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Quantum mechanics of the fractional-statistics gas: Particle-hole interaction
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We compute the collective-mode spectrum of the fractional-statistics gas using the set of single
particle-hole pairs of the Hartree-Fock ground state as a variational basis. We find that the
particle-hole interaction reduces the energy of this mode to a finite value but does not cause it to
disperse linearly to zero at long wavelengths, as would be expected of a superfluid. We attribute this
to a flaw in the variational ground state, implicitly rectified by computing the response functions in
the random-phase approximation. The formalism introduced in this paper provides the machinery
for performing precise versions of such calculations.

I. INTRODUCTION

In a previous paper, ' we discussed the Hartree-Fock
solution for an ideal gas of particles obeying fractional
statistics and made the case that it was consistent with
superAuidity for special values of the statistics. However,
we did not explicitly demonstrate the main features of a
superAuid, ' namely, an undamped linearly dispersing
longitudinal collective mode and a Meissner effect. In
this paper we begin our investigation of superAuidity by
performing a variational study of the longitudinal collec-
tive mode based on single particle-hole excitations of the
Hartree-Fock ground state. Despite the infinite energy
necessary to make an isolated particle or hole reported in
our previous work, ' we find a collective-mode energy that
is finite and comparable in magnitude to that of nonin-
teracting electrons in a magnetic field. This is important
because the finiteness of this gap was a key assumption of
our previous description of the super Quid properties
based on the random-phase approximation. The central
idea of this approach is that the inaccuracy of the
Hartree-Fock ground state at long-distance scales is inti-
mately associated with the presence of long-range in-
teractions in the underlying equations of motion and can
thus be accounted for by analogy with the Coulomb gas.
The results presented here enable us to state this idea
more precisely than was previously possible and to intro-
duce the formalism we shall use to provide a detailed ac-
count of the random-phase approximation calculation.

By a fractional-statistics gas we mean a two-
dimensional system of X spinless fermions described by a
wave function @(r), . . . , r~), satisfying the Schrodinger
equation

with

where

2
1 N eP;+ —A;2m; i c

(1.2)

N

A, =+A,
j&1

(1.3)

and v is the fraction of the statistics. By the Hartree-
Fock solution, we mean a variational ground state of the
form

1
N't

—gsgn(o. )(p (1)(r)) 0' (1v)(r)v ), (1.4)X!
where o denotes a permutation, sgn(cr) is its sign, and
the cp, are single-particle orbitals. The variational
minimum is achieved when the orbitals take the form

( —,'z —2B,*)" ( —,
'z" —2B, )" —(1/4)

(2n 1)1/2 (2kk))1/2 (2 )1/2y„k(z)=,(1.5)

where z =x +iy denotes the position of a particle in the
x-y plane, k indexes its angular momentum, and n ~0 is
its Landau level. ' In writing Eq. (1.5), we have used di-
mensionless units in which the effective cyclotron energy

eB
A'co, =A' =21r(1—v) p=(1 v)EF—

%@=Ed&, (1.1) and the corresponding magnetic length
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1/2
hc /eao=
2~B

= [2vr(1 —v)p] (1.7)
y„k is its Hartree-Fock eigenvalue, given in the case of
v=O by'

are set to unity. In the Hartree-Fock ground state, orbit-
als with n ((1—v) ' are occupied, and the rest are emp-
ty. The special values of v that we associated with
superAuidity are those for which (1—v) is an in-
teger. '

The Hartree-Fock solution for the fractional-statistics
gas is compatible with superfluidity in three ways. First,
it is a liquid, as may be seen by its radial distribution
function, which for v=O is given by

where

1 1+ n+ ——
4 4n (n +1)

n

+ —,
' g —+ E~—(1 —5„O),

k=1

E = dr (1——e )
—(1/2)»

R

=in(R )+—[y —ln(2)],1

2
(1.12)

X iC&(r„.. . , rx, )i

—(1/2) lri —r2I=1 e

where p denotes the particle density. Second, the total
energy, given for v=O by

1E =—NAY@ =—N p,HF 4 e (1.9)

&p ~q) =g/&x]pql0)l'
X X

is proportional to the particle density p, and gives rise to
a finite bulk modulus and thus, presumably, a finite sound
speed. ' Third, there is an absence of low-lying "fer-
mionic" excitations, such as those present in a Fermi
liquid, which would ordinarily cause the collective mode
to decay.

The set of particle-hole pair excitations is appropriate
as a variational basis for this problem for several reasons.
The collective mode of a superfluid appears, in principle,
as a linearly dispersing pole in the density-density
response function

c BXF
B2 (1.13)

In this paper we shall deal exclusively with the fraction
v=O, which corresponds not to the fractional-statistics
gas, but rather to Bose statistics. As discussed in Ref. 1,
this is appropriate because the mathematics of v= —,

' and

R is the sample radius, and y =0.5772. . . is Euler's con-
stant. This large energy occurs because an isolated parti-
cle or hole is a charged vortex. ' The total energy for a
particle-hole pair is finite because, as illustrated in Fig. 1,
they have opposite vorticities that cancel one another in
the far-field limit. The way in which this attractive po-
tential influences the motion of a particle-hole pair may
be understood simply in terms of a classical model of op-
positely charged particles in a uniform magnetic field 8,
subject to an attractive logarithmic potential U. In this
model each particle moves perpendicular to the attractive
force F= —VU exerted on it by the other particle and
has a speed given by the classical drift velocity

+
%co 6 x l 7)

(1.10)

where ~0) is the ground state and ~x ) are the excited
states of the system with energy 6' above the ground-
state energy. Given that the Hartree-Fock ground state
is a good approximation to ~0), pq acting on this ground
state, which is a superposition of particle-hole pairs,
should also be a good approximation to p ~0). This is
particularly the case in the q —+0 limit, where the action
of pq on the ground state usual ly defines what we mean
by a longitudinal sound wave.

Consideration of particle-hole pairs as a variational
basis leads to an attractive interaction between a particle
and a hole. The evaluation of this interaction is the main
subject of this paper. The inclusion of this efFect is im-
portant because the Hartree-Fock eigenvalues have loga-
rithmically large contributions that cause the "bare" ex-
citation energies to be formally infinite. For example, the
variational energy of a single particle or hole in an orbital

~ eeeeee i ~ eeeee ~ ~ ~

FICx. 1. The collective mode may be thought of classically as
a pair of oppositely charged particles that attract each other by
means of a logarithmic potential or as a pair of vortices with op-
posite handedness whose total vorticity is zero in the far-field
limit. The particles drift with a constant velocity V at right an-

gles to their separation vector, which is fixed and proportional
to the magnitude of the wave vector q.
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v=0 are nearly identical, and the Bose gas is a test case
for which the answer is known. It is reasonable to expect
that the qualitative behavior is the same for any value of
v for which (1—v) is an integer, including the special
case of interest, v= —,'.

II. PARTICLE-HOLE MATRIX ELEMENTS

The first step in evaluating the collective-mode energy
is to obtain an expression for ( mp', Ok'l&lnp, Ok ), where
& is the Hamiltonian of Eq. (1.2) and lnp, Ok ) denotes
the X-particle Hartree-Fock wave function containing a
particle in y„and a hole in q&ok, defined as in Eq. (1.5).
To do this, it is useful to decompose the Hamiltonian into
one-body, two-body, and three-body terms, in the manner

&=%',+&P, +%2b+&, , (2.1)

where

N&=—'gP,',
N N

gA, P, ,
i =1j&i

N N

&qb= g g AJ AJ,
i =1j&i

N N N

A,, A
i =1jWi kWi,j

We then have

(2.2)

(2.3)

(2.4)

(2.5)

2I

&mp"' ok'l~lnp, Ok &=&m„&«&»[EHF+(Ez Eo)] f dl f d2 g sgn(cr')qok(r, ~, ~)y', ,(r,~&, )
a

X( A)p P)+-,' I A„l') g sgn(o )yok. (r~~, ~)q&„~(r~~2,)
a

N 3l—y f dl fd2f d3 gsgn(o )qok(r. (i))gamp'( o'(2))qol(re'(3))

3I

X —,
' Ai2. Ai3 gsgn(o. )%'ok.(r (i))V'„~(r (2))|pol(r (3)) (2.6)

where EH„is the Hartree-Fock ground-state energy given
by Eq. (1.9), s„is the single-particle energy given by Eq.
(1.11), and cr and o' are permutations of size 2 and 3.
The first term of Eq. (2.6) is the result expected for a
noninteracting particle-hole pair, while the remaining
terms express the attractive interaction between the par-
ticle and hole.

The second step in evaluating the energy is to perform
a unitary transformation that combines the states
lOk, np ) into "magnetoexciton" ' wave functions of the
form

lnP) = g fdl f d2p„*~(1)yok(2)f„&(1,2) lnp, Ok),
k,p

(2.7)
with

„(1,2)= e
(z&

—z2 —z&)" (iy4H~, ~'+, ~'+~, ~')
1 2 P

L (2~2"n!)'

Xe (1/2)(Z 1*Z2+Z 1'Zp —Z2Z p ) 2.8
where z& =(iq„—q ) is the momentum q expressed as a
complex number, and L =mR is the sample area. This
is done with the anticipation, motivated by previous stud-
ies of magnetic Hamiltonians, that this momentum will
be conserved. We find it helpful to write the matrix ele-
ments thus obtained in the manner

(mal&lnP) =5 „5p[EH„+(E„—Eo)]+ g 6" . (2.9)

N~"= fdllim f d2 gz(2, 2)[ A&2 (P&+ A~)]3~1

X g*„(3,1),
6' '= fdllim f d2 gz(2, 2)[ A&2 (P&+ A~)]

X g~(1, 3),
8'"=—f d 1 f de~( 21)[ A„-(P,+ A, )]

X P*„(2,1),
6'4'= —f d 1 f 2d$* (~1,2)[ A, 2(P, + A, )]

X g~(1,2),
6' '= f d 1 f d2l A, ~l g*„(2,2)g~(1, 1),
6' '= —f d 1 f d2l A, 2l g~(1,2)g~(1,2),
@"'=—f dl fd2 fd3 A, A, II(l, l)

X P'„(2,3)g~(2, 3),

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Adopting the shorthand A =(m, z ) and B =(n, z&), we
have, for the 20 interaction terms,
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@~'~= —f dl f d2 f d3 A„A„II(1,3)

X g~ ( I, 3)ltii(2, 2),
@'"=—fd 1 f d2 f d3 A„.Ai3II(3, 1)

Xg*„(2,2)g (1,3),
g"0' = —fd 1 f d 2f d 3 A„A„II(1,2)

XP'„(3,3)g (2, 1),
g'"'= —J dl fd2f d3 A, A, II(2, 1)

X g*„(2,1)gs (3,3),
@'"'=—f d 1 f d2 f d3 Ai2 Ai311(3,2)

Xg*„(1,1)Qadi(2, 3),
g"3'= —f d 1 f d2 f d3 A, 2 A, 3II(2, 3)

Xlt*„(2,3)g (1,1),
e& "~=f d 1 f d2 fd3 A„A„II(I,I)

X g*„(3,3)Qadi(2, 2),
8'i5'= f d 1 fd2 f d3 A„A„II(1,3)

X g*„(2,3 )Ps (2, 1 ),
6" '= f d 1 f d2 f d3 A, A, II(3, 1)

X g*„(2,1)Qadi(2, 3),
6" '= f d 1 J d2 f d3 A, . A, II(1,2)

X g*„(1,3)gs(2, 3),
C'"'= f d 1 f d2 f d3 A A II(2 1)

Xg*„(2,3)Qadi(1, 3),
6"9'=fdl fd2J d3 A„Ai31I(3,2)

X g*„(1,2)gii(1, 3),

(2.17)

(2.18)

H(zl 2) X %ok(zl )Vok(z2)
k=0

1 —(&/4)(~z) ~
+ ~z2) ) (&/2)z$ z2

2~'
is the projector for the lowest Landau level, and

A, = f d2 Ai2 y Iq, (2)I' '

(2.30)

(2.19) =—'z Xr) (2.31)

(2.20)

(2.21)

(2.22)

is the average vector potential generated by a uniform
distribution of Aux tubes. '

(2.23)
b =

—,'Iz I

= Iql /2 (3.1)

C = ( —z*) (
—z )"

(2 m 2"n )'
(3.2)

(2.24) n gkf„(b)=e
k=0

(3.3)

(2.25)
bE =—' dx —(1—e ').

0 X
(3.4)

(2.26) Note that E& limits to —,'[In(b)+y] as b —+ oo. We shall

also isolate the formally divergent quantities

(2.27)

(2.28) and

] 2 1 —(1/2)(z z —z z )

2m.

b d
—(1/2)r1

0 r

(3.5)

(3.6)

III. MOMENTUM CONSERVATION

Let us now explicitly evaluate the expressions for 8")
through 6'~ ' and show them to be zero unless z equals

z&, thereby demonstrating that the momentum q to
which z corresponds is a good quantum number. In
what follows we shall make frequent use of the expres-
sions

and

e'"'= fdl fd2fd3 A, -A, II(3,2)

X g"„(3,1)Qadi(2, 1), (2.29)

where g is defined as in Eq. (2.8), A,J is defined as in Eq.
(1.3),

I3=o p5 „Eg, (3.7)

where Ez is defined as in Eq. (1.12), as these cancel out of
the final expression for the co11ective-mode energy. Note
that some of the terms are defined only for n ~ m. The
value of ( mo. I&InP) for n (m is the complex conjugate
of the expression with the roles of m and n reversed, as
appropriate for a Hermitian matrix. We have

(3.8)

e")=—s —'e-' —"—iap 2
(3.9)

g(3)= 8
e —b

ap2 e (3.10)
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1 c mt
(

(") = —5 P ——|) — ' f (b) — '
[1 f— (b)]a mn 2 aP2 gm m

I n n —1

a(5) =CI

(3.11)

(3.12)

cI—2 —5 &
—n!e

n~m 2, p+n!p
n 1 1

m —1—e ~ g —+—g „'fk(b)
, k bk Ob~

(3.13)

n —1 gp n
@(7) = I, +—S.P.„Z,+—e-' y"-m 2 =0 ~ k= +1k

—5 g(1 —5 „)— 'f,(b)+ '
[1 f„—,(b)] (3.14)

=5 —e —1
(8) C b Pl

~4 (3.15)

=5 —e ——1(9) C b P1

~4 b
(3.16)

g(10) g
C

e b

r

r

@(")=—S. —'e-' —+P4 b I +1

(3.17)

(3.18)

(I I )
——5 ——e(12)— C c b

" 1
1 2 aP4 k=1

(I I ) —5 ——e—(13) C C b 1
1 2 aP4 k=1

=5 —e(14) C —b 1

P2

@(15) g
c

e
—b

aP e

(3.19)

(3.20)

(3.21)

(3.22)

g(16) g
C

e b
aP4e (3.23)

8" ' = 5 —— ' [(1—5 „)—f„,(b)]+ ' f (b)~4 ng mn n — &+1 gm
(3.24)

and

(
()s) = 5 —— 'f,(b) — ' [(1—& „)—f„(b)]

4 m g m+1

@"9) = 5 p
— 'e "f (b) — [1 f„(b)]+n!e-

n&m 4 b b b"
) (p+n)pp=1

(p0) c (, 1
)

b (p 1)!

n 1 1 m —1k)—e "g —+—g qfk(b)
k=1 k=0 ~

(3.25)

(3.26)

(3.27)

The presence of 6 & in each of these expressions shows that momentum is appropriately conserved.

IV. COLLECTIVE-MODE DISPERSION
20a.„=(.„—.,)n.„+y e(.')„, (4.1)

Let us now use these expressions to evaluate the
collective-mode dispersion relation. Since the momen-
tum is a good quantum number, the desired energy 8 isq
the lowest eigenvalue of the matrix

at fixed z . Substituting Eqs. (1.11) and (3.8)—(3.27) into
this expression, we find that the matrix elements @ „are
finite and have the asymptotic limits
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3 1 1=5 n ————5"q-o " 4 4 "' n(n+I)
fl

+ g —+O(q ), (4.2)

= 5
„

In(q)+n+ ———[ln(2) —y]
1

g.—+ QO

1 1
" 1+—g —+O(q ) .

—2

4n(n+1) 2 k, k

6' =0.5+0.3675q +0 (q ), (4.4)

and then to roll over and grow logarithmically according
to

(4.3)

This calculation therefore predicts that the collective
mode possesses a gap of —,

' in units of the cyclotron energy
(1.6) and grows like ln(q) for large q. For intermediate
values of q, it is necessary to diagonalize 6 „numerical-
ly. The result of this calculation is plotted as the solid
curve in Fig. 2. We find 8 to increase quadratically with

q from an energy gap of —,
' at q =0 as

10

At long distances (q ))1), the particle and hole experi-
ence a logarithmic attraction, so that d 6'/dq = 1/q, or

6 —= ln( q ) +const, (4.8)

FIG. 2. The solid curve is the quantum-mechanical disper-
sion relation of the magnetoexciton for v=0. At q =0 it has an
energy gap of —', and for q (2 it is well approximated by the
dashed parabola [Eq. (4.4)]. For q ) 3 it is very nearly equal to
Eq. (4.5), drawn as the dotted curve.

6 —= ln(q)+1. 567+0(q ) . (4.5)

Equations (4.4) and (4.5) are plotted as dashed and dotted
curves in Fig. 2. 6z di6'ers from 6» mainly in the
coefficient of q at small q, but is otherwise nearly identi-
cal.

The behavior exhibited in Fig. 2 has the following
physical interpretation. From Eq. (2.8) it may be seen
that the separation r between the particle and the hole is
related to the wave vector q by

I~=const+0(q ),
coilsisfeilt with Eq. (4.4).

(4.9)

which agrees with Eq. (4.5). Since the circulations of the
vortices corresponding to the particle and the hole vanish
at the vortex cores, ' dC/dq =0 at short distances
(q « 1), so that

r=&ozXq, (4.6) V. COMPLEX INTEGRATION

1 dB c dU
8q e@ ~p r~qa o~

(4.7)

with z denoting the unit vector normal to the x-y plane
and with ao defined as in Eq. (1.7), independent of the
form of the attractive interparticle potential U. ' We
might therefore expect the slope of the energy dispersion
curve to be given by Eqs. (1.13) and (4.6) as

We shall now discuss some of the algebraic steps lead-
ing to Eqs. (3.8)—(3.27).

We first consider the two-body terms 8"' through P~' '.
The integrals appearing in these expressions may be eval-
uated by changing variables to z =z, —z2 and
s =

—,'(zi +zz ). In every case the integral over the center-
of-mass variable s gives I. 6 &. We begin with the four
terms cont, aiI11Ilg

A, 2.(P, + A, )=-(1—v)
1 1 ~ 8 1 1—z + + z

4 BZ1 z1 —z2 4 BZ1
(5.1)

Equation (2.10) may be written
—(1/4)(lz I'+ lzpl')

( —z.*)'"(—z )" —'—
2mL (2 m!2"n i)'~

ppZ p p (1/2)(z2 z&
—z2z& )

~J
] (1/2)(zl za z l za )

e
Z1 Z2

1 & m 1 2 1 —8= —6
cx 0! —b —1 — I z—

(2 m!2"n i)' 2 & ~ z Bz*
(1/2)(zz* —z z*)

e
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Equation (3.8) is obtained from this by integrating by parts and using the expression

5(r) =P in(r) =4= 2 1

2'
a
az

1 1 a
ln(z *z)

4~ m Bz*
1 1

Z & Bz
(5.3)

for the two-dimensional 5 function. 8( ' is the Hermitian conjugate of 8"'. Equation (2.12) gives

5ap
d z— [(—z —z )(—z*—z*) e ].—(1/2) lz+z

(2m~ )2n&! )1/2 z g e

Equation (3.10) is obtained from this by integrating by parts and using Eq. (5.3). For n m, Eq. (2.13) becomes
—5(4)— ap 1,2 (1/2)lzl ' e~m n n 1, Z 1

(2mm!2n! )1/2 z z*+z* 2 z+z (5.5)

when integrated by parts using Eq. (5.3), transformed to the variables z =z, —z2 —z and s =
—,'(z, +z2), and integrated

on s. Equation (3.11) is obtained from this by writing z =ru, where u =e', and performing the angular integral as a
contour integral over u for

~
u

~

= 1. Equation (3.12) is obtained from Eq. (2.14) by changing variables to z =z, —z2 and
s =

—,'(z, +z2) and integrating on s. Finally, Eq. (2.15) becomes

(6)— &.p
Z e

—(1/2)lzl
(

e )m n

(2 ~ )2"n!) 21r "
~z +z

(5.6)

when transformed to the variables z =z, —z2 —z and s =
—,'(zi+z2) and integrated on s. Performing the angular in-

tegration as a contour integral, we obtain the expression

( z4 )m( z )n

+P (2m~ )2n&!)1/2 2 p
+b J dx (5.7)

with x =r /2 This is t. hen manipulated using the identity

g. n n —1

kbn —1 —kb- k=.
to yield

(6) ~
1

d 2z 1 —(1/2) lzl'( —z*) (
—z )"

~ (2 !2" !)'" 2 ~ ' +

(5.8)

(
—z") (

—z )"

(2m !2n !)1/2 2b

n —1 m —1 I
j (1 —fk(b)1+ X kf) (b)

u=o &' a=o &
(5.9)

The remaining integral is then performed by changing variables to y =z+z and expanding the exponential in powers
ofy andy*. We obtain

a 1
d z

1 (1/2)lzl — cI 5
a a 1 b 6( —z*) (

—z )" (
—z*) (

—z )"

(2 m!2"n!)' 2~ ~z+z (2 m!2"n!)' 2 =, p'p

Equation (3.13) is then obtained from this using the identities

1 b b~

b &+( ~' f"'"'~=' ~, (p +k +1)!
and

(5.10)

(5.1 1)

1 ~ k!
p!p k p (k+p+1)!

nt

(P +)1)!P
(5.12)

the latter of which may be generated by iterating the expression

1 1 k+1
(p +k)!p (p +k + 1)! (p +k + 1)!p

(5.13)

beginning with k =0.
We shall next consider the first seven three-body terms 6( ' through 8" '. We shall make frequent use of the identity
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1 2 1 1
A, 2. A, 3=—(1—v) *+

(z, —z2)(z, —z3)* (z, —z2)*(z, —z3)
(5.14)

Equation (2.16) becomes

(z'(7) g d2y e
—(1/2)ly '(y*)m(y)n d2Z1 2 1 + 1

87r (2 m!2"n!)'/ (y +z)*(z —z ) (y +z)(z —z )*
(5.15)

when transformed to the variables y =z2 —z3 —z and z =z3 —z, +z and integrated over z, . Equation (3.14) is ob-
tained from this by performing the angular integration over y and then over z using contour integration, taking care to
work out the logarithmically infinite z =0 contribution separately, and using the identity

k!
„(k+p +1)!

nt

(p +n)!p
(5.16)

which follows from Eq. (5.12). Equation (2.17) becomes

n

Sm. (2 m!2"n!)' (z —y)z* (z —y)'z
( & /2)(y 2 —yz )

e a a
7

(5.17)

when transformed to the variables y =z2 —z3 and z =z( —z3 and integrated on s =
—,'(z, +z3). Performing the angular

integration over y using contour integration and reversing the order of integration, we obtain

@(())— g
~

e
—b J d2z e

—()/2)lzl2( n n )m
87r (2 m!2"n!)' z z z z

(5.18)

Equation (3.15) is obtained from this by expanding the first line of the integrand in powers of z* and integrating. Equa-
tion (2.18) is the Hermitian conjugate of Eq. (2.17). Equation (2.19) becomes

z m("'=—5 e "Jdze " ''( —z —z )e 27r
8 2(2m 12nn 1)1/2 z z z z

(5.19)

when transformed to the variables y =z3 and z =z, —z2, integrated over y as in Eq. (5.17) and integrated on
s =

—,(z, +z2). Equation (3.17) is then obtained by expanding the first line of the integrand in powers of z and z and in-

tegrating. Equation (2.20) is the Hermitian conjugate of Eq. (2.19). Equation (2.21) divides naturally into two parts,
corresponding to the two terms of Eq. (5.14) for A, 2 A». Exchanging the integration variables 2~3 in the first term,
and then changing variables to y =z( —z2 and z =z2 —z3 and integrating on s =

—,'(z1+z2), we obtain

( —z*)
87r (2 m!2"n!)'

1 (1/2)(yz —y z ) 2 1 ()/2)lzl2. „—(1/2)z z „(1/2)z*z
3' z+p

(5.20)

(5.21)

1

y*(y +z)
1 +

y (y +z)*

Rewriting the denominator of the first term in the z integral as a sum of partial derivatives with respect to z* and in-

tegrating by parts using Eq. (5.3), we find that this term gives zero upon integration over y. The second term in the z in-

tegral may be done as a contour integral. Equation (3.19) is obtained from this using the identity

n ( 1)k
X k

= —X—
k k, k

Equation (2.22) is the Hermitian conjugate of Eq. (2.21).
We consider finally the remaining three-body terms 6" ' through 6' '. Equation (2.23) becomes

( —z* ) ( —z )" —( 1/2)(2 2 —2 z )
e

87r (2 m!2"n!)'

when transformed to the variable y =z1 —z2 and z =z2 —z3 and integrated on s = —,'(z2+z3). Equation (3.21) is ob-

tained from this by performing the substitution

1 1
e

y (y +z)* y*(y +z)
—(1/2)(z z —z z ) 1 —2 0 1 2

y(y+z)' z" Bz y'(y+z) z Bz*

—(1/2)(z z —2 z )
e
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integrating by parts on z using Eq. (5.3) and then using the same trick to perform the y integral. Equation (2.24) be-
comes

@(15) ~
~ ~ d2 —()/2)ly!

( )n f d2( —Z*) ( —Z )"

~~8~ (2 m!2"n!)'/2
1

(y —z )(y+z)*

+ —(1/2)~z
(

e )m
—((/2)y*z

(y —z )*(y +z)

when transformed to the variables y =z, —z2+z& and z =z2 —z3 —z and integrated on s =
—,'(z2+z3). Equation (3.22)

is obtained from this by transforming to the variable ur =z +y, expanding in powers of m*, and integrating. The con-
tribution of the second term in large parentheses is zero. Equation (2.25) is the Hermitian conjugate of Eq. (2.24).
Equation (2.26) divides naturally into two parts, corresponding to the two terms of Eq. (5.14) for A, 2 A». The first

part contains (z, —z2), so that we may perform the z2 integration by expressing 11$„$2)as a partial derivative with

respect to z2, integrate by parts, and use Eq. (5.3). We then transform to the variables z =z, —z3 and s =
—,'(z1+z3 ) and

integrate on s. To evaluate the second piece, we use the change of variables y =z I
—z 3

—z, z =z 3
—z2 +z&, and

s
2 (z3 +z2 ), integrate on s, and then integrate over z using a contour integral. Equation (2.26) then becomes

(17) ( 1/47r) 2 —(1/2)~ (z*) z" ' 1/[87r(n + 1 )] 2 —()/2)~p~' (y' ) y
(2 m!2"n!)1/2 (z+z )* (2 m!2"n!) y+z (5.25)

Equation (3.24) is obtained from this using contour integration. Equation (2.27) is the Hermitian conjugate of Eq.
(2.26). Equation (2.28) becomes

@()9) g
1/(87r )

~P
( 2mm )2n

1 )
1 /2

z e ~ &/'2~lzI' —z™d ~ e [I/'2]IJI n + e~ I/'2~zy*1 1

(z —z )(y —z )* (y —z )(z —z )*

when transformed to the variables z =z2 —zl+z and y =z3 —zl+z& and integrated on zI. The z and y integrals are
then evaluated by expanding the last exponential in powers of zy* and using the identity

~~~~~!~ -~
1 — I —e"( *)

y —z n p
(5.27)

with

1, n)0,
e(n)= '0 (5.28)

obtained by contour integration. This gives

=5
)9 „,/ g '

[1—f (b) —e(n —p)][1—f (b) —e(m —p)]

b~ mtn!+ '
[1 f„(b)—e(p n)][1—f (b) —e(p ———m)] (5.29)

which, in light of Eq. (5.12) and the identity

oo b'[1 f (b)] = g —' f dxe "x~
pb~ o b~ P'

1
dy e ~y~

p! p

= f dx f dy e '"+~)e ~/ =be f dy =be
0 o y p=l P'P

is the same as Eq. (3.26). Following this same procedure for Eq. (2.29), we obtain

(5.30)

( —z*) ( —z )"
e ~+b " g, (n +p)![1 f„(+)]x(m +p)![1 f +—~(x)]—

(2 m!2"n!)' 4b p!
(5.31)

Repeating also the procedure of Eq. (5.30), we obtain the identity



318 C. B. HANNA, R. B. LAUGHLIN, AND A. L. FETTER 43

oo b p b b
b " g (n +p)![1 f„—+ (x)](m +p)![1 f—+ (x)]=f dx f dy e '" yie"y~"

,=o &'

which may be transformed to the variable to m =b —x and integrated over y to yield
'n

n ' m

(5.32)

be f dtJ e 1 ——
0 b

mt 00 mt
[1 f —(to)]=be ' g b~ ' f dx(1 —x)"xi'

wm+1 (5.33)

where we have used Eq. (5.11). Since Eq. (5.32) is manifestly invariant under the interchange m~n, it follows from Eq.
(5.33) that

(p +n)! f dx( 1 —x)"x' =(p —1)! .n —i

n! 0

This result, in conjunction with Eqs. (5.31)—(5.33), gives Eq. (3.27).

(5.34)

VI. DISCUSSION

While it is significant that the particle-hole interaction
discussed in this paper causes the collective mode to be
finite, our most important result is the prediction of an
energy gap at q —+0 for v=O, and thus presumably for
v= —,'. We know this gap to be unphysical because it im-

plies the existence of a preferred density for the particles.
Furthermore, since p 0) effectively defines compression-
al sound at long wavelengths, we are forced to ascribe the
unphysical behavior to the ground state itself, rather than
to the choice of excited state. While it is common for
variational Quid ground states to have wrong long-
wavelength properties, it is completely unprecedented for
them to produce a gap when used in a calculation of this
kind. We must conclude, therefore, that this gap is a
pathology of the formalism we have chosen, and that
some new type of formal manipulation is required to
eliminate it.

Let us now consider what might distinguish this prob-
lem from a traditional quantum fIuid calculation. One
difference is that the static structure factor, defined by

Sq = 1+pf [g(r) —1]e ' 'dr, (6.1)

where p is the particle density and g(r) is the radial dis-
tribution function defined by Eq. (1.8), is forced by Fermi
statistics to limit to 0 as q —+0. The use of any such
structure factor in the Feynman-Bijl formula'

1 &01[P „[WP,]]10) 1 ~q
'

2 (o~l ~,~0) 2 S,
(6.2)

will always produce a gap at q —+0 unless, as occurs with
the Fermi sea, '" S is nonanalytic at q =0. (Note that
because the Hartree-Fock ground state is not exact, this
formula gives a gap of 1 rather than the value of —,

' found

by us numerically. ) Thus the true behavior of a Bose
Quid can be obtained in the Fermi representation only if
the exchange-correlation hole is distended and equal in

extent to the sample size. This, in turn, requires the pres-
ence of long range -forces in the Fermi representation.
Since the fractional statistics interaction itself is very long
ranged, we may identify the range of the interactions as
another characteristic of this problem. The fractional
statistics interaction is inherently "Coulombic" in nature.
This may be seen most easily by observing that some of
the three-body terms discussed in this paper are
equivalent to logarithmic two-body terms. Still another
feature distinguishing the problem is the presence of a
fictitious magnetic field, which formally fixes the particle
density and may thus be thought of as causing the gap.
However, since the gap may also be accounted for by Eq.
(6.2), the presence of this field must be related in a funda-
mental way to both the sum rule fixing S at q~O and
the presence of long-range forces.

In light of these considerations, it is clear that the use
of Hartree-Fock wave functions to calculate the density-
density response function failed in this problem for the
same reason that it fails '" in an ordinary metal, namely,
that the long-range properties of both the ground state
and response functions are severely modified by the pres-
ence of long-range forces. It was this idea which motivat-
ed us to study the fractional-statistics gas in the random-
phase approximation and to show that this correctly ac-
counted for all the superAuid properties. The next paper
in this series is a detailed account of this study.
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