. K
for a-Ce, which is larger than the value of 7.5 mJ/g
at. K obtained for y-Ce. These dramatic changes in

physical properties were initially suggested to be caused
by the promotion of a localized 4f electron in y-Ce
[4f '(sd) ] to the conduction band in a-Ce [4f (sd) ].
The loss of a localized 4f electron together with an in-
crease in the number of bonding valence electrons was
thought to explain both the magnetic and bonding prop-
erties (the volume collapse). However, it was later point-
ed out that any type of promotional model for the y-a
transition is in serious conAict with the measured
cohesive properties. Also, experiments probing the elec-
tron density have since shown that the number of 4f elec-
trons remains practically unchanged during the transition
and hence rule out the promotional model. Therefore, it
was suggested that the y-a transition in Ce might be a
Mott transition with the 4f electrons being localized
(nonbonding) in y-Ce and itinerant (bonding) in a-Ce. '7

Among other things, this suggests that the electronic
structure of a-Ce can be well described using a one-
electron band picture. Indeed, this is what Glotzel
found, since his self-consistent relativistic calculation of
a-Ce gave a theoretical volume in good agreement with
experimental data. Also, it was found that the 4f band
spin polarizes at the y-Ce volume, which gives a Van der
Waals loop in the calculated equation of state. However,
a Maxwell equal area construction gave a volume col-
lapse far to small and a transition pressure too low com-
pared to the experimental data. Subsequent band calcu-
lations on Ce showed essentially the same results. By
implementing the orbital-polarization formalism' into a
fully relativistic, spin-polarized band scheme, a good ac-
count of the y-cz transition was obtained. " Hence, these
self-consistent, parameter-free calculations supported the
Mott transition model and offered an alternative explana-
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FIG. 3. (a) Calculated DOS of a-Ce from a scalar relativistic calculation, (b) a scalar relativistic calculation with the hybridization
between the 4f states and all other states removed, and (c) a scalar relativistic calculation with the 4f structure constants set to zero.
The bulk, subsurface, and surface DOS are shown in the bottom to top panels, respectively. Energies are in electron volts and EF is

at zero.

hybridized case) was generated from a normal scalar-
relativistic calculation, Fig. 3(b) (case b: the unhybri-
dized f-band case) from a scalar-relativistic calculation
where the hybridization of the 4f states with all other or-
bitals was forced to be zero, and Fig. 3(c) (case c: the no
4f-4f hopping case) from a scalar-relativistic calculation
with the 4f structure constants set to zero. Comparing
these three results allows us to isolate some of the
different mechanisms that contribute to the formation of
the 4f band. For instance, we notice in Fig. 3 that the
unhybridized bandwidth (case b) is about 15% narrower
than the fully hybridized bandwidth (case a), and the
bandwidth of the calculation with no 4f-4f hopping (case
c) is about 70% of the fully hybridized calculation (case
a). Notice also that the surface projected DOS of the ful-
ly hybridized scalar-relativistic calculation is narrower
than the bulk projected DOS (0.53 eV for the surface
DOS and 0.59 eV for the bulk). This effect is more pro-
nounced in the scalar-relativistic case [Fig. 3(a)] than in
the fully relativistic case (Fig. 1). The reason for this is
that the bandwidth for the fully relativistic case is strong-
ly affected by the spin-orbit splitting, which splits the 4f
band into its 4f s&2 and 4f7/2 components (Figs. 1 and 2)
and the single 4f DOS peak separates into two overlap-
ping but clearly distinguishable subbands. In the scalar
relativistic case this effect is absent and the 4f DOS is
characterized by just the one single peak (Fig. 3). The
spin-orbit splitting also makes the bandwidths in Fig. 1

broader than in Fig. 3.
Turning to considerations of the chemical bonding we

note in Fig. 4 that the charge density for both a- and y-
Ce is almost spherically symmetric with very little co-
valant or directional character. This is characteristic of
metallic bonding. We also notice that a very sensitive
probe of the charge density would indicate that the sur-
face of both o.'- and y-Ce is more or less flat. This is a
reflection of the large screening effects associated with
metallic systems (covalent systems such as Si show a
different behavior of the charge density, with "dangling
bonds" sticking out into the vacuum).

We have calculated work functions for the two phases
of Ce and find 3 5 eV for cx-Ce and 4 2 eV for y-Ce. The
a-Ce value can be considered to be in satisfactory agree-
ment with the experimental value of 3 eV, measured from
a polycrystalline sample. ' Ideally, the comparison
should be made for a single crystal with the same orienta-
tion as in the calculation but to our knowledge no such
measurements have been made for Ce. Comparing to the
polycrystalline value is therefore somewhat uncertain,
since crystallites with different orientation might show
some anisotropy in the work function. As a matter of
fact, our calculated work functions for (100) and (111)
surfaces of Pu show anisotropy, ' with work functions of
3.7 and 4. 1 eV, respectively. One should also be aware of
diS.culties in comparing the experimental and theoretical
work functions caused by possible experimental uncer-
tainties in oxide and other surface contaminations for
such a reactive material as Ce as well as because no
reconstruction or relaxation of the surface atoms has
been taken into account theoretically.
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EF). A similar calculation for the y phase would give a
similar one-electron peak at EF. The absence of such a
peak in the BIS data is consistent with the absence of
delocalized 4f states in that phase.

IV. CONCLUSION

The first high quality ab initio calculations of the sur-
face electronic structure of Ce at both the a and y
volumes have been presented. We have been able to
reproduce sensitive experimental data, such as the work
function of a-Ce, by assuming itinerant f electrons for
this phase. When the 4f states are treated as localized,
the calculated work function of a-Ce is an eV higher than
the experimental value. Thus it seems that not only the
cohesive properties of the bulk (the cohesive energy, the
equilibrium volume, and the bulk modulus), ' '" but also
surface sensitive properties, such as the work function,
are poorly described with localized 4f electrons in a-Ce.
Our results also indicate that the work function of the y
phase will be higher than that of the o. phase. Further-
more, we find that the low energy part of the measured
BIS data of e-Ce is in agreement with our calculation.
These two findings suggest that the electronic structure

of a-Ce is best described as a delocalized 4f electron sys-
tem. We have also shown that the direct 4f 4f -hopping
channel is slightly dominant in the determination of the
4f bandwidth. However, hybridization effects are almost
as important, and it has earlier been shown that the inter-
play between these two effects is strongly dependent on
the k point. In the light actinide metals (Pa, U, Np,
and Pu) other calculations have also shown that the
direct Sf Sf ho-pping is the most important, since an esti-
mate of the unhybridized Sf bandwidths is very similar to
the calculated hybridized bandwidths. We also find that
the surface states of both a- and y-Ce are remarkably
similar, and therefore we predict that the surface of a-Ce
should undergo a magnetic instability, similar to what
was found in bulk y-Ce.
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