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The slope of the generalized Ginzburg-Landau parameter x2(7") at T is calculated in the clean
limit using Eliashberg’s strong-coupling theory. Fermi surfaces rotationally invariant about the
magnetic-field axis are considered, and specific results are presented for the spherical and the
cylindrical case. For a given Fermi surface, an upper bound on the normalized 2 slope is found
for a coupling strength T./(w) = 0.16, where {(w) is a characteristic frequency in the coupling
function. The maximum enhancement factor relative to the weak-coupling value is of the order
1.5. Finally, it is found that for very strong coupling, T./(w) X 0.4, the slope in k2 changes

sign.

I. INTRODUCTION

The equilibrium magnetization of a type-II supercon-
ductor is largely determined by four parameters: the
lower and upper critical fields, H., and H.,, the thermo-
dynamic critical field H., and the generalized Ginzburg-
Landau parameter k3. All these quantities display
characteristic temperature dependences, and they are
affected in distinct ways by material properties such
as the detailed band structure, impurity-scattering ef-
fects, and strong electron-phonon coupling. For con-
ventional type-II superconductors, these effects are be-
lieved to be at least qualitatively understood in the
framework of Gorkov’s! and Eilenberger’s? formulation
of the Bardeen-Cooper-Schrieffer (BCS) theory? in-
cluding strong-coupling effects (Eliashberg?). In most
cases, good agreement is found between theory and
experiment.®— 10

Out of the four quantities above, it appears that the
least amount of work has been devoted to the generalized
Ginzburg-Landau parameter k3. This parameter deter-
mines the slope of the magnetization curve at H.o, and
it is defined as follows:!!

H(T)— H

—47TM(H — HCQ,T) = W . (1)

Here M is the magnetization, H is the external magnetic
field, and B4 is a parameter which depends on the sym-
metry of the vortex lattice; we have f4= 1.16 (1.18) for
a triangular (square) lattice of flux lines. For anisotropic
superconductors, both H.s and k; may depend on the
orientation of the crystal with respect to the external
field. Furthermore, it should be mentioned that ac-
cording to Ginzburg-Landau theory, we have xo(T —
T:) = k, where k is the ordinary Ginzburg-Landau pa-
rameter. Following early work for limiting cases,!?2—14
Eilenberger!® calculated the full temperature dependence
of ko for arbitrary impurity-scattering times in the weak-
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coupling limit. Recently, these calculations were general-
ized to include strong-coupling effects in the framework of
Eliashberg’s theory.1® Also anisotropy effects were taken
into account within a simple model,'” and comparison
with experiments on transition metals was made.!°

The present work is motivated by a recent
measurement!® of ko (T') for the high-T, superconductor
YBayCu3zO7_;5 near T,. It was found in this experiment,
which was carried out on a polycrystal, that in the avail-
able regime (89-91.5 K), the temperature dependence of
K2 was much stronger than predicted by conventional the-
ories. In fact, the (asymptotic) normalized slope k) Tc/k
(the prime denotes derivative with respect to tempera-
ture, taken at T,) turned out to be about ten times larger
than expected for an isotropic, weak-coupling BCS super-
conductor. In view of this huge discrepancy it is desirable
to establish, within the BCS-Eliashberg model, an upper
bound on k% T./k for a layered superconductor with an
arbitrarily strong electron-phonon interaction. This is the
scope of the present work.

Since high-T, superconductors are believed to be in the
clean limit, we will neglect impurity-scattering effects in
the following [such effects reduce the temperature depen-
dence of k2 (Ref. 15)]. Furthermore, in order to simplify
the calculation, no anisotropies in the plane perpendic-
ular to the direction of the flux lines will be considered;
the appropriate experiment corresponding to the present
theory is therefore best realized for the case where the
applied field lies along the ¢ axis of a single crystal or a
sample consisting of oriented grains. Although the cal-
culations are valid for more general rotationally invari-
ant Fermi surfaces, specific results will only be given for
spherical and cylindrical Fermi surfaces.

II. UPPER CRITICAL FIELD

Since the first step in the theory of k2 involves the
calculation of the upper critical field H,.,, we will consider
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this quantity first. Using the notation of Ref. 16 the
clean-limit H., is given by the maximum field B such
that the eigenvalue equation

IZ A <(T0),> @

has a nontrivial solution. Here ¢t = T//T,, and magnetic
fields are measured in units of
he @ hvp

Ho=5om = With Ro=grp

= 0.882 &,
©)

where ®( is the flux quantum and &p is the clean-limit
BCS coherence length at zero temperature. (Hp is of the
order of the zero-temperature H., for a clean supercon-
ductor.) Furthermore, the abbreviation

A A I

with

Bsin?6
B =7
4(wy)

and

Icut

w) =w; +tZSnI:
n=0

has been used. The Matsubara frequencies w; are mea-
sured in units of wkgT,. The cut off I.,; for the Mat-
subara sums has to be chosen high enough such that the
results are independent of the cutoff. In the following,
lcut corresponds to ten times the cutoff in azF(w). The
real symmetric matrices

w,::t(21+1)

SA = Mwn — wi) + Mwn + wi) — 2", (5)

Sx1 = Mwn —wi) = Mwn +wi) (6)
with

A(w,)—Q/ dw £ ff:’:“’ (7)

contain information on the electron-phonon [Eliashberg
function a?F(w)] and the electron-electron (Coulomb
J

cut

Z( ml)(l)
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pseudopotential p*) interactions. Finally, the angular
brackets in Eq. (2) denote Fermi surface averages:

(g(&)) = { fo dé Sin0g(6)

(spherical FS)
9(7/2) ®

(cylindrical FS)

with 6 the angle between the direction of magnetic field
and quasiparticle momentum. Equation (2) in an equiva-
lent form was derived by Schossmann and Schachinger!®
(for earlier work see Werthamer and McMillan?® and
Eilenberger and Ambegaokar?!). Since we are interested
in the upper critical field near T, we expand Eq. (2) in
the small parameter

e=1-tkK1,
and neglect terms of higher than linear order in ¢. We
first obtain for (To);
Bsin® 6
202

Bsm 0

(To) = 2w 0)2 +0(*)=1-

+O(e?)

9)
with

Icu\

o =241+ (S5 .

n=0

Furthermore, the strong-coupling matrices take on the
following form:

1) + € ( (10)

)@+ e (SEHM + 0(2) (11)

where the zeroth- and first-order contributions are ob-
tained from Eqgs. (5) and (6) with

Awi) = XO(wy) + AD(wy) + O(e?). (12)
For A(®) and A(}) we obtain from Eq. (7)

o 2
©) () = _Fww
AP (wy) 2/0 dw pEwCTIE TR

Sa = (87 Sa® +0(e)

nl_(

?F(w) w

A (w) =4+ 17 [ do W@+ DT

The eigenvalue equation for H.;, Eq. (2), now takes on
the following simple form, valid for € < 1:

lcut a2
_ NS (Sa)® (sin” 0)
Xn = g - +e | Ga® ~ - ok = Xi, (13)

with b = B/e (corresponding to h.y = H.2/€) and
5 .
. 2, _ | 5 (spherical FS)
(sin0) = { 1 (cylindrical FS) . (14)

[
In physical units, the normalized upper critical field slope
is given by

H, T,

Hy (15)

h02:_‘
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Equation (13) can easily be solved numerically, and the
eigenvector, which will be needed in the next section for
the calculation of k2, can be written as

X, =X +ex(V, (16)

It is interesting to note that in the eigenvalue equation
Eq. (13), which determines k¢, both X and X" are
independent of the Fermi surface average; only the up-
per critical field slope h.s is affected. In particular, for
J

e )
By, = SO { 12/[7¢(3)] = 1.4261

7¢(3) 8/[7¢(3)] = 0.9507

Here {(n) is Riemann’s zeta function with
- =) (=Y (18)
2n T+

III. THE GENERALIZED GINZBURG-LANDAU
PARAMETER k.

The general expression for k, within Eliashberg’s the-
ory was derived recently.!® Since this result is the start-
ing point of the present calculation, we will reproduce the
necessary equations in the following. For a clean high-x
superconductor, we have

(2) _ﬂ 1 7C(3) {I(4,t,ch}
k8 ) T TA 9 [0Eo(t,He2)/8B)2’

(19)
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a cylindrical Fermi surface h.; is smaller by a factor
% than for a spherical Fermi surface with the same vp
and T.. This result is independent of the strength of
the electron-phonon coupling, and it is in very good nu-
merical agreement with the weak-coupling calculation of
Pint?2 for YBayCu3zO7_s in the limit T — T%. Finally, it
is straightforward to employ the weak-coupling approxi-
mation in Eq. (13). The eigenvalue problem reduces to
an algebraic equation for h.y, and we obtain

(spherical FS)
(cyhndrlcal FS) . an

where &% is the (fictitious) bare Ginzburg-Landau pa-
rameter for a clean, isotropic and weak-coupling super-
conductor:

77rc(3) (hvf)*

(’Cg)m2 (rkpT.)?’ (20)

Nb(O) (hc)

The corresponding dressed quantity xo is obtained in
terms of the dressed electronic density of states at the
Fermi level [N(0) = N®(0)(1+ A)] and the dressed Fermi
velocity [vp = v% /(1 + A)] as follows:

Ko = KD (14 A)¥/2.

Furthermore,

lcut 4
Kt He) = PO A 2 (((To)m (T1)m) + (B4 — 1) <,Zo( 1) ”é",jf f;"ff 2 >)
lcut X2X2
—"__'B.I_ZSEm]nIm_FIB — D Jn Im 21
2 Tt Sl I+ (B4 = 1) Jn I -

with
L= {(T)) (22)

and

D= <<(T1)1 + 2 (Ta) + 15’§(T5)1 4. >> .
(23)
Here

_ [ He wsin? 6 /[V3(w?)?]
n= { H., msin?0 /[2 (w?)lﬁ]

(triangular lattice)
(square lattice)

(24)

and

(T = /Ooo dt t' exp(—t — B t%). (25)

This integral can be solved analytically. Finally, we have

OEo(t, Hoy)  t &
— =3 Z

5B (sin? 8 (T);).

@ °>3 (26)

Our goal is to calculate the slope of k3 at T,.. Therefore,
we write

Ba_ k(T 2
= (1 . ) +0(?) (27)
F2_ 1_6'“2 +0(e2). (28)
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Here & is the ordinary (measurable) Ginzburg-Landau
parameter, which may be obtained from the identity
k = k3(T.). In order to calculate the ratio x/k for an
arbitrary rotationally invariant Fermi surface (FS) and
arbitrary electron-phonon coupling, we have to perform
the limit T — T in Eq. (19). Since in this limit (T;); — 1
and v; — 0, we obtain immediately

J. RAMMER

and

Yom = X322 X752 (Sfm)(0)~ (32)

Note that the ratio in Eq. (29) is independent of the sym-
metry of the vortex lattice, and that its weak-coupling
limit in the isotropic (cylindrical) case is given by k/kg =
1 (2). In performing this limit, Eq. (18) has been used.

In order to calculate the quantity k4T, /k [see Eq. (28)],

- s 2\ -1 1/2
£ _ Ka(t=1) - (sin? 0) (7((3) ) (29) Eq. (19) has to be expanded up to first order in €. Using
ko ko Xo3 18 the representation
with
2k
N eIy
Y = X43 — Z Yom, (30) k=0
n,m=0
_1—(z+2)'ﬂ-—0 +O() (33)
lcut . B (X(O))z
Xij =Y X§, Xi§=2+ (31)  for (T;)i, and expanding the numerator and the denomi-
n=0 n nator in Eq. (19) to first order in ¢, we finally obtain
J
cut ( ) lcut X(l) ( )
_ 43 n_ _ nm _
p [ZX ( X0~ T”) 2 Yom (4}}(0) BERNTERION B
n,m=0 n
—— Z ( XB XY - 3X2 r0,) + 2 - 4 (34)
with
lcut
=— SZ )W 35
. ZO( m) (35)
and
1
X X 31 N Y,
a2 25 Xa5 | da nm
Z = (sin” 6) heo (3:11 Xon v 5y n;_—o ——03 ) . (36)
Here
_ (sin*6) _ [6/5 (spherical FS) 97
T (sin?0)2 1 (cylindrical FS) (7
and

1— 27 0.16/(3v/3)(1.16) = 0.833
1— 7 0.18/(3)(1.18) = 0.838

o~

Several features in the final result Eq. (34) should be
emphasized. First, we notice that the information on
both the Fermi surface and the symmetry of the vortex
lattice enters only through the parameter Z. In fact,
since the product (sin® 8)h. is independent of the Fermi
surface [see Eq. (13)], the ratio Eq. (37) is the only rel-
evant anisotropy parameter for the normalized x2 slope.
A second observation concerns the effect of the vortex
lattice symmetry. The relevant parameter, ¢;, which is
defined in Eq. (38), takes on very similar values for the

it -2

/

Ko T,
K

(sin* )
(sin® 6)2

_ 62 ¢(5)
- 49¢%(3)

1.361
0.816

(

(triangular lattice)
(square lattice) .

(spherical FS)

(38)

two symmetries considered. Furthermore, since the ma-
trix elements Y,,, become very small for weak-coupling
superconductors, the effect of the lattice symmetry on
the 4 slope drops out in the weak-coupling limit. [Note,
however, that according to Eq. (1), the magnetization
near H,., is still slightly affected by the lattice symme-
try.]

Using Eq. (17) for the weak-coupling H.q, as well as
Eq. (18), the weak-coupling approximation in Eq. (34)
may be performed. One obtains

cylindrical FS). (39)
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This result can be compared with previous work. We
find numerical agreement both with Neumann and
Tewordt’s'3 isotropic weak-coupling result, and with the
extrapolated value obtained by Rammer and Pesch!?
in the cylinder symmetrical case. The general form
of Eq. (39) also allows one to establish a lower limit
on —«k4y T,/k for a weak-coupling superconductor with
an arbitrary rotationally invariant Fermi surface: since
(sin® ) /(sin?0)2 > 1, the lower limit is obtained for the
cylindrical Fermi surface.

IV. DISCUSSION

Equation (34) represents the final result of this work.
In this equation, the normalized slope of k, at T,
—k4 T, /K, is explicitly written in terms of the solution
of the eigenvalue equation Eq. (13), with X and xV
given by Eq. (16). The calculation of the normalized
k9 slope for an arbitrary electron-phonon interaction and
(rotationally invariant) Fermi surface is therefore reduced
to a standard numerical problem, which can be solved
with little computational effort. In this section, typical
results will be presented.

In view of the experimental situation described in the
Introduction, we are mainly interested in establishing an
upper bound on —«% T./k within Eliashberg’s theory.
Since the optimum choice for the electron-phonon cou-
pling function a? F(w) for calculating upper bounds is a §
function?3~ 2% (“Einstein spectrum”), we will restrict our-
selves to this special case in the following numerical inves-
tigation. Furthermore, it is known that results based on
an Einstein spectrum are representative of other classes
of spectra as well; the essential parameter, which largely
determines the size of strong-coupling effects, is T, /(w}),
where (w) is a characteristic frequency in o F(w).

In Figs. 1 and 2, the results of the present numerical
study are displayed. Figure 1, which refers to a spherical
Fermi surface, shows the normalized H.5 and k- slopes at
T., as well as the ratio x/kq as functions of T, /wg, where
wg is the frequency of the Einstein phonon in a?F(w).
We have chosen p* = 0 in these calculations. (It turns
out that p* has only a very small effect on these quanti-
ties; for the effect on H,.s, see Ref. 24.) We first notice
that in the weak-coupling limit, 7, /wg — 0, the correct
values [Egs. (17) and (39)] are reproduced. For increas-
ing coupling strength, both —H., T./Hy and —k4 T, /&
initially increase, and reach maxima at T./wg = 0.16.
For coupling strengths exceeding this value, we observe a
monotonic decrease, and both functions eventually drop
below their respective weak-coupling values. The posi-
tion as well as the height of the maximum in the normal-
ized H_y slope agree with previous numerical work.?4

As can also be seen from Fig. 1, the maximum of
~k4T,./k is about 2.1, as compared with the weak-
coupling value of 1.36. The height of this maximum is
essentially unaffected by the symmetry of the vortex lat-
tice (compare dashed line with solid line). It is further-
more remarkable that the normalized k9 slope —&5 T /k
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2.5 T T T T
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I —H'c2 Tc/HO 1
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Te/ws

FIG.1. Normalized slopes of H¢2 and k2 at T, for a spher-
ical Fermi surface, as a function of the coupling strength for
a é-function o?F spectrum and p* = 0; Ho [see Eq. (3)] is
of the order of the zero-temperature upper critical field for a
clean superconductor, and & is the ordinary Ginzburg-Landau
parameter. The solid (dashed) line for —«5 T/ refers to a
triangular (square) lattice of flux lines. Also shown is the de-
pendence of the Ginzburg-Landau parameter on the coupling
strength [Eq. (29)].

becomes negative for very strong coupling, T, /wg 2 0.4.
This means that the slope of the magnetization curve
with respect to the applied field at H., actually increases
with decreasing temperature.

Qualitatively similar results are obtained for a cylin-
drical Fermi surface, as can be seen in Fig. 2. In this
case, the maximum in —«% 7./ is about 1.4, as compared
with the corresponding weak-coupling value of 0.82. The
Ko slope changes sign at T, /wg = 0.37, which is some-
what smaller than in the isotropic case.

The obtained maximum values for the normalized
k2 slope are still almost an order of magnitude smaller
than observed by Zhou et al!® on polycrystalline
YBayCuzO~_s. Since in the present theory it is assumed
that the magnetic field lies along the symmetry axis of
the Fermi surface, a direct comparison with this exper-

2.0 T T T T

15 b

1.0 :
_H'CZ Tc/HO

0.5
0.0 i
o5l ~K'2 Te/K
-1.0 : : : : ' :
0.0 0.1 0.2 TC/Q)E 0.3 0.4
FIG. 2. Same as in Fig. 1, for a cylindrical Fermi surface.
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iment may not be very conclusive, however. It is, e.g.,
conceivable that the temperature dependence of k2 /% is
very different if the vortices lie in the a-b planes of a sin-
gle crystal, as compared to the geometry considered here.
Indeed, the discrepancies in k,(7") for the two fitting
procedures found in Ref. 18 may indicate such effects,
which are outside the scope of the present work. In order
to avoid these complications, it is suggested that x2(7)
should be measured in single-crystalline or grain-aligned
samples with H || &. In this configuration, the normal-
ized kg slope —&% T /K should not exceed the value 1.4
(Fig. 2), if the BCS-Eliashberg formalism is applicable,
independent of the symmetry properties of the vortex
lattice.

In conclusion, using Eliashberg’s strong-coupling the-
ory, I have calculated the slope of k3(T") at T, in the
clean limit for a Fermi surface which is rotationally in-
variant about the magnetic-field axis. The generalized

Ginzburg-Landau parameter k2 describes the magneti-
zation of a type-II superconductor near the upper criti-
cal field. An upper bound on the dimensionless quantity
—k5 Te/k is reached at T,/(w) = 0.16, where (w) is a
characteristic frequency in the coupling function. For
a cylindrical (spherical) Fermi surface, the maximum in
—&45 T, /K is larger by a factor ~ 1.7 (~ 1.5) than the cor-
responding weak-coupling value. These enhancement fac-
tors are much smaller than the one recently observed!® in
polycrystalline YBasCuzO7_s, which indicates a strongly
anomalous temperature dependence of k3 for H 1 &. Fi-
nally, it is found that for very strong coupling, T:/{w) R
0.4, the slope in x5 at T, changes sign.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

'L.P. Gorkov, Zh. Eksp. Teor. Fiz. 37, 833 (1959) [Sov. Phys.
JETP 10, 593 (1960)].

2@. Eilenberger, Z. Phys. 214, 195 (1968).

3J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev.
108, 1175 (1957).

*G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov.
Phys. JETP 11, 696 (1960)].

5D. Scalapino, in Superconductivity, edited by R.D. Parks,
(Marcel Dekker, New York, 1969), Vol. I, p. 449.

6J.M. Daams and J.P. Carbotte, J. Low Temp. Phys. 43,
263 (1981).

"J. Rammer, J. Low Temp. Phys. 71, 323 (1988).

8H.W. Weber, E. Seidl, M. Botlo, C. Laa, E. Mayerhofer,
F.M. Sauerzopf, R.M. Schalk, H.P. Wiesinger, and J. Ram-
mer, Physica C 161, 272 (1989).

SH.W. Weber, E. Seidl, M. Botlo, C. Laa, H.P. Wiesinger,
and J. Rammer, Physica C 161, 287 (1989).

1°F, Seidl, C. Laa, H.P. Wiesinger, H.W. Weber, J. Rammer,
and E. Schachinger, Physica C 161, 294 (1989).

Note the slight confusion in the literature regarding the
definition of k2. Our definition follows the convention of L.
Neumann and L. Tewordt [Z. Phys. 191, 73 (1966)], which
differs from Eilenberger’s work [G. Eilenberger, Phys. Rev.
153, 584 (1967)]. For high-« superconductors (as well as in
the dirty limit), the discrepancy becomes irrelevant, how-

ever. See the discussion by J. Rammer and W. Pesch [J.
Low Temp. Phys. 77, 235 (1989)].

12K, Maki and T. Tsuzuki, Phys. Rev. 139, A868 (1965).

131,. Neumann and L. Tewordt, Z. Phys. 191, 73 (1966).

14C. Caroli, M. Cyrot, and P.G. de Gennes, Solid State Com-
mun. 4, 17 (1966).

13G. Eilenberger, Phys. Rev. 153, 584 (1967).

163, Rammer and W. Pesch, J. Low Temp. Phys. 77, 235
(1989).

17J. Rammer and W. Pesch, Physica C 162-164, 205 (1989).

8. Zhou, J. Rammer, P. Schleger, W.N. Hardy, and J.F.
Carolan (unpublished).

19M. Schossmann and E. Schachinger, Phys. Rev. B 33, 6123
(1986).

20N.R. Werthamer and W.L. McMillan, Phys. Rev. 158, 415
(1967).

21G. Eilenberger and V. Ambegaokar, Phys. Rev. 158, 332
(1967).

22W. Pint, Physica C 168, 143 (1990).

23D. Rainer and G. Bergmann, J. Low Temp. Phys. 14, 501
(1974).

21R. Akis, F. Marsiglio, E. Schachinger, and J.P. Carbotte,
Phys. Rev. B 37, 9318 (1988).

2°M. Schossmann, J.P. Carbotte, and E. Schachinger, J. Low
Temp. Phys. 70, 537 (1988).



