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Role of Van Hove singularity in high-temperature superconductors: Mean field
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Realistic U = ao models, for oxide superconductors are solved in slave-boson mean-field approxi-
mation. A successful understanding is achieved of the paramagnetic susceptibility and specific heat,
the energy dispersion seen in photoemission, the shape and topology of the Fermi surface, the rela-

tive weights of copper and oxygen both in NMR and photoemission spectroscopies and the ob-

served energy gaps in the p- and n-type materials. The Fermi level is found to lie very close to the

nearly logarithmic van Hove singularity in the density of states over a substantial range of doping.

This makes it possible without large Fermi-liquid parameters to reconcile the light mass found in

photoemission experiments with the high density of states deduced from thermodynamic data. Fur-
ther important consequences for the behavior of the imaginary part of the self-energy and for pair-

ing mechanisms are outlined.

I. INTRODUCTION

The high-temperature superconductors pose some deep
questions regarding the nature of strongly correlated sys-
tems in two dimensions. Following the original sugges-
tion of Anderson, ' spectroscopic ' and theoretical stud-
ies have shown the existence of a large intra-atomic
Coulomb repulsion U on the Cu atom of 5—10 eV, larger
than the hopping matrix elements of order 1 eV.

Experiments show surprising efFects apparently arising
from the strong coupling, such as scaling of Hall
coefficient with the doping xh (not the Luttinger Fermi-
surface volume 1+xh ), scaling of resistivity with temper-
ature, and inverse quasiparticle lifetime in infrared and
photoemission scaling with energy. These experimental
results contrast with the simplest Fermi-liquid picture, '

which gives resistivity going as T lnT and inverse life-
time going as c inc. .

However, the Hall coe%cient results cannot be naively
interpreted in terms of a carrier gas containing x& parti-
cles, ' because angle-resolved photoemission measure-
ments suggest that there is a Luttinger Fermi surface,
containing 1+x& holes. This result combined with ther-
modynamic data such as the existence of a temperature-
independent susceptibility and a constant g/y ratio
would tend, on the contrary, to suggest a straightforward
Fermi liquid picture of the high-T, materials. Indeed a
more recent look at the resistivity behaviors show that
the Nd-Ce-Cu-O system and several low-T, hole-doped
superconductors show more nearly quadratic tempera-
ture dependence. " Attempts to reconcile these Fermi-
liquid-like results with the nonconventional transport and
lifetime data described in the foregoing have led to mar-
ginal Fermi-liquid' and novel gauge-theory' scenarios.

The mechanism of superconductivity, if it is to be
thought of in terms of conventional pairing, seems un-
likely to proceed entirely from phonons, without invok-
ing some anomalous electronic contribution, in view of
the absence of any structure at 26+co h in the ir conduc-
tivity below T„as well as the low isotope shift. There is
also no structure at 26+co, , where co, is of the order
of the dd exchange energy 130 meV. Hence if it is "con-
ventional, " superconductivity seems to proceed from ex-

citations above 0.4 eV, essentially outside the retarded
regime.

Additional constraints on the mechanism'" of super-
conductivity are becoming available from Monte Carlo
simulations on simplified models such as the Hubbard'
and Emery' models. These models have been found not
to show any sign of s-wave superconductivity. This is
consistent with the absence of magnetic satellite structure
in the low-temperature ir conductivity, because these
models show antiferromagnetic peaks in the spin-spin
correlation function, and if magnetic excitations were
mediating s-wave pairing these models might be expected
to be s-wave superconductors. These negative results
suggest that the source of the pairing interaction must be
looked for in additional interactions in the model, e.g. ,
such factors as the direct oxygen-oxygen hopping, ' the
copper-oxygen Coulomb interaction, ' or quadrupole
coupling' leading to virtual excitation of holes into the
z orbital. A scenario is emerging where the importance
of such details of the model requires us to establish a
quantitative picture of the high T, s as far as possible.
This requirement has motivated the present paper.

The present work is based on the apparent closeness of
the systems to Fermi liquids. A Fermi-liquid model is
employed that treats the strong coupling via slave-boson
mean-field theory, in which respect we extend and inter-
pret earlier work. ' ' Bearing in mind the emphasis on
secondary interactions, we use the Anderson lattice ("ex-
tended Hubbard" ) model in a form derived without fur-
ther modification from the band-structure parametriza-
tion work of the Naval Research Laboratory group. ' '

Despite the claims of the t-J model, founded on single-
hole calculations, ' we feel that at finite doping, and in
view of the absence of Monte Carlo evidence for s-wave
pairing in the t-J model so far, we should go at least to
the full Anderson-lattice model.

Here we calculate some thermodynamic and spectro-
scopic properties within our realistic slave-boson mean-
field theory. The main surprise is that the Fermi level lies
very close to the Van Hove singularity in the density of
states, which consists of a logarithmic divergence in the
case of isolated CuO2 layers. The Van Hove singularity is
not correlated with the half-filling point, as in the Hub-
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bard model, but occurs at a finite doping in the 15—35 %
range, depending on long-range interactions in the model,
and is not necessarily correlated with magnetism. The
high density of states at the Fermi level, associated with
nearness to the singularity, is shown to be consistent with
the thermodynamic data on the high-T, materials. This
high density of states occurs without requiring an espe-
cially large mass, consistent with the angle-resolved pho-
toemission data.

II. MODELS AND MEAN FIELD

The generic features of the model are illustrated in Fig.
1. The oxygen 2p levels (not pure but hybridized with the
Cu 4s and other states) form a band about 4 eV wide in
the absence of hybridization with the Cu d states. The
Cu atom has a hole ionization level (d -d' level) at E„
at energy 6 (=oxide gap, charge-transfer gap) below the
bottom of the oxygen hole band; in addition it has a hole
a5nity level E2 at U, the intra-d-orbital Coulomb in-
teraction, above E, . These are the exact eigenstates in
the absence of mixing &;„between the oxygen and
copper orbitals, denoted by V in Fig. 1, or intersite d-d
interaction. In this paper we use slave-boson mean-field
theory to approximately project out the Ez(d ) state
when Vis switched on.

The specific models we are working with are reason-
ably standard but a little more inclusive than in many
current calculations. These di6'erences now seem likely
to be important or even essential, to getting a sensible
picture of high-temperature superconductors. To get a
feeling for the real situation, we consider two models, a
very minimal model, applicable only to the Cu02 planes,
which originated in the Bi2SrzCaCuOs with n=2 (2:2:1:2)
material, and a highly complete model of the full

La2Cu04 (2:1:4) material. We avoid modeling the
YBa2Cu307 „(1:2:3) material because of the complica-
tion introduced by the chains.

The 2:2:1:2model is then a model of the Cu02 planar
sigma bonds in the p„, py d 2 2 basis set. The matrixx —

y
elements are those obtained in the tight binding fit of De
%cert et al. to the band structure of the 2:2:1:2materi-
al. This is a very minimal fit, but it does include second-
nearest-neighbor oxygen-oxygen interactions.

The Hamiltonian may be written

g t~q(c c +H. c. ),
p&so

&)=E)gD, D, + g t, D,tD, .

I, 0' I,J, CT

~;„=g t;~(D; c~ +H.c. ) .

(la)

(lb)

(lc)

&0=+Ec c + g t (c cq +Hc),
p, o

&]=Ei g D;~~D(~~+ g t J~t3D;~~Dlt3~
i, a, cr i j,a, p, o.

t; (D, c +H. c. ) .

(2a)

(2b)

(2c)

Here p describes the oxygen sigma 2p orbitals (p or
p~ ) at site p, while i describes the d, , orbital at site ix —y
We take the oxygen energy level as zero. The matrix ele-
ments in (1) are derived from the canonical overlap in-
tegrals listed in Table I. In (1), Eq. (la) describes the
band structure of the oxygen 2p orbitals alone, which has
a band width of order 4 eV. The eA'ect of coupling in the
copper orbitals is linked to taking into account the
Coulomb interaction, which is discussed below.

The 2:1:4 model is the 32-band model employed ear-
lier, ' which is a complete parametrization of the 2:1:4
band structure. This model incorporates all the Cu 3d
and oxygen 2p orbitals, together with the Cu 4s and 4p,
and the La Sd orbitals. Its Hamiltonian may be written

Here ia denotes the Cu 3d orbitals of eg symmetry, and p
denotes all the other states in the basis set. The canonical
matrix elements in the model are listed in Ref. 20.

As already pointed out, the most important Coulomb
interaction in these systems is usually considered to be
the intrasite Cu 3d Coulomb interaction U, which in this
paper is taken to be infinite. Implementation of the re-
striction that double occupation of Cu 3d be forbidden
can be done with slave bosons. In (1), the ansatz

D,-~=b; d;~, (3a)

Op Cud ~
where b; is a boson and d; a fermion, together with the
constraint

FIG. 1. Energy level diagram for CuO, planes, prior to
switching on &;„denoted by V. Left: energy bands of oxygen
2po. levels. Shaded area illustrates doped holes. Right: hole
ionization energy E&, and hole affinity level E2 of copper d 2 zx —y
orbital. Hole notation.

Q;= gd, t d; +b,tb, =1, (3b)

leads to the Hamiltonian which, when the constraint is
taken into account via a Lagrange multiplier, be-
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&'=%'0+E, gd; d; + g t;)b;btd; d, + g t,~(b;d; cp +H. c. )+A. g(Q, —1) . (4)
I, O. l) J)O

In the mean field approximation, wherein b, is replaced by ( b ), (4) becomes the mean-field Hamiltonian

&M„=&0+v,„gd, d, +(b) g r;, d; d +(b) g t, (dtc +H. c. )+(E~ E, )—g((b) —1), (5)
l, O &,p, o.

where sz =E, +A, . The quantities Ez and A, are found by minimizing (&MF).
In the case of the 2:1:4model, we assume that the t2 orbitals will lie too deep to be occupied by holes. Then the as-

sumption of infinite U requires that we allow only d and d ' configurations in the e subspace, so (3)—(5) generalize to

l CXCT / 1 CXO

Q;= gd, d, +bb;=1,
(6a)

(6b)

&'=&o+E, g d; d; + g t;~ pb;bjd; d&g + g t; (b;d,t c +H c )+.A, .g(Q, —1),
1

&M„=%'o+sz g d, d; +(b) g t~ P, d &+. (b. ) g. t, (d, c +H.c. )+(e& E, ) g ((—b) —1) . (8)
i, a, o. 1)J, AqP, O l) Q,p) CT

The method we use starts from the mean-field Hamil-
tonian (5) or (8) with assumed values of sz and (b ). A
band structure is generated from which the densities of
states, etc., are calculated by the triangle or tetrahedron
methods. The triangle method is an adaptation to purely
two-dimensional models of the tetrahedron method.
Then E& and (b ) may be iterated to self-consistency.

The only free parameter in the method is the copper-
oxygen energy difference E„which can be thought of as
the charge-transfer gap measured from the center of the
oxygen band. This parameter sets the overall energy
scale of the Cu02 antibonding band, in which the Fermi
level lies. We set E, so as to get, as far as possible, simi-
lar results in the two models, and fit the Pauli susceptibil-
ity of the 2:1:4material.

In Table II we compare the mean-field solutions to the
2:1:4 and 2:2:1:2models. The value of E, is defined in
the 2:1:4model relative to the planar oxygen levels. We
usually work in a framework of holes, so the energy axis
has the opposite sense to the conventional one, and E& is
negative. This represents the fact that there is an energy
cost to transfer a hole from the Cu to the planar oxygen
orbitals. We chose E& = —5.0 eV as a reasonable value.
This value implies that the lowest d —+d' excitation
("oxide gap,

"charge-transfer gap) is about 3 eV.
The two models are seen to be reasonably similar, espe-

cially if the 2:1:4at doping x& =0.1 is compared with the
2:2:1:2at a higher doping such as 0.25. Further, close

III. RESULTS

Let us start this section by noting some striking
features of the thermodynamic data on various high-T,
materials. In Table II we have analyzed specific heat and
susceptibility data in a manner that is conventional in the
heavy-fermion field. The specific heat has been derived
by a crude but consistent BCS analysis of the specific-
heat jump, involving the conventional factor 1.43 be-

TABLE II ~ Mean-field solutions to 2:2:1:2and 2:1:4models.

2:2:1:2 2:2:1.2 2:1:4

similarity will be seen on comparison of Figs. 3(a), 3(b),
4(a), and 4(b) below. The density of states (DOS) is, how-
ever, so narrowly peaked in the 2:2:1:2model that a very
high DOS is only achieved in a narrow range of doping.
In the 32-band (2:1:4)model, the overlap of many bands
makes the lower band edges dificult to determine for
purposes of comparison.

Most importantly, the calculations of Table II suggest
that the simple three-band 2:2:1:2model can to a consid-
erable extent duplicate the properties of a highly realistic
model such as the 2:1:4model.

In the following, we calculate some of the properties of
the mean-field Hamiltonians (5) and (8) and compare with
experimental data.

Integral

Cu-O(1) (dpo. )

Cu-Cu (ddo-)
Cu-Cu (dd5)

O(1)-O(1) (ppo )

O(1)-O(1) (pp~)
O(1)-O(1) (NNN) (ppcr)
O(1)-O(1) (NNN) (ppm)

—1.29
0.037

—0.170
0.894

—0.162
0.087
0.024

TABLE I. Parameters in 2:2:1:2model.
Xg

(b)'

p
d

p+
EF
FS

Band 1 edge
Band 2 edge
Band 3 edge

0.1

0.23
—5.0
—2.8
—2.3

2.5
0.45
h

—3.6
—2.3
—0.55

0.25
0.21

—5.0
—2.2
—1.7

2.8
0.46
h

—3.3
—1.8
—0.35

0.1

0.20
—4.92
—1.9
—1.4

5.1

h
—2.8
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tween the jump and y T, . The analysis of the data on the
uniform magnetic susceptibility is a little more lengthy.
The diamagnetic core corrections must first be made,
then we also made an allowance for the Van Vleck sus-
ceptibility, taking in all cases the value of Mehran et al.

%'e then converted the values deduced from the data
for the electronic specific heat y and the Pauli suscepti-
bility y~ into density of states at the Fermi level (includ-
ing spin) pF, using the mean-field relationships:

0 I I ~ I I I I I I
I1

0 0

/
/ 0

/
0

/

g

I I I I I I I I I
I

I I I I i I I I I
I

I I I I I I I I I

0
0

PaPr2

y=(rr l3)pF .

(9a)

(9b)

TABLE III. DOS derived from specific-heat and susceptibili-

ty data.

1:2:3
2:2:2 3 ( n =3)

2:1:4
2.2:1:2 (n=2)

eV
DOS —AC„

6.4 (Ref. 25)
5.6 (Ref. 26)
4.7 (Ref. 27)
4.4 (Ref. 26)

eV
DOS —

y~

6.3 (Ref. 28)
5.6 (Ref. 26)
4.6 (Ref. 29)
5.0 (Ref. 30)

The result of these manipulations on the data is seen in
Table III, in which the DOS per Cu atom derived from
the susceptibility and specific-heat data are compared. It
is seen that the DOS values derived by the two methods
are remarkably close. We already noticed this agreement
at an early stage in the high-T, field in the case of the
2:1:4material. ' In fact, the agreement is closer in some
cases than the accuracy of the reduction procedures and
the data themselves allow, and is partly fortuitous. Nev-
ertheless, the pattern of Table III is typical of what is
found in the heavy Fermion field, and strongly supports
Fermi-liquid behavior. Similar observations have been
made by Millis and by Crowe et aI.

The second remarkable fact about Table III is that the
values of the DOS are surprisingly high. Shortly we shall
consider how this fact may be reconciled with the rela-
tively light mass seen in direct observation of the energy
dispersion.

There could be artifacts responsible for part of the high
value of DOS. One is obviously that the Pauli suscepti-
bility could well be enhanced in magnetic systems like
these. This would lead to the experimental DOS from yz
being reduced relative to that in Table III by the
enhancement factor. Secondly, we know that T, is re-
duced below the BCS value, an effect that could be ar-
gued to increase the specific-heat jump, and hence to an
overestimate of the DOS derived from the jump in Table
III. In this paper we shall ignore these hard to quantify
factors; a reduction in the values in Table III by 30—40%
or so would not much affect the conclusions of this paper.

In Fig. 2 we illustrate the DOS as a function of doping
for our two models, compared with 2:1:4and 2:2:1:2data
from Table III. The 2:1:4model, as far as has been calcu-
lated, rather accurately fits the susceptibility data. Note
that our disposable parameter E, was chosen for this fit.
The 2:1:4model breaks down at x) 15%%uo, due to closure
of the gap between c~ and the bottom of the oxygen

0 I

0.0
I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.1 0.2 0.3
x (%)

0.4

FIG. 2. Open and solid circles: paramagnetic y of 214 and
2212' materials expressed as DOS using (9a), vs hole concentra-
tion x; open and solid squares: DOS from specific-heat jump
data, derived as per text, for 2:1:4, and 2:2:1:2. The doping
of the Ref. 26 sample not stated, a wide error bar assumed.
Dashed curve: mean-field approximation for 2:1:4 material as
per Ref. 19; full curve: mean-field theory for 2:2:1:2in model of
Table I.

(hole) band. ' The success of this model in getting the
high observed DOS values originates in its ability to ac-
curately reproduce the Van Hove singularity in the DOS,
which cz scans through in the experimental doping
range. The cruder 2:2:1:2model gets a high DOS only
over a narrow range of doping, and due to uncertainties
in the actual 2:2:1:2doping it remains unclear whether
the simple 2:2:1:2model can fully explain the observed gz
and C~ values.

Next we illustrate the band structure of the models and
compare directly with angle-resolved photoemission
data In Fi.g. 3(a), we illustrate the band structure of the
2:1:4 model at 10% doping. This curve was derived as
long ago as early 1988 following parametrization of the
2:1:4in Ref. 20 and fitting of E, to susceptibility data. It
is seen that this old calculation rather well predicted the
photoemission measurements of Olson et al. , as we al-
ready pointed out in Ref. 32. In Fig. 3(b) we show the
same comparison for the 2:2:1:2model, remembering that
the measurements were actually done on this material.
There is also seen to be a reasonable fit.

The effective mass in, for example the theoretical curve
of Fig. 3(b) is not especially large, 3.3 electron masses. A
2D electron gas with this mass would have a DOS of
p+=2.0 eV '. This is markedly lower than the values in
Table III, which go up to 6 eV

Notice that along the other direction plotted, in which
photoemission data has not been shown, I —Z, the bands
lie very close to the Fermi level. This effect is in fact re-
sponsible for the high thermodynamic density of states
deduced in Fig. 2 from the same calculation that led to
these band structures. In other words, the fact that the
bands are highly non-free-electron-like and track the Fer-
mi level in directions other than I to X leads to high
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DOS despite the modest mass. This is another way of
saying that the Fermi level in these systems seems to lie
close to the Van Hove singularity, which is almost a loga-
rithmic singularity in these nearly two-dimensional sys-
tems.

In Figs. 4(a) and 4(b) we illustrate the Fermi surface
found in the foregoing calculations. First point to notice,
of which many people seem unaware, is that for the 2:1:4
model at 10% doping and for the 2:2:1:2model at 30%
and below, the Fermi surface is hole-type. It is often
thought, by false analogy with the Hubbard model, that
the Fermi surface must be electron-type below half-filling
and perfectly nested at half filling. The situation in real-
istic mean-field models is in fact that the Fermi surface

changes type at some finite doping, for the 2:2:1:2model
at —,

' doping, a value that depends on the longer-range in-
teractions in the model and that can be tuned over a wide
range.

The crossover, which in the 2:2:1:2model is at approx-
imately 0.33 doping, corresponds [see Fig. 4(b), middle
panel] to the Fermi level lying at the van Hove singulari-
ties located on the zone edges at (m, vr/2) . and (m/2, m).
At this point the hole and electron regions do not map
onto one another: because of the nonzero doping, their
areas are unequal, and the Fermi edge must be curved.
There is no nesting.
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FIG. 3. (a) Open and solid circles: band structure calculated
according to Ref. 19 at x=0.1 for 2:1:4material; crosses: pho-
toemission data of Ref. 6. (b) Band structure for 2:2:1:2model
of Table I, x=0.2, compared with more recent version of same
photoemission data. Conventional electron notation is used in
these figures.

FIG. 4. (a) Fermi surface of 214 material in mean field calcu-
lation of Ref. 19, x=0.1. Closed regions are hole-type. (b) Fer-
mi surface of 2212 model in mean field calculation based on
Table I. Bottom panel, x=0.25, closed regions hole-type, mid-
dle panel, x=0.30, closed regions hole-type, top panel, x=0.55,
closed regions electron-type.
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Another view of what happens as the doping is in-
creased is seen in the series of DOS plots in Fig. 5. First
of all there is a uniform shift up in (hole-type) energy as
doping is increased. This is a kind of hole-hole repulsion
effect. It is likely that the repulsion effect is partly can-
celed by the doping centers, ' which exert an attraction
on the holes. In fact, the Friedel sum rule assures that
the added hole charge density remains localized around
the doping centers.

More importantly, we see that there is not a uniform
shift of the whole band, but rather as doping increases
the nearly half-filled "Hubbard resonance" moves up rel-
ative to the oxygenlike environment, allowing the extra
holes to be taken up by the low-DOS oxygenlike states at
the bottom of the band. This effect is reminiscent of a
heavy-fermion resonance, which Boats up to follow the
Fermi level if more electrons are added to the valence
band. At the same time we see how the Fermi level is not
completely pinned at the resonance center but slowly
crosses through the Van Hove singularity, allowing the
switch in Fermi surface from holelike to electronlike il-
lustrated in Fig. 4(b).

In Fig. 6 we illustrate various projected densities of
states. The 3d DOS (dotted curve) is seen to be fraction-
ally the greatest near the top of the band (bottom of band
in conventional representation). This high occupation is
continued into the near edge of the oxygen band (not
shown). On the other hand the oxygen component
(dashed line) is greatest near the bottom of the band
(above the Fermi level in conventional notation). This is
where the extra holes go upon further doping, when, as
just pointed out, the Van Hove singularity marking the d
resonance moves up. Thus the way to think about the
mean-field band structure is as a 3d resonance in an oxy-
gen background, the resonance being trapped close to the
Fermi level, where most of the d DOS is located.

The weights of 3d and 2p character states are further
illustrated in the dot-dashed curve in Figs. 6 and 7. The
Fig. 6 curve illustrates (b ) times the 3d DOS. This is
the quantity that actually enters into the d weight in pho-
toemission. The weights now no longer add to one, the

2.5 I I I I I I I
I

I I I I \ I I I I
I

I I I I I I I I 5
I

I I I I I

2.0 :
C:
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0.0
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r
s ii « I17't»
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ENERGY ( e V )

-1.5

FIg. 6. Mean field DOS and projected densities of states of
2:2:1:2 model (Table I) at x=0.25 hole notation. Solid line:
DOS; dotted curve: 3d DOS; dash-dotted curve: ( b)'X3d
DOS, dashed curve, 2p DOS. The weighting factor (b )' in the
3d projected DOS is appropriate for calculating the d com-
ponent in photoemission spectra.

I I I I ~ I 1 I I I I I I I I I I I I I I I 1 I I I I I I I 1 I I I I I I I I I I I I I I I I I I) 0 I I I

0.8—

extra weight being. found in a d ~d' satellite to be ex-
pected near E„i.e., to the left of the band illustrated in
Fig. 6 (such a satellite was explicitly calculated in Ref.
32). In Fig. 7 the d weight at the Fermi level (dotted
curve) is plotted versus doping and is seen to be about
45% at 25%%uo doping. This fraction is similar to the frac-
tional d weight deduced from photoemission experi-
ments. '

In contrast to the d weight, NMR data has been used
to derive the fraction of spin of 3d character. On the

5
0.6 —.

O
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Q 4

M PD
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0.0 0.1 0.2 0.3
dDPI fig X
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ENERGY {eV)

FICx. 5. Mean field DOS of 2:2:1:2model (Table I) for a range
of dopings between x = —0.05 and x=0.45 (indicated in figure).
Horizontal bars indicate DOS at Fermi level. Hole notation.

FICi. 7. Ratio of weights of copper to oxygen in states at Fer-
mi level vs doping x. Dashed curve: spin degree of freedom
(appropriate in NMR); dotted curve: charge degree of freedom
(appropriate in photoemission spectra). From mean-field calcu-
lation based on 2:2:1:2model of Table I.
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basis of uniform susceptibility, this would be obtainable
from the fraction of 3d in the Fermi level DOS, without
correcting for the ( b ) factor. This is illustrated in Fig.
7 by the dashed curve. The values are seen to be about
80%, compared to an experimental number of 70%.

In Fig. 8 the amount of oxygen character to the left of
the Fermi level in Fig. 5, i.e., the oxygen-hole number in
the system, is plotted versus doping. The amount of oxy-
gen holes is seen to increase almost directly as the added
holes. The meaning of this is plain: at all dopings there
is some admixture of holes into copper states, leading to
some 20% probability of Cu being in the 3d' state, but
that almost all doped holes go into the oxygen states.
This seems to be a physically correct picture, and the il-
lustrated data follows it very closely.

Also in Fig. 8 we illustrate the mean-field plasma sum
rule, the details of the calculation being given in Appen-
dix A. The method differs somewhat from that of Grilli,
Kotliar, and Millis. The experimental plasma frequen-
cy tends to increase more rapidly with doping than the
theoretical prediction (the agreement would be a lot
better for the isotropic Anderson-lattice model, as dis-
cussed in Appendix A). It appears that at the mean-field
level the screening out of the current from the 3d to the
2p states is significantly less well described than is the
screening of the static 3d charge Auctuations, which, as
shown in the foregoing paragraph, seemed to be de-
scribed quantitatively in mean field. This difhculty may
be linked to that in describing the insulator in mean-field
(leading-X) theory, and is probably due to the presence of
Hartree-Fock (HF) -like elements in the ground state. In
HF, characteristic of conventional spin rather than the
SU(N) of mean-field theory, there is a link between the 2
of SU(2) and the 2 in the bipartite lattice, leading in the
insulating limit to the antiferromagnetic state.

~5 I ~ I ~ I I I ~ I
/

I I ~ I I I ~ I ~
1

~ I I I ~ f I I I
1

I ~ I ~ I I I I I I ~ I ~ 1 ~ ~ I I 1

We see then that the mean-field solution, simple
though it is, has certain characteristic features that arise
from the energy-level diagram of Fig. 1, which imposes a
large gap 5 for charge Auctuations of the d states, but
readily permits fluctuations in d spin. Among these
characteristic features are that the added holes go into
the oxygen, that photoemission will find oxygen states
slightly predominant at the Fermi level, but that NMR
will find the Cu states wholly predominant at the Fermi
level. These expectations are just what is observed. The
latter Ineasurement refIects the existence of a 3d reso-
nance at the Fermi level, which is seen in much reduced
strength in photoemission because the 3d strength is
moved away into the d -d' satellite.

Turning to the approach to the metal-insulator transi-
tion, we illustrate in Fig. 9 the expectation value of the
boson squared, ( b ), which controls the dd hopping am-
plitude and thus the bandwidth of the band in Fig. 6.
Thus it is efFectively inverse band mass. For our parame-
ters, which are as realistic as possible, the quantity is
nearly constant for hole doping. But, for larger values of
~E, ~, corresponding to overall heavier masses, (b ), and
thus the inverse band mass, vanishes at zero doping.

As several authors have pointed out, the second type of
scenario provides a bonus in explaining the metal-
insulator transition, which will come about through the
vanishing of the kinetic energy of the carriers as doping
goes to zero. But trends such as the susceptibility of the
2:1:4material (Fig. 2) go quite the wrong way for this pic-
ture, in which the susceptibility should diverge at the low
doping end. Moreover, the masses seem not to be heavy
enough overall to be located in the region where mass
goes to infinity at zero doping. Therefore we think that
the mean-field theory, in the realistic region, has a prob-
lem with the metal-insulator transition. One way out,
which we recently proposed, is that there may be a first
order phase boundary interceding somewhere below 10%
doping. Other ideas are that the true mass does, in a
better approximation, go to infinity, but in a very abrupt
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FIG. 8. Solid curve: number of oxygen holes vs doping; solid

circles: data of Himpsel et al. (arbitrary normalization);
dashed curve: plasmon sum rule in mean-field approximation,
expressed as square of plasma frequency in units of 0.1 eV (see
Appendix A); open squares: data of Tajima et al. ' and Schles-
inger et aI. ' (cutoft 1.5 eV). 1:2:3doping assumed 0.3. Theoret-
ical curves from mean-field calculation based on 2:2:1:2model
of Table I.

xh

FICx. 9. Plot of (b) vs doping xh and E, for mean-field
treatment of the 2:2:I:2model of Table I. The quantity (b ) is
approximately a measure of the mass renorrnalization m/m*.
Note important distinction between curves that go to infinite
mass at zero doping, and those that go to finite mass.
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FIG. 10. Plot of optical gap vs doping x. Curve: 2:2:1:2
model, mean field; open circles: optical data from Tokura
solid squares: data of Himpsel et al.

IV. CONCr. USrOX

Mean field, then, explains with one parameter a
significant amount of data, a situation which has already
become clear for some time, though in this paper we have
tried to extend the comparisons a little beyond those in
the literature, and at the same time aim at a quantitative
description of the system. Of particular interest is the
picture of the high-T, systems that emerges from this
type of study, a picture that we return to shortly.

The comparisons of mean field with the data so far
have shown that a successful understanding can be
achieved of the paramagnetic susceptibility and specific
heat, the energy dispersion seen in photoemission, the
shape and topology of the Fermi surface, the relative
weights of copper and oxygen both in NMR and photo-

manner below, say 5/o doping. The metal-insulator tran-
sition, like the superconductivity, seems to form a fertile
subject for future work.

As a final topic for this section, we consider the com-
parison between the optical gap defined as the difference
between the bottom of the oxygen (hole) band and the
Fermi level, and some experimental data on the 2:1:4ma-
terial. This is done in Fig. 10. The comparison comes
out quite well as regards the overall trend and the general
magnitude of the gap. The optical data shows a discon-
tinuity in the gap as a function of doping trend as the in-
sulator is crossed, a discontinuity not seen in the tech-
nique of Ref. 37, or in the mean-field curve which con-
strains the system to metallic character.

emission spectroscopies, the observed energy gaps in the
p- and n-type materials, and the scaling with doping of
the number of oxygen holes. The energy gap and plasma
sum rule show the deviations from smooth metallic be-
havior as a function of doping at half filling associated
with the development of the insulating gap.

These positive results come about because in a simple
way the slave-boson mean-field approximation can handle
the spinlike nature of the Cu 3d orbitals, due to suppres-
sion of 3d charge fluctuations by the large U and the sub-
stantial charge transfer gap, together with the nearly
noninteracting behavior of the oxygen holes (the 3d
current seems less adequately suppressed, however).
Mean field achieves these results without separating spin
and charge, and in the context of a Luttinger Fermi sur-
face, which contains both the spinlike Cu 3d holes and
the weakly interacting oxygen 2p holes. It is then impor-
tant for the success of these comparisons that the high-T,
systems are close to Fermi-liquid behavior, though ap-
parently not exactly in the Fermi-liquid state ("marginal
behavior").

An important aspect of our mean-field modeling is
what it tells us about the high-T, systems. Light is
thrown on several issues. First of all, how does mass
behave with doping? There has been discussion ' that
the mass might diverge at zero doping, providing a free
explanation of the metal-insulator transition. However,
our calculation, along with the data, suggests that it does
not, rather the insulating phase is interjected into an oth-
erwise smooth variation of mass from negative to positive
doping. The interjection of the insulating phase shows up
in the optical measurements of the gap in Fig. 10 as a
discontinuity in the gap as doping crosses through zero.
It is not clear whether the insulating phase becomes
stable near half-filling in a first-order sense, or whether
some other description is appropriate. The gap itself, be-
tween the top of the (electron) oxygen bands, and the
Fermi-level, is found to decrease with doping. But it does
not vanish, which means that the system can really be de-
scribed by bands belonging just to the Cu02 planes over a
wide range of doping.

A more surprising conclusion, found initially from run-
ning slave-boson mean-field programs with the accurate
NRL band structure parametrizations, and then from the
data that confirm these theoretical assumptions, is that in
the high-T, systems the Fermi level lies remarkably close
to the Van Hove singularity in the DOS. Because the
systems are quasi-two-dimensional, this singularity is
close to a logarithmic divergence. Direct experimental
evidence for this situation is seen in angle-averaged pho-
toemission data, which may be compared with a linear
combination of the dashed and dash-dotted curves in Fig.
6 (section above hole Fermi level). The data shows the
peak at the Fermi level expected from Fig. 6. A conse-
quence of this situation is that we can reconcile the light
effective masses seen in angle-resolved photoemission
with the large DOS implied by all the measurements of
paramagnetic susceptibility and specific-heat jump in-
cluded in Table III, without introducing large Fermi-
liquid parameters.

Why the foregoing situation should occur in high-T,



43 ROLE OF VAN HOVE SINGULARITY IN HIGH-TEMPERATURE. . . 3083

systems cannot be fully discussed in this paper. Howev-
er, several authors, such as Dzyaloshinskii, Friedel,
Labbe et al. , and Tsuei, "have attributed the high T, 's
in the high-T, materials to the Van Hove singularity, and
if some scenario along their lines is correct, then no coin-
cidence is involved.

With this understanding gained, we can be less
surprised by results such as the quasilinear behavior of
the imaginary part of the self energy (inverse lifetime
broadening of a quasiparticle) with energy from the Fer-
mi level. This is observed over a relatively coarse energy
scale of order 0.05—0.3 eV in ir and angle-resolved photo-
emission measurements. Now if the systems were in-
teracting Fermi systems with a nearly constant DOS, the
ImX(e) would go as e inc. But the presence of the loga-
rithrnic singularity lying within say 10—30 meV of the
Fermi level is expected to significantly modify this behav-
ior in the sense of slowing the energy dependence. For
example suppose that in calculating the self-energy due to
electron-electron scattering, we angle average the
response function just as the phonon response function is
angle-averaged in Eliashberg theory. Then if the Fermi
energy lies close to the logarithmic Van Hove singularity,
the lifetime broadening scales as s ln(s) a behavior
found to be indistinguishable from linear with c. over a
wide range. More detailed calculations confirm this as-
sertion based on angle-averaging. '

In the higher-T, materials it seems likely that the Fer-
mi level is pinned within -one to two times T, of the
Van Hove singularity. The actual doping level required
to produce this situation depends on band-structure pa-
rameters and varies from material to material, and is op-
timally high to escape from the effects of the metal-
insulator transition. Note that although the system in a
sense contains a half-filled Hubbard resonance, the large
dopant concentration prevents Fermi surface nesting, and
hence the tendency towards antiferromagnetisrn of the
half-filled Hubbard model is held in check. Nevertheless
the bands run almost parallel to the Fermi level in a re-
gion of k space around the saddle point of E(k), leading
to more phase space for scattering than is normal in 2D
Fermi liquids. Such systems never get to a region where
the DOS is analytic about the Fermi level, and might be
termed van Hove liquids. In this case the resistivity
should also show the quasilinear function T ln( T) as dis-
cussed above for the self energy. Maybe also the anoma-
lous lifetime of the copper nuclear spin can find an ex-
planation in this context.

We must expect to have to go beyond the mean-field
(leading N) approximation in order to explain features of
the data that depend on the current, such as the plasma
frequency and Hall coefficient, even though in certain
models such as the isotropic Anderson-lattice and
Kondo-lattice models a full enumeration of the leading-N
diagrams should lead to the physically correct results.
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APPENDIX

The plasmon sum rule is calculated starting from the
2:2:1:2Hamiltonian in the basis of Bloch states formed
from the d and p orbitals

k, a, g, o.
h p(k)ck Ct, p

+U g C, C; C;
(i, a) =d

(A 1)

Here i= site, k= Bloch wave vector, o; =orbital. The sum
rule on the spectral density can be computed from (Al) as

N/m = —
q ([p, [p, &]]),

where the density operator is

pq g ckaock+qao'
k, e, o.

(A2)

(A3)

and X is the number of holes, and nz defines the mass in
the spectral density sum rule.

Calculating (A2), we obtain

k, a,P, o
(A4)

(A5)

in the notation of Eq. (1); a is the Cu-Cu distance. The
first term in (A5) comes from d-p hopping, while the
second (positive) terms comes the oxygen degree of free-
dom and is analogous to the no/mo term for the isotro-
pic Anderson-lattice model. The first term is not negligi-
ble. At zero doping the first and second terms are 0.15,
0.23 going to 0.22, 0.49 at x= 1. Because of the presence
of the d-p hopping term, and the slower dependence on

In order to estimate a spectral density sum appropriate
over a low frequency regime of order the characteristic
energy scale sF of the system, (A4) is evaluated in mean
field, replacing the operator D by (b )D wherever it
occur's.

An analytic solution to the sum rule for N/m in (A4)
can be given for the simple case of the isotropic
Anderson-lattice model of the first reference of Ref. 16;
N/m =no /mo where no is the number of oxygen holes
and the separated oxygen bands disperse as ok=k /mo.
The current is in this model entirely associated with the
oxygen states, and the trend of co versus doping would
follow that of the no curve in Fig. 8. In the Kondo-
lattice limit the result simplifies further to N/m =x/mo,
i.e., the plasmon frequency scales exactly as the doping.

To simplify (A4) in the case of the 3-band model, we
drop the small 0-0-NNN and Cu-Cu NN matrix ele-
rnents in Table I. Then using the mean-field expression
for ( b ), (A4) becomes
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doping of the oxygen energy in (A5) relative to the no of
the isotropic Anderson-lattice model, the sum rule for the
three-band model (A5) increases rather slowly with dop-
ing (see Fig. 8).

Expression of N/I in terms of a plasma frequency re-
quires introduction of a background dielectric constant
eo. Then co =4~e Eo 'e '%/ma, where c is the inter-
planar spacing. e„ is taken to be 4.
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