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The slope of the generalized Ginzburg-Landau parameter a2(T) at T, is calculated in the clean
limit using Eliashberg s strong-coupling theory. Fermi surfaces rotationally invariant about the
magnetic-field axis are considered, and specifi. c results are presented for the spherical and the
cylindrical case. For a given Fermi surface, an upper bound on the normalized ~z slope is found
for a coupling strength T,/(u) = 0.16, where (w) is a characteristic frequency in the coupling
function. The maximum enhancement factor relative to the weak-coupling value is of the order
1.5. Finally, it is found that for very strong coupling, T,/(w) ~ 0.4, the slope in ~2 changes
sign.

I. INTRODUCTION

The equilibrium magnetization of a type-II supercon-
ductor is largely determined by four parameters: the
lower and upper critical fields, H, i and H, 2, the thermo-
dynamic critical field H„and the generalized Ginzburg-
Landau parameter K~. All thes-e quantities display
characteristic temperature dependences, and they are
affected in distinct ways by material properties such
as the detailed band structure, impurity-scattering ef-
fects, and strong electron-phonon coupling. For con-
ventional type-II superconductors, these effects are be-
lieved to be at least qualitatively understood in the
framework of Gorkov'si and Eilenberger's formulation
of the Bardeen-Cooper-Schrieff'er (BCS) theory s in-
cluding strong-coupling eff'ects (Eliashberg4). In most
cases, good agreement is found between theory and
experiment.

Out of the four quantities above, it appears that the
least amount of work has been devoted to the generalized
Ginzburg-Landau parameter zq. This parameter deter-
mines the slope of the magnetization curve at H, ~, and
it is defined as follows:

Here M is the magnetization, H is the external magnetic
field, and P& is a parameter which depends on the sym-
metry of the vortex lattice; we have P~ —1.16 (1.18) for
a triangular (square) lattice of fiux lines. For anisotropic
superconductors, both H, 2 and K2 may depend on the
orientation of the crystal with respect to the external
field. Furthermore, it should be mentioned that ac-
cording to Ginzburg-Landau theory, we have lc2(T ~
T,) = z, where yc is the ordinary Ginzburg-Landau pa-
rameter. Following early work for limiting cases,
Eilenberger calculated the full temperature dependence
of rq for arbitrary impurity-scattering times in the weak-

coupling limit. Recently, these calculations were general-
ized to include strong-coupling effects in the framework of
Eliashberg's theory. Also anisotropy effects were taken
into account within a simple model, and comparison
with experiments on transition metals was made.

The present work is motivated by a recent
measurementis of z2 (T) for the high-T, superconductor
YBa2Cus07 s near T, . It was found in this experiment,
which was carried out on a polycrystal, that in the avail-
able regime (89—91.5 K), the temperature dependence of
K~ was much stronger than predicted by conventional the-
ories. In fact, the (asymptotic) normalized slope zz T,/z
(the prime denotes derivative with respect to tempera-
ture, taken at T,) turned out to be about ten times larger
than expected for an isotropic, weak-coupling BCS super-
conductor. In view of this huge discrepancy it is desirable
to establish, within the BCS-Eliashberg model, an upper
bound on F12 T, /K for a layered superconductor with an
arbi]rarily strong electron-phonon interaction. This is the
scope of the present work.

Since high-T, superconductors are believed to be in the
clean limit, we will neglect impurity-scattering effects in
the following [such eff'ects reduce the temperature depen-
dence of iraq (Ref. 15)]. Furthermore, in order to simplify
the calculation, no anisotropies in the plane perpendic-
ular to the direction of the Aux lines will be considered;
the appropriate experiment corresponding to the present
theory is therefore best realized for the case where the
applied field lies along the c axis of a single crystal or a
sample consisting of oriented grains. Although the cal-
culations are valid for more general rotationally invari-
ant Fermi surfaces, specific results will only be given for
spherical and cylindrical Fermi surfaces.

II. UPPER CRITICAL FIELD

Since the first step in the theory of z2 involves the
calculation of the upper critical field H, 2, we will consider
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this quantity first. Using the notation of Ref. 16 the
clean-limit H, 2 is given by the maximum field B such
that the eigenvalue equation

~ ((Tp)i) Xnl p i

l 0
(2)

hc Cp Av~
with Rp — ——0.882 (p,

BTC

has a nontrivial solution. Here t = T/T„and magnetic
fields are measured in units of

pseudopotential p') interactions. Finally, the angular
brackets in Eq. (2) denote Fermi surface averages:

(g)) Jp d'g sin 0 g(8)
g(~/2)

(spherical FS)
(cylindrical FS)

with 0 the angle between the direction of magnetic Geld
and quasiparticle momentum. Equation (2) in an equiva-
lent form was derived by Schossmann and Schachingeris
(for earlier work see Werthamer and McMillan and
Eilenberger and Ambegaokarzi). Since we are interested
in the upper critical field near T„we expand Eq. (2) in
the small parameter

where C&p is the flux quantum and (p is the clean-limit
BCS coherence length at zero temperature. (Hp is of the
order of the zero-temperature H, 2 for a clean supercon-
ductor. ) Furthermore, the abbreviation

~=1 —t((1,
and neglect terms of higher than linear order in e. We
first obtain for (Tp)i

with

~sr ( 1 l 1 i
(Tp)i = ««

I ~
exp

Pr

Bsin 0

4( i')'

(4)

with

B '
0 B 0

2 2o l2

lout

oi ——2l+1+ ) (S„))~ )

lout

wi
—~i+ t ) S„(, ~i —t (2l+ 1)

S„~ = ~(~~ —~&) + ~(~~ + ~t) —2p, ", (5)

S„&
—A(cu„—~i) —A(~„+~i) (6)

has been used. The Matsubara frequencies col are mea-
sured in units of xkBT, . The cut oK /, „t for the Mat-
subara sums has to be chosen high enough such that the
results are independent of the cutoK In the following,
l,„i corresponds to ten times the cutoff in n F(u) The.
real symmetric matrices

Furthermore, the strong-coupling matrices take on the
following form:

Sb (S&)(P) + (S&)(1)+ O( 2) (10)

SE (SE )(P) + (SD )(1) + O( 2) (»)
where the zeroth- and first-order contributions are ob-
tained from Eqs. (5) and (6) with

A( ) = A~ )( ) + eA~')(~, ) + O(~ ).
For A~P) and A~ ) we obtain from Eq. (7)

p ~2+ (2l+ 1)~ '

A(cui) = 2
n~F(u)) u)

4) + 4P l

A~ )(~ ) =4(2!+1)
o~F(~) ~

[cu ~ (2l + 1) ]

contain information on the electron-phonon [Eliashberg
function n~F(u)] and the electron-electron (Coulomb

The eigenvalue equation for H,2, Eq. (2), now takes on
the following simple form, valid for e (( 1:

(S~)(P)

) (S')"
m=0 (sin 0)

20 l

with b = B/e (corresponding to h, q ——H, 2/e) and

(spherical FS)
1 (cylindrical FS) . (14)

I

In physical units, the normalized upper critical field slope
is given by

II12 T,
c2

0
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Equation (13) can easily be solved numerically, and the
eigenvector, which will be needed in the next section for
the calculation of K~, can be written as

x„=x(') +.x&'&.

It is interesting to note that in the eigenvalue equation
Eq. (13), which determines h, 2, both X„and X„are(p) (i)

independent of the Fermi surface average; only the up-
per critical field slope h, 2 is affected. In particular, for

I

a cylindrical Fermi surface h, 2 is smaller by a factor

3 than for a spherical Fermi surface with the same v~
and T, . This result is independent of the strength of
the electron-phonon coupling, and it is in very good nu-
merical agreement with the weak-coupling calculation of
Pint for YBa2Cus07 p in the limit T ~ T, Fi.nally, it
is straightforward to employ the weak-coupling approxi-
mation in Eq. (13). The eigenvalue problem reduces to
an algebraic equation for h, ~, and we obtain

8(sin 0) 12/[7((3)] = 1.4261
8/[7((3)] = 0.9507

(spherical FS)
(cylindrical FS) .

Here ((n) is Riemann's zeta function with

(
1

=
1'(") = ) - (2l + 1)-

l=P
(18)

where z~p is the (fictitious) bare Ginzburg-Landau pa-
rameter for a clean, isotropic and weak-coupling super-
conductor:

III. THE CENERALIZED C INZBURG-LANDAU
PARAMETER K

7x((3) , e (he~)
Kp

hc (xk~T, )~
' (20)

The general expression for K~ within Eliashberg's the-
ory was derived recently. Since this result is the start-
ing point of the present calculation, we will reproduce the
necessary equations in the following. For a clean high-K
superconductor, we have

The corresponding dressed quantity Kp is obtained in
terms of the dressed electronic density of states at the
Fermi level [N(0) = W~(0)(1+ A)] and the dressed Fermi
velocity [v~ —n&~/(1+ A)] as follows:

~p —
imp (1+A)si'.

(
, 7i,'(3) (I~4, &, H, 2)

r. 'p ) " 9 [BEp(t, H, 2)/OB]2
' (»)

Furthermore,

lout ;, ((T.)-(T) )+(~--1) ).(-1)""
X X2

with

Ii = ((Ti)i) (22)
(T')i = dk g' exp( —t —Pi f ). (25)

and
This integral can be solved analytically. Finally, we have

Jl — +1 l+ +3 l+ +5 l+ lPl
3'I gt

g
1cu|Ep(, Hg) t ) Xi

OB 2, (~iP) s (26)

Here

(23) Our goal is to calculate the slope of K2 at T, . Therefore,
we write

H, 2 m'sin 0/[~3(ui) ]
H, q +sin 0/[2(cui) ]

(triangular lattice)
(square lattice)

(24)
or

—= —i1 —~ +O(~),2

Kp Kp ( K

I—= 1 —e +O(e ).K2 Kg +c 2

K K

(27)

(28)
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~g(t = 1) (sin 0) ' f'7I,"(3)
X» q 18 (29)

Here z is the ordinary (measurable) Ginzburg-Landau
parameter, which may be obtained from the identity
r. = ~q(T, ). In order to calculate the ratio ~/zo for an
arbitrary rotationally invariant Fermi surface (FS) and
arbitrary electron-phonon coupling, we have to perform
the limit T -+ T, in Eq. (19). Since in this limit (T~)~ -+ 1
and pl —+ 0, we obtain immediately

y X22 X22 (SE )(0)

Note that the ratio in Eq. (29) is independent of the sym-
metry of the vortex lattice, and that its weak-coupling
limit in the isotropic (cylindrical) case is given by ~/KO =
1 (s). In performing this limit, Eq. (18) has been used.

In order to calculate the quantity zzT, /~ [see Eq. (28)],
Eq. (19) has to be expanded up to first order in c. Using
the representation

with

lent

&=X4s — ). &m,
n, m=O

x,, =) x&, (x( ))*
)

(30&

(T) ) ( I)kPk( )'

k=o

= 1 —(i + 2)! '
~ e + O(e')

4O.l2
(33)

for (T~)~, and expanding the numerator and the denomi-
nator in Eq. (19) to first order in c, we finally obtain

K2 Tc
K

( x" ) '"' t' x"& (s„' )('») X„4
( )

—3i.„—) Y„4
( )

—47.„+,",
( )

—X4s
( X. j „ , ( X. ( ) )

l,„t
) (vx!' x~'~ —3x„"~„~„)+ z ——,

'
23 n=o

(34)

with

1 ) (gn )(1)
"m=O

(35)

Z = (sin 0) h, 2 3ai
x„ lent

X4s 3cl ) ~ Inm l
Y' 2Y o.2 )

Here

(sin 0) 6/5
(sin 0)~

(spherical FS)
(cylindrical FS)

1 —2ir 0.16/(3i/3)(1. 16) = 0.833
1 —ir 0.18/(3)(1.18) = 0.838

(triangular lattice)
(square lattice) . (38)

Several features in the final result Eq. (34) should be
emphasized. First, we notice that the information on
both the Fermi surface and the symmetry of the vortex
lattice enters only through the parameter Z. In fact,
since the product (sin 0)h, q is independent of the Fermi
surface [see Eq. (13)], the ratio Eq. (37) is the only rel-
evant anisotropy parameter for the normalized K2 slope.
A second observation concerns the eA'ect of the vortex
lattice symmetry. The relevant parameter, cq, which is
defined in Eq. (38), takes on very similar values for the

I

two symmetries considered. Furthermore, since the ma-
trix elements Y„become very small for weak-coupling
superconductors, the effect of the lattice symmetry on
the r2 slope drops out in the weak-coupling limit. [Note,
however, that according to Eq. (1), the magnetization
near H, 2 is still slightly aA'ected by the lattice symme-
try. ]

Using Eq. (17) for the weak-coupling H, 2, as well as
Eq. (18), the weak-coupling approximation in Eq. (34)
may be performed. One obtains

K2 Tc 62 g(5) (sin 0) 1.361
49 gz(3) (sin 0)2 0.816

(spherical FS)
(cylindrical FS).
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iment may not be very conclusive, however. It is, e.g. ,

conceivable that the temperature dependence of a2/~ is
very de'erent if the vortices lie in the a-b planes of a sin-
gle crystal, as compared to the geometry considered here.
Indeed, the discrepancies in z2(T) for the two fitting
procedures found in Ref. 18 may indicate such eO'ects,
w'hich are outside the scope of the present work. In order
to avoid these complications, it is suggested that x2(T)
should be measured in single-crystalline or grain-aligned
samples with H

~~
c. In this configuration, the normal-

ized z2 slope —zz T,/~ should not exceed the value 1.4
(Fig. 2), if the BCS-Eliashberg formalism is applicable,
independent of the symmetry properties of the vortex
lattice.

In conclusion, using Eliashberg's strong-coupling the-
ory, I have calculated the slope of a2(T) at T, in the
clean limit for a Fermi surface which is rotationally in-
variant about the magnetic-field axis. The generalized

Ginzburg-I andau parameter z2 describes the magneti-
zation of a type-II superconductor near the upper criti-
cal field. An upper bound on the dimensionless quantity
—az T, /ic is reached at T,/(u) = 0.16, where (cu) is a
characteristic frequency in the coupling function. For
a cylindrical (spherical) Fermi surface, the maximum in
—zz T, /K is larger by a factor —1.7 ( 1.5) than the cor-
responding weak-coupling value. These enhancement fac-
tors are much smaller than the one recently observed 8 in
polycrystalline YBa2Cus07 b, which indicates a strongly
anomalous temperature dependence of ~2 for H 4 c. Fi-
nally, it is found that for very strong coupling, T,/(~)-
0.4, the slope in K2 at T, changes sign.
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