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Electronic structure and correlations of high-temperature superconducting compounds
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Calculations on negatively charged planar Cu„O clusters are reported. Starting from a self-
consistent-field calculation within a good Gaussian-type-orbital basis set, correlations are included
using the local ansatz. A charge analysis reveals a Cu 3d occupation in close agreement with calcu-
lations in the local-density approximation. The electrons in the formal Cu +„0 entities are
delocalized between Cu and 0 sites and strongly correlated. Our findings do not agree with the as-
sumption of localized Cu + spins which is often made in models for these compounds. Spin correla-
tions indicate strong short-range antiferromagnetic order even if electrons are removed. For them,
there is no difference between 0 and Cu sites.

I. INTRODUCTION

A detailed understanding of the electronic structure of
the novel high-T, superconductors is of prime impor-
tance. It is generally accepted that such an understand-
ing is needed for the quantitative description of these
compounds' superconductivity; moreover, there are also
many speculations that this understanding would reveal a
new electronic mechanism for superconductivity.

In the beginning of such investigations even the repul-
sive interaction in a single-band Hubbard model was
transferred into a short-range attraction. ' It could be
demonstrated on a simple model that such a transfer oc-
curred incorrectly as an artifact due to the approximate
treatment of the conditional hopping, while the interac-
tion remained repulsive in a correct treatment. Lately
more elaborate models have been favored in which delo-
calized electrons interact with localized spins on the Cu
atoms, leading to effective attractions and/or nonfer-
mion statistics, and eventually to a new mechanism of su-
perconductivity. Such speculations are based on the
claim that the Cu 3d occupation nd is very close to
n„=9.

The only ab initio calculations performed for solids,
however, that have been done within the local-density ap-
proximation (LDA) led to occupations nd=9. 4. They
gave a fair description of lattice vibrations, but could not
account for the magnetic properties of these systems.
Therefore, especially the resulting 3d-orbital occupations
have been questioned. Constrained LDA calculations
have been performed in which specific partial charges on
the Cu and 0 positions were frozen. ' The charge distri-
butions of model Hamiltonians built with parameters ex-
tracted from these constrained computations led to the
values nd =9.2. '

For small clusters, ab initio calculations have been per-
formed in computations not restricted to LDA. A first
example was a set of generalized valence-bond calcula-
tions that can be understood as an ah initio self-
consistent-field (SCF) calculation including a minimal
amount of correlation degrees of freedom. These compu-
tations, performed in a rather poor basis, gave Cu 3d oc-

cupations of roughly nd =9.0. More recently, more ex-
tended but still very much simplified correlation calcula-
tions with use of better basis sets have been published,
but no charge analysis has been made. '

The aim of this paper is to report on some ab initio cal-
culations for (Cu 0„) clusters. It will be demonstrated
that with them conclusive results for charge distributions
and details of short-range correlations are obtained. In
order to fullfill this aim, those calculations are done
within good basis sets of Gaussian orbitals. Details of the
choice of clusters, basis sets, and pseudopotentials used
are given in Sec. II. While the SCF calculations could be
performed by standard quantum-chemistry (QC) pro-
grams, the subsequent correlation calculations were per-
formed within the local ansatz. " This approach com-
pares with standard QC correlation schemes in quality,
but allows a much more efficient treatment of many-body
effects as well as a detailed representation of electronic
correlations. Its quality and applicability have been
demonstrated on many computations for molecules"'
and solids. ' ' Here the ansatz is used in a form gen-
eralized by one-particle corrections so that charge distri-
butions may be modified as compared with the SCF corn-
putations. This guarantees an optimal charge distribu-
tion of the correlated ground state. The correlation
scheme is introduced in Sec. III. Section IV contains the
results of the different calculations. First, charge distri-
butions and their dependencies on the details of the
choice of the clusters are discussed. Next, the strength of
the detailed correlations is presented. Finally, a detailed
discussion of the spin correlations is given. Section V
contains a comparison of all these ab initio results to re-
sults of LDA computations and of speculative models as
well as to experimental findings.

Parts of this work have already been published in a
short note.

II. CHOICE OI" CLUSTERS, BASIS SETS,
AND PSEUDOPOTENTIALS

The actual calculations were performed for almost pla-
nar Cu04, Cu207, Cu30&o, and Cu40&3 clusters. They are
formally described as linear (Cu03)„O chains. The atom-
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ic positions were chosen so that they represent a part of
the buckled CuQz plains in YBa2Cu307. ' The largest
cluster is schematically drawn in Fig. 1. The charges of
clusters were chosen to be ( —2 —4n). This corresponds
to a formal charge of +2 for each Cu and of —2 for each
0 atom, representing the so-called half-filled case for the
crystal with one hole per Cu atom. In addition, a few cal-
culations with one less electron were done. The situation
with one less electron corresponds to the existence of ad-
ditional holes in the crystal case. In order to pet stable
results for these highly negatively charged clusters, the
positively charged environment needed to be included ex-
plicitly. The surrounding was approximated by point
charges on all neighbor atom positions. The values were
chosen so that the total cluster was neutral. Figure 2
gives such a typical surrounding for the smallest cluster
treated here. The positions of the point charges were
chosen according to the crystal structure of
YBa2Cu307. ' For the smallest cluster [Fig. 2(b)], point
charges of +0.6 for Y, +0.4 for Ba, +0.25 for the in-
plane Cu, +0.4 for out-of-plane Cu, and —0.4 for 0 were
chosen. As is usually done when Madelung sums are
computed, we restricted to those part of the charges on
the environment atoms which keep the cluster neutral.
Therefore, for larger clusters, larger point charges (espe-
cially for Y and Ba) were chosen. It was found that the
charge distribution between the Cu 3d orbitals and the 0
2p orbitals did not depend sensitively on different point
charges, and that nearest-neighbor point charges as the
upper 0 atoms in Fig. 2(b) had no influence on the elec-
tronic properties of the cluster. Actually, it turned out
that the largest error of this approximate treatment of the
out-of-plane environment is connected with the 0 atoms
below the planar Cu positions. Here a few tests were
made for the cluster with two Cu atoms. The point
charges on these 0 positions were replaced first by Na
pseudopotentials to roughly reproduce the effects of the
electrons on them. As value for the core charge on this
pseudopotential, the original value of the 0 point charge
was taken. Next, the electrons on these atoms were ex-
plicitly included.

Pseudopotentials were chosen that include for Cu the
3s and 3p states' and for 0 the 1s state. A test was
made by alternatively using a 2s, 2p pseudopotential for
Cu"

For the valence shell of 0, a double-g basis set was
chosen, while for the 3d orbitals of Cu an extended
triple-g basis set was taken. ' It turned out that the re-
sults depended strongly on a good choice of the 3d basis
set. The 4s and 4p states were added in different basis
sets. Here severe restrictions needed to be made. In gen-
eral, an artifact of such a negatively charged cluster com-
putation is that the electrons are pushed to the surface,
since the pressure of the outside electrons is missing.
With diffuse basis orbitals available, the electrons would
populate these, because the upper occupied eigenstates in
our computations turned out to be not bound in a SCF
approximation. 1o avoid such an effect, the basis orbitals
for the 4s and 4p orbitals of Cu were restricted to usually
only a single contracted orbital each. Part of the compu-
tations were done without any of these orbitals. The de-

FIG. 1. Schematic representation of the largest cluster
(Cu40)3) for which computations were done. Solid circles
represent Cu atoms, while open circles represent 0 atoms.

tailed basis sets are represented in Table I. The basis di-
mensions for these calculations were large. For the big-
gest cluster they amounted to 155, thus requiring the ex-
tensive use of pseudopotentials as they have been intro-
duced above.

III. TREATMENT OF CORRELATIONS
BYTHE LOCAL ANSATZ

The SCF calculations for the clusters as defined above
were performed with the Karlsruhe version of the
Columbus program package. The correlation calcula-
tions were performed with the local ansatz. " Here the
following variational ansatz is made for the correlated
ground state

~ 4, ):
/e, )=e
S=gg 0 (2)

0V S ~ 3I J

The n,. and 8,. are density and spin operators for an elec-
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FIG. 2. Schematic drawing of the surrounding of the smallest
cluster as treated here in comparison to the experimental struc-
ture of Ref. 18. Here open circles represent Cu atoms, while
solid circles represent 0 atoms.
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tron in the local state

b; =gy, ,a,
j

where the a;~ represent the basis orbitals. The operators
have a transparent meaning. The first operator n;&n;&,
for example, when applied to

~ %sc„), picks out all
configurations with two electrons in the orbital g;(r).
When applied with a variational parameter g, as in Eq.
(2), it partially suppresses those configurations. Similarly,
the operators n; n. introduce density correlations between
electrons in local orbitals g,.(r) and g (r). The wave func-
tion with these two sets of operators, when chosen for the

TABLE I. Basis sets for Cu and O.

Basis set for Cu atom with Ar-core
pseudo potential: {6s 5p 6d ) /[2s 2p 3d ]

Function type Exponent Contraction Atomic orbitals
coe%cient

homogeneous electron-gas problem, is the Jastrow func-
tion. ' The operators s; s. generate spin correlations.
The last operator n; has been newly added to the compu-
tation scheme. It allows one to change the charge dis-
tribution explicitly as compared with ~'Psc„). All opera-
tors, when applied to ~%'sc„), create states which are not
orthogonal to ~%sc„). Besides, the two-particle opera-
tors do include one-particle excitations in addition to the
two-particle excitations out of ~%'scF). We want to keep
only the two-particle excitations for the two-particle
operators and the one-particle excitations for the opera-
tors n;. Therefore, we require that contractions within
the operators are forbidden when expectation values are
computed. The two-particle operators have then the
meaning of reducing fiuctuations in

~ %sc„), while the
one-particle operators guarantee an adjustment of charge.

The variational parameters g are chosen so that the
energy

s) 13.738 10900 0.224 265 40
2.208 020 30 —0.732 766 00
0.848 466 10 —0.401 078 00 0.1996

is optimized. Such a computation cannot be performed
exactly. The standard approximation is an expansion in
powers of q, e.g.,

$2 0.920 522 75 —0.097 11730
0.102 556 37 0.561 040 80
0.036 490 45 0.519 203 10 1.0000

ESCF +Ecorr

E„„=—2+ ii (O„H)+g il il„(o Ho„), . (7)

d2

d3

5.994 236 00
2.536 875 00

0.246 450 00
0.792 024 00

0.920 522 75 —0.097 11730
0.102 556 37 0.561 040 80
0.036 490 45 0.519203 10

41.225 006 00
12.343 250 00
4.201 920 00
1.379 825 00

0.044 694 00
0.212 10600
0.453 423 00
0.533 465 00

0.383 450 00 1.000 000 00

0.100000 00 1.000 000 00

—0.5686

1.0000

1.0000

0.4159

—0.1283

Here ( A ) means the expectation value of A within
~ VscF ) . The subscript ( ), indicates that only connect-
ed diagram contributions are added. This approxima-
tion works only if the correlations are sufficiently weak.
For stronger correlations, it is restricted to cases where
the low concentration limit applies; i.e., the occupation of
the states ( n; ) used for the operators is either close to 0
or close to 1. To test whether for the computations per-
formed here the results of this approximation are reason-
able, a few computations were repeated within another
approximation. In it,

~ 4, ) is approximated by

S)

Basis set for 0 atom with He-core
pseudopotential: ( 3s 7p) /[ ls 2p]

Function type Exponent Contraction
coeScient

—0.147 200 00
0.649 700 00
0.466 400 00

but the expectation value of this variational state is com-
puted exactly. This is a so-called configuration interac-
tion (CI) ansatz. For its energy, it holds that

Pj 26.967 1370
8.333 864 9
4.766 000 0
2.981 165 4
1.128 403 1

0.421 673 7
0.150 590 5

0.017 206 40
0.075 084 60
0.083 000 00
0.072 276 20
0.372 558 30

0.398 584 20
0.183 206 00

1.000

0.2788

As a variational ansatz, the total energy is always an
upper limit to the exact energy. Such an ansatz is exact
for a two-electron (or two-hole) problem, but fails for
large systems due to its size inconsistency. However, this
approximation enables one to compare the results of Eq.
(7) with that of Eq. (9) for small clusters under specific
constraints and so to get information about the validity of
the energy expansion.

So far, everything except the local states [Eq. (4)] is
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fixed. A first choice within this treatment is to restrict
ourselves to so-called interatomic correlations. With
this, correlations are meant that arise due to bonding.
They are expressed by the above operators when as local
states the atomic orbitals are chosen. The atomic orbitals
are obtained in the following way. They are deduced
from the occupied molecular orbitals by separating these
into the individual basis orbital contributions on each
atom. An average is then made for each of the atomic or-
bitals which represent the 2s, 2p states of 0 and the
3d, 4s, 4p states of Cu. Finally, these atomic orbitals are
orthogonalized. This procedure is made in two steps.
First, the 3d, 2s, and 2p orbitals are Lowdin orthogonal-
ized onto each other. Then the 4s and 4p states are or-
thogonalized to them and among each other. This pro-
cedure was chosen to have a better comparison for
different calculations. Roughly 99%%uo of the total elec-
tronic charge is covered by these states so that they are
well suited for a charge distribution analysis.

We have done more detailed calculations for these
clusters and included shorter-range intra-atomic correla-
tions as well as longer-range polarization or breathing
corrections. In both cases, additional local states were
generated. With one exception, none of these additions
changed sizably any of the results which we will discuss.
Therefore, we will restrict ourselves in the following to
the results of the interatomic correlation calculations.

When restricted to interatomic correlations, only
atomic orbitals play a role. When contributions of the
Cu 4s and 4p states are neglected for the moment, then
for the 2-Cu cluster only two electrons are lacking as
compared with a complete filling of the 3d and 2p shells.
The correlation treatment within the one-particle space
of these atomic orbitals can therefore be seen as a two-
hole problem. Thus it is exactly solvable by a CI compu-
tation as defined above. From this 2-Cu computation, we
gain information about the validity of Eq. (7). The com-
putations for the 3-Cu or 4-Cu clusters cannot be per-
formed exactly anymore because up to four-particle exci-
tation operators would be needed.

+y q.q„(a.n,.O„), . (10)

Here we have averaged over different Cu occupations and
over different 0 occupations within the CuO chain, 0„
and the out-of-chain positions, 0, . As can be seen, the
electrons in this strongly negatively charged system
prefer to stay on the outer 0 atoms whose orbitals are al-
most completely occupied. For the cluster with a single
Cu atom, this leads to a Cu 3d 2 2 occupation close to
1. As soon as inner 0 positions are available, however,
their occupation reduces strongly, leading to an average
Cu 3d 2 2 occupation of roughly 1.66 in the SCF ap-x —y
proximation and of 1.57 in the correlated case. The effect
of correlations on the charge distribution is apparently
small. For an ideal planar (CuOz)„system, this implies a
2pb charge on 0 of —1.66 or —1.72, respectively. Our
finite clusters have relatively more 0 atoms than required
in the ideal case. This defect is compensated, however,
by the fact that most of the 0 atoms in the finite clusters
are on the outside positions and are therefore strongly
negative charged. Indeed, the average charge in the 2pb
orbitals of the 0, atoms is close to this ideal limit for the
largest cluster, as seen in Table II. The correlation calcu-
lations could only be performed for those cases where
there was an even number of electrons in the respective
cluster (this corresponds to a so-called closed-shell sys-
tem). Because of the same restriction, no computation of
a quadratic cluster with four Cu atoms could be per-
formed. There, a fourfold-degenerate level is occupied
with two electrons only.

The small change in charge distributions due to corre-
lations seems surprising at a first glance. In this context,

pansion. Similarly as the energy, the charge distributions
of the correlated ground states were obtained by an ex-
pansion

(e, ln;. le, )=(n; ) —2gg (O n; )

IV. RESULTS OF CLUSTER COMPUTATIONS

A. Charge distributions

Of prime interest is the distribution of the electronic
charge onto the atomic orbitals. In these clusters, the 2p
and 3d shells are almost completely filled. First, results
of calculations will be presented in which no basis orbit-
als for the Cu 4s and 4p atomic orbitals were included.
Under such conditions, all atomic 3d and 2p orbitals are
completely filled except the 3d 2 2 orbitals on Cu andx —y
the 2p orbitals in Cu direction on the 0 atoms (p„). As
mentioned above, roughly 1/o of the total charge is lost
when described in terms of the atomic orbitals. Complete
filling means, therefore, filling up to 1%. Table II
represents the electronic charge distribution within those
orbitals which are not completely filled for different clus-
ter sizes and hole occupations in the SCF approximation
and with interatomic correlations added. The values for
the correlated cases were obtained using the energy ex-

Cud2x —y

SCF
1.09
0.88
1.61
1.60
1.53
1.66

Correlated
1.0
1.47
1.44
1.57

0 pb

1.95
1.76
1.71
1.68
1.55
1.62

1.73
1.76
1.59
1.62

0, pb

1.95
1.76
1.86
1.90
1.88
1.83

1.73
1.88
1.90
1.94

TABLE II. Average occupations of the 3d 2 ~ atomic orbit-
X

als on Cu and the 2pb atomic orbitals on the 0 atoms within the
CuO chain (0, ) and on the outside positions (0, ) for diFerent
(Cu„03 +]) clusters and diFerent hole numbers nI, in the SCF
approximation and with correlations included.
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it is important to note that the dominant scale of energy
is the total d- and p-band width for the solid or level
spacing of the corresponding molecular-orbital energies,
respectively. Without contributions due to the nonlocal
exchange, this scale is of the order of 10 eV. It must be
compared with defects of the Hartree-Fock (HF) approxi-
mation. In the HF approximation, too large charge Auc-
tuations occur. An error in the charge distributions
arises when these Auctuations cause different costs at
different atoms. The difference in the bare atomic
Coulomb energies on Cu and 0 sites is, however, smaller
than S eV and should not lead to drastically modified
charge distributions. It is easy to understand why SCF
calculations have a trend to overestimate the population
of the Cu 3d orbitals. These orbitals are less filled than 0
2p orbitals. In the SCF approximation, Auctuations ap-
pear that rise quadratically with the number of electrons
(holes) and are largest for half-filling. Taking charges out
of the 0 2p orbitals and putting them into Cu 3d orbitals
reduces these artificial fluctuations on the Cu sites more
than it increases them on the 0 sites. The energy gained
this way in the SCF approximation causes a small charge
redistribution.

Short-range correlations which have not been included
in the interatomic correlation calculations should more
effectively correlate electrons in d orbitals due to the
higher density there and lead to an increase in the d-
orbital population. Such trends could be seen when add-
ing intra-atomic operators, but they led to very small
corrections only.

For the 2-Cu cluster, a few extended computations
were done. First, the 0 point charges on top of the Cu
positions were replaced by Na pseudopotentials. This did
not lead to changes of the atomic charge distributions
that amounted to more than 1'Fo. Second, the electrons
on these atoms were included explicitly. The charge of
the resulting cluster was again chosen so that it corre-
sponded to a formal 0 and Cu + filling. It turned out
that all additional electrons populated the added 0
atoms, leading to a charge of 2 on each of them. There
was a small redistribution of charge in the planar orbit-
als. The occupation of the atomic d 2 2 orbitals re-

x —y
duced by 0.06 in the SCF approximation and by 0.10 with
correlations included. Within the SCF computation, this
charge went to the outside 0 atoms. With correlations
added, half of the electron loss of the Cu atoms was
recovered in the 0 atoms of the central chain (0.04 on
each of them). When assuming that all the other environ-

mental efFects may lead to corrections of similar magni-
tude, then the following charge distribution arises: Cu
3d'2 —+2', 0 2p&

— . Within a final computation, 4s
and 4p orbitals on the Cu atoms were added. These or-
bitals are weakly occupied. The 4s occupation is 0.2, the
4p occupation 0.1. This charge is taken from the so far
completely occupied orbitals 3d 2 whose occupation
reduces to 1.9, further from the 0 2pb orbitals whose
average charge reduces by 0.03 and with minor contribu-
tions from all other orbitals. The 3d 2 & occupation is

not sizably changed. This leads to a final occupation of
Cu 3d —' 4s 4p ' and 0 2pb

— '. These data are
given in Table III in detail.

The partial occupations displayed in Table II contain
information where electrons originate from when they
are taken out of the half-filled systems. These charge dis-
tributions are determined by comparing the SCF results
for the clusters with one and three Cu atoms each with
different numbers of holes. As can be seen, 20% of the
charge removed originate in both cases from the Cu
atoms, while 80%%uo come from the 0 atoms. Correlations
do not lead to changes in this ratio. Their inAuence can-
not be computed directly, but is estimated indirectly by
comparing the 3-Cu four-hole state with the 4-Cu four-
hole state. In both cases, correlations lead to almost ex-
actly the same changes in occupation as compared with
the SCF results. From these cluster calculations, it is
concluded that electrons when taken from the so-called
half-filled system originate dominantly from the 0 atoms.

B. Correlation strength

Having determined the charge distributions, the next
step is to obtain the strength of correlations (X). This
correlation strength gives the relative reduction of charge
Auctuations in the correlated ground state for an atomic
orbital i with occupation n;. n, represents the density
operator for this state. The fluctuation of occupations
can be given easily for two limiting cases. The first is the
uncorrelated case. Then it holds for the Auctuations at
site i that

( (bn;) ~)=2X 1—
2 2

with n; = (n; ). The second is the completely correlated
case (4„). In this case there exist only fiuctuations due
to variations in charge in between the two integer occu-

TABLE III. Average charge distributions obtained within diff'erent basis sets and environments.

Without 4s,4p orbitals,
without out-of-plane atoms

Without 4s,4p orbitals,
with out-of-plane atoms

With 4s,4p orbitals,
and with out-of-plane atoms

3d- -"
1.57

1.47

1.47

3d.2

2.0

2.0

1.90

4s

0.0

0.0

0.2

4p

0.0

0.1

0
2p

5.72

5.67
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pations encircling n;, with n; =(4'„~n, ~%'„). When as-
suming that n; is in between 1 and 2, it then holds that

n,.(%„~(«;) ~%'„)=2(n; —1) 1—

TABLE IV. Correlation strength X for electrons in the
d 2 2 atomic orbitals on Cu and in the bonding pb orbitals on

X

0 in the chain direction (0, ) or outside positions (0, ) for
different (Cu„03„+&) clusters and specific hole numbers n&,
when restricted to interatomic correlations.

+gp p„(O («;) 0„), , (13)

For the actual correlated states, the charge fluctuation is
numerically computed in analogy to the density [Eq. (10)]

(4, (bn;) ~'P, ) = ((«;) ) —2g r) (0,(«; ) ),

Cu d 2x —
y

0.50
0.84
0.84+0.08
0.88+0.09

0. pb

0.79
0.76
0.64+0.06
0.72+0.07

O. pb

0.79
0.97
0.88+0.09
0.81+0.08

when performing a computation using the variational ex-
pansion, or with additional corrections when performing
a CI computation. The correlation strength as the rela-
tive reduction of the actual Auctuations compared with
the limiting cases is then defined as

(~, I(«, )'l~, ) —((~~, )')
X=

('e„~(«;) ~'u„) —((An;) )
(14)

The correlation strength defined this way gives a direct
measure of the reduction of unfavorable occupations, i.e,
for n; in between 1 and 2 the contributions with zero oc-
cupation. Be aware that usually the occupation n; is
different for a correlated and an uncorrelated ground
state. The correlation strength is in this case meaningful
only when comparing the fluctuations with those of a
fictitious uncorrelated state and a similar com.pletely
correlated state with the same occupation as in the corre-
lated state. Table IV gives the correlation strength for
the d 2 2 and pb orbitals for different clusters, averaged
over different positions within each cluster calculated.

Although the electrons in the partially filled 3d &

2pb band are strongly fluctuating, as can be seen from the
charge distribution, they are strongly correlated. The
probability of finding a Cu d occupation is reduced by
typically 85%, and the one to find an 0 2p occupation is
reduced by 75% as compared with the uncorrelated case.
These values were obtained with an uncertainty of 10%.
Because of the specific definition of the correlation
strength, the latter depends on the actual occupation. It
is weakest when the corresponding orbital is half-filled.
A typical example is the cluster with one Cu atom and
two holes. From the latter result, it may be concluded
that interactions and band energy contributions are of
comparable size.

At this point, it seems necessary to explain why we
were able to handle the correlation calculations although
the electrons are strongly correlated. As explained
above, a trial correlation calculation for a 2-Cu cluster
omitting 4s and 4p orbitals and restricted to operators
covering d 2 2 and pb states may serve as a test case.x —y
Here it turned out that the correlation energy as obtained
from Eq. (7) was only 10% larger than the one obtained
from Eq. (9). This leads to values for q which are in the
average 10%%uo larger, too. The correlation strength from
the variational expansion was 25% larger as the exact
one from the CI calculation, 10% originating from the
larger g, and the remaining part originating from an ad-

ditional renormalization due to the denominator. The
reason for the small deviations is the following. The
d 2 2 as well as the pb states each are far from half-

x —y
filled. For the extreme limit of almost completely filled
bands, the variational expansion [Eq. (7)] contains all
dominating highest-order terms in the hole concentra-
tion, i.e., all relevant contributions to a Kanamori t-
matrix representation in the subspace of correlation
operators included here. For the actual case, the devia-
tions of all orbitals from complete filling is not so large
that the correlation calculations may run into problems.
A large system with half-filled orbitals and a correlation
strength as found for the only case where the Cu d 2x —y
orbital is half-filled, namely, the 1-Cu two-hole cluster
could eventually not be handled anymore by Eq. (7). It
should be pointed out that the shortcomings of the varia-
tional expansion [Eq. (7)] always lead to an overestimate
of the correlation energies and correlation strength.

When dealing with the two four-hole cases, it turned
out that the energies of the two calculations differed by
25%. It is plausible to assume that as for the 2-Cu clus-
ter, 10% originate from the overestimate of Eq. (7), while
15% originate from the lack of size consistency of the CI
calculation, i.e., the lack of four-particle excitations in
Eq. (8). The correlation strength within the variational
expansion was twice as large as in the CI result. A
reasonable estimate for a correction of the variational ex-
pansion results is to compute it with g that are reduced
by 10% and add a further correction of 20% in analogy
to the 2-Cu cluster. These corrections are chosen with an
uncertainty of +10%. While a change of 10%%uo for the q„
plays no role for the small charge redistribution, and
Table II contains the values obtained by variational ex-
pansion, for the correlation strength such a more careful
handling was necessary. The direct results of a variation-
al expansion gave sometimes values very close to 100%
and even larger than that. For these larger clusters,
Table IV contains values of the variational expansion
[Eq. (7)] but reduced by 30% as discussed before.

Although the electrons are strongly correlated, they
cannot be seen as localized spins. Since occupations are
far from integer values, the strongly correlated electrons
have kept more than half of their band energy. They are
still delocalized, and occupations are strongly fluctuating.

This correlation strength turned out to depend some-
what on further details of the correlation calculations.
We went beyond a correlation treatment with atomic or-



43 ELECTRONIC STRUCTURE AND CORRELATIONS OF HIGH-. . . 3071

bitals only. First, an attempt was made to include intra-
atomic correlations for the individual atoms. With
intra-atomic correlations, shorter than atomic range
correlations can be included so that, for example, two
electrons on the same atom can stay away from each oth-
er. Because of shortcomings of the double- (triple-) g
basis, the correlation energy obtained should amount to
only 30% of the total intra-atomic correlation energy ob-
tainable in a fictitious complete basis. These corrections
should effectively reduce the atomic interactions and
should allow for increased fluctuations. The correspond-
ing correlation strength, however, decreased only by in
between l%%uo and 3%%uo.

Next, explicit density correlations between (orthogo-
nalized and alternatively unorthogonalized) 3d and 4s
and 4p orbitals on Cu were included. This way screening
of 3d fiuctuations due to 4s and 4p occupations can be
modeled. Such an effect has been proposed for transition
metals by Herring and is thought to strongly reduce the
effective d-d electronic interactions there. Here it leads
to a reduction of the correlation strength of only 5%. Fi-
nally, for the Cu atoms, the eventual screening due to po-
larization of the neighboring 0 atoms has been investi-
gated. For this purpose, a set of additional polarization
functions on the O sites within the planes has been in-
cluded. This led to sizable corrections of the order of
15%. Additional contributions of similar magnitude are
expected from the out-of-plane 0 atoms. Restriction to
atomic correlations, therefore, overestimates the correla-
tion strength by probably 25 —30% for Cu.

weaker ferromagnetic correlation, and then again antifer-
romagnetic correlations arise to more distant atomic or-
bitals. There is no difference in this ordering with respect
to 0 or Cu positions. These findings indicate that the
four holes —although very mobile —develop a strong
short-range antiferromagnetic order. When switching to
the four-hole 3-Cu atom case (Fig. 4), it can be seen that
this correlation pattern stays qualitatively the same.
However, the length scale of the antiferromagnetic order
contracts. Figure 5 contains selected examples of the two
earlier figures to facilitate this comparison. Here, the
spin-correlation functions for gz=gsc„are added, too.
They represent only the autocorrelation functions or ex-
change holes of the delocalized electrons. This whole
correlation pattern can best be understood by a picture of
electrons (or holes) delocalized over Cu and 0 atomic or-
bitals which show strong short-range (itinerant) order,
but are compressible.

The spin correlations caused another problem, howev-
er. While on-site correlations as well as density correla-
tions could be computed with an uncertainty of only
10%, this did not hold true for spin correlations any
more. The energy gained when spin correlations were in-
cluded differed by a factor of 2 when computed within
the expansion [Eq. (7)] as compared to the CI computa-
tion [Eq .(9)]. The strength of the spin correlations can
therefore only be given with an uncertainty of 30%, after
having corrected the CI results for the well-known finite-

C. Spin correlations

Finally, we report on a specific correlation function in
terms of atomic orbitals, namely, the spin correlations
along the central chain in these clusters. Here we are re-
stricted to the discussion of the two systems with four
holes, i.e., the ones with four and three Cu atoms. We
are not able yet to correlate the three-hole cases, and the
two-hole cases would only give a description of the ex-
change hole. Actually, we compute the relative spin-
correlation functions between atomic orbitals. The diag-
onal terms are renormalized by the on-site autocorrela-
tion function of a spin in the correlated case:

(e~ s, s, ie )f ( %~ ((2 rt; ) IV~ & & +~ l(2 n. ) (%~ )

&e, [s, s, [e, )—5 (15)'
& +,(2—n; ) I +, & & +, I

(2—n, ) I +, &

The function f ' ' is given for the correlated state
(%'&=4, ) in Figs. 3 and 4. These spin-correlation func-
tions are first discussed for the 4-Cu cluster in Fig. 3.
They are drawn with the one index i fixed to the 0 sites
as well as to the Cu sites. As can be seen, a strong anti-
ferromagnetic correlation pattern develops. It has been
discussed above that the on-site correlation is almost per-
fect. Here there is further evidence of a nearest-neighbor
repulsion, leading to nearest-neighbor values slightly re-
duced from the uncorrelated limit. Strong antiferromag-
netic correlations build up to the next-nearest-neighbors,
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FICx. 3. Spin-correlation functions f, [Eq. (15)] for the corr"e-

lated ground state of the 4-Cu cluster, with one index i fixed (a)
to the central 0 atom, (c) to an out-of-center, and (e) to an outer
0 atom, as well as to (b) inner and (d) outer Cu atoms within the
central chain.
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size-effect contributions and the variational expansion re-
sults for the overestimates known to be present for the
other operators. This deficiency can be understood in the
following fashion: The spin correlations show strong ten-
dencies for ordering in what corresponds to the upper
half-filled band in these clusters, i.e., ordering in the delo-
calized Wanier orbitals built by an antibonding superpo-
sition of Cu d 2 2 and G p& atomic orbitals. We will in-

vestigate whether these correlations features can be ex-
plained by a model Hamiltonian for these (delocalized)
Wanier orbitals which contains as the only interaction a
diagonal Hubbard interaction, i.e., by a single-band Hub-
bard model.

V. COMPARISON WITH EXPERIMENTS
AND OTHER COMPUTATIONS
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Within Sec. IV, we have collected a set of ground-state
data for (CuO) clusters that should be of significance for
the high-temperature superconducting materials. None
of the ground-state properties obtained for these
clusters —charge distributions, correlation strength, and
equal-time spin-correlation functions —can at present be
measured directly. A few indirect comparisons can be
made, however. The first is the experimental magnetic
moment, found for these compounds. Neutron scattering
indicates that it should be described mostly by Cu 3d con-
tributions and that its magnitude is (0.4—0.6)pz within
the Cu planes. ' We did not obtain any information
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FIG. 4. Spin-correlation functions f;, [Eq. (15)] for the corre-
lated ground state of the 3-Cu cluster (four holes), with one in-
dex i fixed (a) to the central and (c) to an outer Cu atom and to
the (b) inner and (d) outer 0 atoms within the central chain.

FIG. 5. Spin-correlation functions fJ [Eq. (15)] for the corre-
lated ground state (solid lines) and SCF ground state (dotted
lines) (a) and (b) of the 4-Cu cluster and (c) of the 3-Cu cluster.
Hereby, for the index i, positions (a) on an 0 atom and (b) and
(c) on Cu atoms were selected.

about an ordered state because we were restricted to
finite-size clusters. These computations show tendencies
for strong antiferromagnetic order, however. The rnaxi-
rnal moment that can be obtained for each Cu atom with
a 3d occupation of 9.4+0. 1 and a g value of 2.2 is
(0.67+0. 1)p~ and does not disagree with experiments.
Our results do not leave much space for reductions due to
spin fluctuations within the strongly anisotropic system,
though.

For the extreme limit of two dimensions, i.e., the
Heisenberg model, it is known that the moment deduced
from the long-range correIation function is reduced to
60%%u~ of its maximal value. While it is plausible to as-
sume that this value does not increase for two-
dirnensional itinerant electrons, the real system is not two
dimensional, but has a high transition temperature. A
three-dimensional coupling can be modeled by a stag-
gered field in a two-dimensional system. There are indi-
cations that already the limiting moment obtained when
a small field is added to the two-dimensional Heisenberg
model is not equivalent to the moment deduced from the
correlation function, ' but increases to 72% of the
maximal value. ' Nothing is known about the moment in
a staggered field that amounts to roughly 10% of the pla-
nar coupling as needed for the high transition ternpera-
ture. A reduction of the moment to 80% of its maximal
size would not lead to disagreement between our results
and experiment. Besides, the large moments measured
within the (1-2-3) compounds may partly originate from
0 positions, too.

As far as spin correlations are concerned, the equal-
time spin correlation found here should be obtained from
neutron-scattering experiments when integrating over en-
ergies up to an energy which corresponds to the band-
width of the upper half-filled band (i.e., roughly 1 eV).
Neutron-scattering experiments have been done, howev-
er, only for energies up to 0.02 eV. For a half-filled band
system above the magnetic transition temperatures and
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for non-half-filled systems, inelastic neutron scattering
was found that showed relatively sharp structures which
differed. While the former case could be connected with
large two-dimensional order parameter fluctuations, the
latter case could not be explained. There, the structures
seen in the momentum dependence of the scattering func-
tion S(q, co) were shifted with respect to q in dependence
of band filling and did not depend sizably on the energy
transfer. One might speculate that if there is no depen-
dence on energy up to energies of the order of 1 eV, these
structures might be explained by short-range order of the
kind as found here. As has been discussed above, the
length scale of this order does in fact depend on the num-
ber of holes.

Next, results of other computations shall be discussed.
LDA computations led to charge distributions in almost
perfect agreement with the values found here. In con-
trast, the values obtained by constrained LDA computa-
tions did not agree with our results. Therefore, it is
questionable whether constrained LDA offers any im-
provement as compared with the original LDA results.
There has been independent evidence justifying the origi-
nal LDA results. The first is the close agreement of pho-
non modes obtained by LDA frozen phonon calculations
for these compounds with experiments; ' the second is
the agreement with LDA results and experiments for nu-
clear electric-field gradients. There is further indirect
experimental evidence that the Cu 3d 2 2 occupation as

found here is correct. When fitting a model Hamiltonian
so that core spectroscopic data are reproduced, this is op-
timally done for n& =1.4. Photoemission experi-

2 2

ments do not give conclusive data about charge distribu-
tions. While they can be fitted by values of
n& = 1.1 —1.3, an interpretation using values of

~2 y2

n& = 1.4—1.5 works too. Inverse photoemission ex-

periments require unoccupied 3d 2 2 states. Thesex —y
states as well as the relation of unoccupied 3d 2 2 to
3d 2 states as found in experiments come out nicely in

the present calculations, too.
Finally, we turn to model Hamiltonians proposed in

the literature and discuss whether they offer a valid
description of the high-temperature superconductors.
Our findings indicate that a three-band Hubbard Hamil-
tonian can be taken as a good starting point for further
approximations. All electronic degrees of freedom which
are of relevance are covered by it. The charge analysis of
our ab initio calculation, however, indicates that the limit
which is often chosen for this Hamiltonian does not ap-
ply. Usually, it is assumed that the energy difference be-
tween a d '

p configuration and a d p configuration is
larger than the hopping, leading to a charge close to d
for Cu (or actually close to d'2, for the model). Ap-x —y
proximate models are therefore often constructed that
start from localized Cu spin and delocalized 0 holes. '

While these models may be extended to values
n& —1.2, they fail for charge distributions as found

~2 y2

here. Therefore, our results falsify all applications using
such models. A typical example is the claim of Aharony

et al. ' that there is a short-range frustration of magnetic
order between nearest-neighbor positions when electrons
are taken out of the half-filled system. As demonstrated
above, there is no frustration of short-range order due to
a change in occupation for the delocalized electrons.

These conclusions depend on a careful interpretation of
the complete spin-correlation functions. If one is restrict-
ed to correlation functions between the Cu sites only,
then one might obtain the false impression that there is a
frustration effect since these correlations decrease when a
hole is added. If one further looks at the correlation
pattern around a hole when it is on an 0 site, then the an-
tiferromagnetic correlation to each of the neighbor Cu
sites implies at least a tendency for ferromagnetism be-
tween them. This should not be interpreted as an indica-
tion for frustration either. The most simple counterargu-
ment is that these same correlations exist independent of
filling in the half-filled case, too. In the delocalized pic-
ture, it just means that next-nearest-neighbor holes have
ferromagnetic order, and that there is a finite probability
to have three holes in direct neighbor positions. Results
of three-band Hubbard models that, in fact, are in fair
agreement with our results should be interpreted this
way.

Partial information about charge distributions and
correlation strength have been obtained before from sem-
iempirical computations. Taking into account the un-
certainties connected with the choice of model Hamil-
tonian parameters for such methods, there is a fair agree-
ment with our ab initio values. Details of the correlations
were in good agreement with our ab initio results if the
charge distribution was chosen not too different from the
one found here.

Computations based on semiempirical schemes as well
as LDA data were done in order to understand the
dependence of magnetism on band filling in these com-
pounds. None of these attempts succeeded. Either the
magnetic moment was too small or the domain of stable
magnetism as function of band filling was too large.
Here our findings offer a solution, too. It is suggestive to
argue that a system with strong short-range spin correla-
tions like those found here will freeze very fast into an or-
dered state with large moment once the Stoner criterion
is fulfilled due to nesting conditions. The Stoner parame-
ter I(k) within such a criterion should depend sizably on
k and should be largest for a momentum k in agreement
with the intrinsic short-range order. In none of the com-
putations done so far were short-range spin correlations
added. Therefore, no Stoner parameter was used that
really depended on k.

To conclude, we have presented detailed information
about the electronic structure of high-temperature super-
conducting compounds. We did not contribute directly
to the explanation of high-temperature superconductivi-
ty, but eliminated a few speculative models that were
built with the specific aim to lead to a new and exotic
mechanism for superconductivity. Our results will hope-
fully improve the detailed understanding of the electronic
properties of the novel materials and restrict speculations
in the future. They give a good example of how accurate-
ly ab initio computations can be performed today.
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