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Vortex-lattice —vortex. -liquid states in anisotropic high-T, superconductors
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We investigate vortex-lattice structures in highly anisotropic superconductors for a situation
where the vortices are slightly inclined with respect to the easy plane of the crystal. The equi-
librium configuration is found to be a vortex lattice with a rhombic unit cell highly compressed
along the direction perpendicular to the easy plane. The elastic modulus for a shear deformation
along this direction is exponentially small, which should result in melting of the vortex lattice,
already at quite low temperatures. We discuss the implications of our theoretical results for
experiments on the angular dependence of the torque for anisotropic high-T, superconductors
in an applied magnetic field.

I. INTRODUCTION

The discovery of high-temperature superconductors
served to revive interest in anisotropic and layered su-
perconducting materials. In high-temperature super-
conductors, the behavior of quantized vortices gov-
erns practically all the relevant magnetic properties of
these materials. It proved that many peculiarities of
anisotropic superconductors in the mixed state had not
been studied in suKcient detail. Recently, new inter-
esting properties of vortices in anisotropic and layered
compounds were pointed out. For example, it was pre-
dicted theoretically and experimentally confirmed
that there should exist an intrinsic pinning due to the
interaction between vortices and the crystal structure of
a layered superconductor.

This can be observed not only for layered compounds
but also for materials which may be considered as
three-dimensional anisotropic superconductors, like the
Y-Ba-Cu-0-type high-T, compounds at temperatures
not very far from T, . This can be seen experimentally,
for example, via the angular dependence of the torque
acting on the superconductor in a magnetic field, or
through the angular dependence of the magnetization.

The anisotropy also modifies the interaction between
the vortices themselves, ' which should result in a
modification of the vortex lattice in anisotropic super-
conductors, depending on the magnetic field and on its
orientation with respect to the crystallographic axes.
For example, it has been pointed out that in highly
anisotropic (layered) superconductors with m, )) m b,
the vortices have to lie almost in the plane of the layers
(i.e. , perpendicular to c, the anisotropy axis) when the
magnetic field H is close to the lower critical field H„.
Here m, and rn b denote the effective Ginzburg-Landau
masses along the anisotropy axis and in the easy plane,
respectively. They are connected with the penetration
depths A, and A b and with the coherence lengths g, and
( b through

Z/2
~mab (c ~ab

(m, (,b

In the present paper we consider the vortex-lattice
structure for magnetic fields much larger than H„and
for an orientation in which vortices are slightly inclined
with respect to the easy plane (the ab plane) of the crys-
tal. We show that for a rather broad region of magnetic
fields, the vortex lattice can be in states which have prac-
tically the same energies for distinct unit cells with dif-
ferent discrete locations of the lattice sites along one of
the crystallographic directions (along the easy plane) and
which are separated from each other by energy barriers.
At the same time, these states can continuously trans-
form into each other through displacements of vortices
in the perpendicular direction. A deformation along this
direction is related with a very low shear modulus, which
means that the vortex lattice should, in fact, have melted
at moderate temperatures.

The ground state of the lattice is a rhombic unit cell
with an equilibrium ratio of the intervortex distances in
the direction of the easy plane and in the perpendicu-
lar direction, zp/zp, considerably larger than the ratio
A, /A(0), where

A(0) = (A b cos 0+ A, sin 0) l

and 0 is the angle between the vortices and the ab plane
of the crystal. This is distinct from the usual case for
superconductors with low anisotropy, where zp/zp
A, /A(0). Therefore, one may conclude that the lattice
has a very small shear modulus for deformations along
the direction in which it is highly compressed. A simi-
lar effect has previously been pointed out for a vortex
lattice in layered superconductors. The results obtained
also suggest that the torque acting on highly anisotropic
superconductors has a narrow peak for small tilting an-
gles.

Section II outlines the theoretical model and presents
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the expression for the free energy of vortex lattices in
anisotropic superconductors. In Sec. III we calculate the
free:nergy for various types of lattices. Section IV dis-
cusses the results and their physical implications for the
vortex states observed in anisotropic high-T, supercon-
ductors.

II. THEORETICAL FRAMEWORK

Our approach is based on the London model of the
mixed state. i5 One can consider vortices to be rectilinear
in an anisotropic homogeneous medium, in contrast to
layered superconductors. The free energy is

1

8' dV H' "i cjz »)
BH i ', f c/H„+ BH i'

Dy J

Here H is the microscopic magnetic field in the superconductor. The coordinate system (x, y, z) has the z axis along
the crystal anisotropy c axis, and the easy plane coincides with the (x, y) plane. The vortices are in the (y, z) plane
making the angle 8 with the y axis. Therefore, let us introduce a new coordinate frame (x', y', z'), with the axis y'
parallel to the vortices, see Fig. 1, and the z axis coinciding with the original z axis. The vortex lattice is described
by the interception points of the vortices with the (x', z') plane.

Making use of the generalized London equation, one can easily obtainis from Eq. (3) the free-energy density I":

p2
F = ) I+ A, b i+A (e)b, ,

b

1+ A,'(b', + b,', )
~

cos 0+ sin 0

Here the summation runs through the reciprocal-lattice
vectors.

One can find out, after quite tedious algebra (which
we omit here for the sake of brevity), that orientations
of the vortex lattice in the (x', z') plane with one of the
unit-cell vectors parallel either to the z' axis or to the z'
axis are most favorable. Therefore, in order to describe
the vortex lattices, we shall employ the two alternative
representations illustrated in Figs. 2(a) and 2(b). Class
(a) has one of the unit-cell vectors parallel with the z'
axis. The reciprocal lattice vectors have the form

where 8 = (2m) i i//$0/B (here Po denotes the flux quan-
tum). Class (b) has one of the unit-cell vectors parallel
to the z' axis. In this case we have

Z'

Zp ~
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FIG. 1. Vortices are described in an inclined system of co-
ordinates (x', y', z'), with the y' axis (along the vortices) tilted
with respect to the easy plane (x, y) of the crystal through the
angle e. The z axis is along the crystalline anisotropy axis (the
c axis

/X

q2XQ
XQ

FIG. 2. Two representations for vortex lattices in the
(x', z') plane. (a) One of the unit-cell vectors is parallel with
the z' axis. The period along z' is zQ. The other unit-cell vec-
tor has the coordinates (xo, qizo). Variation in q produces a
shear distortion n, i along the z' axis. (b) One of the unit-cell
vectors is parallel with the axis x'. The period. along x' equals
xo, the other unit-cell vector has the coordinates (q2xo, zo).
The specific vortex arrangement shown here corresponds to

1V&=A= g ~
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n zp

+o
'

m+ quan zpz'—
zp

(6)

which, owing to the large anisotropy, A, )) A, g, can either
be less than or larger than unity. We assume that the
magnetic induction B in the superconductor satisGes the
condition

In Eqs. (5) and (6), m and n are integers. The orientation
of the other unit-cell vector and the type of the vortex
lattice is determined by the parameters q; (for i = 1,2).
A rectangular lattice has q = 0 and a rhombic (triangu-
lar) lattice has q = 2. Variations in q for fixed zo and
zo correspond to shear deformations of the lattice. For
a class (a) lattice shown in Fig. 2(a), the shear is along
the z' axis. For a class (b) lattice [cf. Fig. 2(b)], the
shear is along the z' axis. The unit-cell parameters zp
and zp obey the magnetic Aux quantization condition:
zpzo ——$0/B.

We shall express the free energy for a given magnetic
Geld induction B and tilting angle 0 as a function of two
variables: one is q and the other (p) is proportional to
the ratio of the unit-cell parameters zp and zp.

We consider vortex lattices inclined slightly with re-
spect to to the crystal ab plane for 0 « 1. We employ
the parameter

The calculation yields the result

B' y.B~(e) (~H„(0)l=
8

+
32 a )

'" ' B ~
+ '("' ")

(11)

where the upper critical Geld is

g(», q ) = G(p, q ) ——
where G(pi, qi) was first introduced in Ref. 14:

=2
lsinh(pn)

(pi q) = —1i
n cosh(pn) —cos(2z.qn)

—ln p+-p
6 (14)

The parameter pi in Eq. (13) is the normalized ratio of
the unit-cell dimensions:

H„(0) =
27r(2b[sin 0+ (m t, /m, ) cos20]'»~

and n is of order unity. The function g(pi, qi) in Eq. (11)
is defined as

H„(0) « B « H„(0) i

&&a&)

provided that p 1. Here

(8)

H„(0) =
z ln~Po A(0)

4' A~qA,

denotes the lower critical field for given inclination 0
of the vortices with respect to the ab plane; z = A y/(, y

is the Ginzburg-Landau parameter. The region of mag-
netic fields specified by Eq. (8) exists only for highly
anisotropic materials with A, )) A b.

For the case of vortices strictly parallel to the o,b plane

[7 = 0, cf. Eq. (7)], Eq. (13) yields the conventional ex-
pression for the free energy. The latter term in this equa-
tion is a result of the interaction between the anisotropic
medium and the inclined vortices.

A. Free energy; class (a) B. Free energy; class (b)

We first calculate the free energy for a class (a) unit
cell, with the reciprocal-lattice vectors b from Eq. (5).
The summation over m and n in Eq. (4) can be carried
out using the relation

+oo
1 sinh(2~b)

(m+ a)z+ b2 b cosh(2vrb) —cos(27ra)

For a class (b) unit cell, illustrated in Fig. 2(b), the
reciprocal-lattice vectors are given by Eq. (6). By per-
forming the summation in Eq. (4), we get

+,~ ~
»

l B + f(P2, q~)
Bz JOB'S(0) fnH„(8)

(16)

(10) where

2 ~
~ 1 1f (» ~, q~) = G(p2, q2)—

1 + p2 g n2 p2 + h[1 —cos(2xq2n)]
(17)
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Here the parameter p~ is defined by

A, zp
(b)

A(0) z(b)

Above, we also defined the reduced magnetic field

III. VDRTEX-I ATTICE ENER.CIES

The function G(p, q), which would be the sole contri-
bution to the free energy of an isotropic superconductor,
and also for 7 = 0, has degenerate minima at p = +~3
and at p = x/~3 for q = 2, they correspond to a hexag-
onal vortex lattice on the plane (z', z'A, /A(0)) with two
orientations [class (a) or class (b)j. As can be seen from
Eq. (14), the function G(p, q) is even and periodic in q

with period 1; it is invariant under the transformation
q~1 —q.

The rational values q = ~, where M and N are inte-
gers, correspond to lat, tices which simultaneously belong
to both of the classes (a) and (b). With q = ~, for exam-

ple, the vortex-lattice periods zp and zp in the class(&) (~) .

(a) representation, and the periods zo and zo in the
class (b) representation are mutually related through

zp zp

0 Q Q )

and qi ——qg
——~. On the other hand, for such a lattice,

one can transpose the coordinate axes z' ~ z' and use

qzp as the new coordinate zp along the new z axis(b) / ~

and -zp as the new period zp. This would result in the
transformation p ~ 4nq2/p. It is evident, however, that
the energy would be invariant under such a change. This
physical circumstance can mathematically be expressed
in terms of the identity

1 t t'4+2 1
'
Np q&2p' N (22)

A. Vortex lattices; class (a)

Let us first consider the class (a) lattices. Analytical
solutions can be more easily obtained for large p &) 1.
In this case the characteristic values of pi correspond-

A, A ~

7rPA(8)

which is on the order of h B/H„(0) )& 1 according to
Eq. (8). The second term in Eq. (17) is due to the strong
anisotropy; in conjunction with the last term in Eq. (13)
it is essential only for magnetic fields satisfying the upper
inequality equation (8). The second term is absent for
isotropic superconductors or for large deflection angles
0 l.

ing to the minima of g(pi, qi) are also large. Using the
asymptotic expression of G(p, q) for large p )) 1:

G(p, q) = 4e ~ cos(2~q) —ln p +-p
6

(23)

we find that the minima of g(pi, qi), as functions of p,
are at

p, ;„=6(1+p2) +4e s('+~ ) c (2 q) (24)

they equal

/'6(I + 72)
gmin(pr, min& qi) =

e

+ 4e-'(r+&') cos(2~qr) . (25)

The values of pi;„obtained from Eq. (24) correspond
to lattices with

zo 3 2 A, A,(&)

~(0) a(e)
' (26)

As one can see from Eq. (25), the free energy displays
its minimum at qi ——&., a rhombic lattice. However, this
minimum is quite shallow, and the corresponding shear

I

modulus Cs(s ), defined through

rG(~ )
~

g Bz (27)

is found to equal

B. Vortex lattices; class (b)

Consider now the class (b) vortex arrays; the free en-
ergy is given by Eqs. (16) and (17). Due to the large
magnitude of Ir, the second term in Eq. (17) gives large
negative contributions for rational values of q2

—M/N
whenever cos(2+qn) turns to unity for certain n. We
consider in more detail the case q~

——~. As we have
discussed, such values of q~ correspond to lattices which
simultaneously belong to both of the classes, (a) and (b),
with the same qi ——q~ ——~ .

Within the leading approximation in h we have for
1q&=Tr

1 l t' 1 p2 2~2f (u. ,
—l= G~' l s», p (29)

C(& ) ~0 & (1 ~ 2)3/2 —6(1+P ) (28)
2' Aa

It is exponentially small already for moderate p. For
example, at p = 2 the exponential factor is on the order
of 10

Our approach holds within the logarithmic approxima-
tion for the large-wavelength cutoff in the free energy of
Eq. (4): the total logarithm in Eq. (11), including the
contribution from Eq. (25), should be large. This im-

poses the following limitation on the tilting angle:

II„(~/2) A,((
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FIG. 5. Vortex lattice undergoing a shear deformation:
reconfiguration of a vortex lattice with q = 3 into the sta-
ble vortex lattice with q =

~ involves the sliding of vortices
along the (y', z') plane. The old and new unit cells for the
vortex lattice are indicated with light and dark shadings, re-
spectively.

However, one has to bear in mind that the shear mod-
I

ulus Cz~s l is very small. Such softening of the shear
mode should result in vortex-lattice melting. Due to

l

the very small value of C66, a vortex-liquid state can
persist down to quite low temperatures. A similar eA'ect

has also been predicted for layered superconductors.
Such an exponential softening takes place for vortex

displacements along the direction of the strong compres-
sion of the equilibrium vortex lattice, i.e. , along the z
axis and is related with the large value of pq ~l.„ocp, as
obtained from Eq. (24). The equilibrium vortex lattice
can in this case be visualized as a set of parallel planes
containing the closely spaced vortices. These planes are
separated from each other by large spacings. Such a pic-
ture is similar to that discussed in Ref. 12 for the onset of
vortex penetration into superconductors when H ~ H„.
When the planes of the vortices slide along each other,
the restoring force is small due to a small modulation of
the interaction energy between vortices belonging to dif-

l

ferent planes. In the present case, it is the modulus Css
corresponding to the "hard" direction of displacement
(according to Ref. 20), which is exponentially softened.
This softening is entirely due to the strong anisotropy
A, && A b and vanishes for 0 ~ O.

The behavior of the equilibrium free energy as a func-
tion of the tilting angle 0 gives rise to quite an unusual an-
gular dependence of the torque acting on the anisotropic
superconductor in a magnetic field. This follows from
Eqs. (11) and {25)and {16)and (32). The density of the
torque is

DI" Pn B OA(8)
M 32' ~%~be, 88

nH„(8) + gmin

The angular dependence of the torque from Eq. (33) is

FIG. 6. Torque T(8) acting on a highly anisotropic (A, »
b) superconductor as a function of the tilting angle 8 be-

tween the magnetic field and the easy plane of the crystal,
according to Eq. (33) (dashed). Also displayed is the de-
pendence Tiv(8) from Eq. (34) (solid curve). The torque
is normalized as T(8)/tp, where tp = Bgp/64m A~bA, Th. e
parameters in Eqs. (33) and (34) are A, /A b = 10 and
nH, z( z/2) /B= 50. Note the factor of 3 difference in the
scales for T(8) and Tvv(8)

shown in Fig. 6 for A, /A, b = 10 and nH„(7r/2)/B = 50.
The dashed line in Fig. 6 terminates where the logarith-
mic approximation breaks down. For comparison, we also
reproduce in Fig. 6 the angular dependence of a torque
for a weakly anisotropic superconductor, 8

TI4, (8) = ln
~

"
~
+ G ;

y, B W, (8) /' H„(8)&

(34)

[where Gmi„(p, z~) = —0.804], which it would have for the
same values of the parameters. One has to note that Eq.
(33) is valid for 8 & A, b/A„ for smaller angles it has to be
considered as an interpolation. The exact, dependence for
8 ( A b/A, can be obtained directly from Eq. (11). One
can see that the torque on a highly anisotropic supercon-
ductor has quite a narrow peak for small t, ilting angles.
A similar angular dependence of T(8) has been observed
experimentally for a single crystal of YBasCu&07, al-

though prior to comparing these results one has to bear
in mind the substantial irreversibility pointed out in Ref.
9.

In Ref. 9, jumps in the torque acting on the supercon-
ductor have also been observed. These were interpreted
to result from reconfigurations of the lattice in response
to the field rotation. It follows from our results that the
anisotropy of the equilibrium lattice in the (z', z') plane
strongly increases for increasing tilting angles. Such a
reconfiguration of the lattice requires considerable dis-
placements of the vortices which can be hindered by pin-
ning forces. The jumps in the 0 dependence of T could
arise when the lattice overcame the pinning.

In conclusion, we have studied vortex states in
anisotropic superconductors when the magnetic field is

slightly inclined with respect to the easy plane of the
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crystal. We have found that the equilibrium vortex lat-
tice has a rhombic unit cell, highly compressed along the
direction perpendicular to the easy plane. This compres-
sion is much larger than what one would expect from
the ratio A, /A(0). The elastic modulus for a shear defor-
mation along this direction is exponentially small. This
should result in vortex-lattice melting at quite low tem-
peratures.
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