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We investigate whether the staggered-Aux phase (SFP) is realized in slightly doped phases of the

Cu-0 high-T, superconductors. Using a mean-field solution of the t-J model, we calculate the size

of circulating currents in the Cu02 planes. For realistic parameters we find nonzero currents when

the doping 6 &0. 12. Taking into account structural details, we calculate the physical magnetic-field

strength and the neutron-scattering cross section. The static field at the muon site varies between 0
and 100 G depending mainly on doping but with additional complications being the size of the

Wannier functions, temperature, screening, localization, and the mean-field-approximation itself.

These fields are not detected in muon-spin-relaxation experiments but cannot be ruled out both be-

cause of the aforementioned complications and because at low doping the muon is also affected by.

residual quasistatic spin moments. Neutrons scattering off orbital moments of the SFP exhibit a

Bragg peak at wave vector (m/a, a/a) even at nonzero doping; however, this peak is perhaps 70
times weaker than that produced by static spin moments in a fully Neel ordered phase and is there-

fore dificult to observe. The absence of quasistatic spin moments in our description conAicts with

neutron experiments on lightly doped samples. The inelastic spin structure does, however, exhibit a

split peak at wave vector (n/a, ~/a) in qualitative agreement with neutron experiments on super-

conducting La&, sr Cu04 samples but additional structure along the (Q, O) and (O, Q~) directions

has not been seen. The absence of magnetic fields when 5)0. 12 is consistent with the limits set by

the muon experiments on superconducting samples. We show that similar results are obtained us-

ing the Gutzwiller-projected SFP.

I. INTRODUCTION

The two-dimensional one-band large-U Hubbard model
near half-filling has been subject to intense scrutiny dur-
ing the past three years since it seems to be a reasonable
model of copper oxide superconductors. ' In two mean-
field treatments of this model, a special saddle point was
discovered by Kotliar and independently by Am. eck and
Marston, ' who called it the "flux phase. " The orbital
motions of electrons in this state are identical to those of
charges in tight-binding model with a spatially alternat-
ing external magnetic flux threading through adjacent
plaquettes of the square lattice. The removal of the dou-
bly occupied subspace can be enforced by Gutzwiller pro-
jection and, at half-filling, the resulting state, viewed as a
variational wave function, has a fairly good energy.
The doped staggered-fiux phase (SFP) with Cooper pair-
ing was recently proposed by Zhang and Wang, Kotliar,
and Wang" to describe the superconducting ground
state.

Some observable properties, in the normal state, of the
doped staggered-flux phase include muon spin rotation
(@SR) in the physical magnetic fields due to circulating

electronic currents and neutron scattering off these orbit-
al moments as well as off the electron spins. One advan-
tage of focusing on these local probes as opposed to
transport and optical properties, for example, is that local
probes are less sensitive to complications like impurities,
surface contamination, and grain boundaries. We calcu-
late the behavior of these two features and compare them
with experiment.

It is important to note that muons and neutrons are
sensitive to fluctuations in the magnetic fields at different
time scales. Neutron experiments typically examine ener-

gy transfers greater than 1 meV; neutrons, therefore, can
detect fluctuations with frequencies greater than 10' Hz.
Muons, on the other hand, are sensitive to magnetic fields
fluctuating no faster than 10" Hz for field strength am-
plitudes of order 100G (this upper frequency bound is
lower for weaker fields). ' Of course, both probes
respond to static fields, but the different frequency win-
dows can be used to isolate distinct sources of fluctuating
magnetic fields. Finally, the muon signal contains infor-
mation about the degree of spatial randomness in the
magnetic fields. It might be possible to use this informa-
tion to separate the periodic orbital magnetic fields of the
SFP from the disordered quasistatic spin moments known
to be present in lightly doped high-T, materials.

43 2866 1991 The American Physical Society



43 TWO OBSERVABLE FEATURES OF THE STAGGERED-FLUX. . . 2867

II. THE STAGGERED-FLUX PHASE

The Hamiltonian of the one-band repulsive Hubbard
model with a nearest-neighbor hopping integral

L =g[c„B,c„+b„B,b„p—[c„c„—(1—5)]]

t„=t exp I A dl
Ac x

(where A is the Maxwell gauge field) may be written us-

ing the fermionic electron operators c„as

+[(t„b b„+y„„)c„'c„+H.c. ]] .

Here p is the chemical potential that must be adjusted to
obtain the desired filling fraction 1 —6. Actually, an ad-
ditional on-site term

i g iL„(c„c„+btb„—1)

H = g t„„(c„c„+H.c. )+g Un„&n„t .
(x, y) X

Here, and in the following equations, we define the elec-
trons to carry the electric charge. The electrons are
therefore responsible for any real magnetic fields that
arise. (We could just as well have defined the holes to
carry the charge. Our final results would be the same,
however, since the assignment of charge is arbitrary. ) The
first sum is over nearest-neighbor copper-atom sites x and

y and a sum over the spin index o. is implied. For large
Ult (appropriate here), the dynamics of the low-energy
subspace with no doubly occupied sites (p-type doping) is
described by the I; -J Hamiltonian with chargeless spinless
bosonic holes (b„operators)

H = g t„„(b„b„c„c„+H.c. )+J(S„Sz——'n„n„) .
(x,y)

(3)

Here J=4t /U is the magnetic exchange constant and
S„=—,'c„a c„&. To be definite we use the values t =0.44
eV obtained by Hybertsen et al. ' and J=0.13 eV by
Singh et al. ' These values are not expected to vary by
more than 10% among the difFerent copper oxide materi-
als.

A local constraint c„c„+b„b„=1is imposed on the
fermions and bosons to forbid double occupancy by ei-
ther holes or electrons. [Only electrons appeared in the
Hamiltonian of an earlier large-n analysis of a SU(n) t-J
model. ' The Aux phase in that case exhibited physical
currents even at zero doping because large, but finite, on-
site repulsion U does not eliminate single-particle charge
fluctuations in the large-n limit. In this paper we com-
pletely forbid double occupancy by introducing explicit
hole fields and the currents disappear when no holes are
present. ] We drop the last term in Eq. (3) in the follow-
ing analysis, since the phases we study in our mean-field
approximation have uniform charge density. (In any
case, phase separation into large hole-rich and hole-poor
regions is forbidden by the long-range Coulomb forces. )

The t-J model can now be transformed, using the func-
tional integral approach, into a form suitable for our
mean-field approximation by introducing complex boson-
ic Hubbard-Stratonovich fields y„y on the links of the lat-
tice to factorize the four-fermion spin-spin interaction. '

The resulting (imaginary time) Lagrangian may be writ-
ten

appears in the Lagrangian to enforce the local occupancy
constraint. Since X is a constant at the Aux saddle point
and does not affect the single-particle states nor the total
saddle-point energy, we will ignore it.

In this paper we take the link bosons to be static mean
fields and study the saddle-point approximation [justified
in the large nlimit o-f a SU(n) generalization of the mod-
el] described by y„= lyl e', where the links are orient-
ed as shown in Fig. 1. The dependence of 0' on t/J and
the doping 6 is determined by minimizing the free energy
(see below). Our staggered-fiux phase naturally incorpo-
rates the "uniform" or Fermi-liquid phase for which
8'=0. The hole bosons completely condense (at zero
temperature) so we can set b„=5' . (The phases of the
Bose fields can be absorbed into the fermions, so we may
choose b„ to be purely real. The bosons condense into a
zero-momentum state. ) This saddle point is locally unsta-
ble at low doping towards a localized "box" phase with

spin-Peierls enhancement on —,
' of the plaquettes how-

ever, the addition of a biquadratic spin-spin interaction
stabilizes the SFP in the large-n limit without altering the

FIG. 1. The &2 unit cell: orientations of the complex pxy
link fields (the currents Aow in the same pattern).
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physical SU(2) system. (At —,
' filling, Sachdev' found

that, in the absence of biquadratic coupling, a dimerized
state is the global saddle point when t/J (0.3. Sufficient
biquadratic coupling should eliminate this phase; in any
case, the ratio t/J is too small to be relevant to the
copper oxide systems. Also, the incommensurate flux in-
stability reported in Ref. 11 occurs only over an extreme-
ly narrow range of doping [0(5~0.01(J/t) -0.001]
and we will ignore it. ) Finally, the staggered flux phase is
also stable against dimerization within the Gutzwiller-
projection mean-field scheme ' ' (see the Appendix).
Henceforth, we assume that no spin-Peierls modulation
develops.

Because the link fields can have an imaginary com-
ponent, the electrons move through the lattice in our
mean-field approximation as if they were tight-binding
electrons hopping from site to site in a fictitious applied
magnetic field. The unit cell contains just two (even and
odd) sites because the fictitious field alternates in sign de-
pending on whether the plaquette is centered on an even
or odd dual lattice site. (In contrast to the anyon, '

uniform-flux, and commensurate-flux ' theories, the
staggered-flux phase does not break time-reversal symme-
try globally because translation by one site combined
with the time-reversal operation is a symmetry. Note
that the commensurate- and uniform-flux phases have
higher energies than the SFP. ) The single-particle wave

functions are thus eigenstates of the hopping Hamiltoni-
an:

H,~= g f(t„„5+g„„)c„c„+H.c. ] . (5)
(x,y)

In addition to the staggered fictitious flux +0' passing
through the plaquettes, a real (Maxwell) magnetic flux
(also staggered) 4 appears in the electronic hopping in-
tegral t„because, as we show below, real magnetic fields
arise in the doped flux phase. So, t„y=te'~, where

P =e4&/hc and the t„„are oriented in the same pattern as
Fig. 1. The phases of the g„„ fields are not modified by
real magnetic fields, however, since the spin-spin interac-
tion involves no charge currents.

As far as the set of single-particle electron eigenstates
is concerned, only the combined flux (real and fictitious)
acting on the electrons is important. We will therefore
speak of an effective flux 0 that characterizes these states.
It is given by

y~sin(8'/4)+t5 sin(P/4)tan8 4=
~pecos(8'/4)+ t5 cos(P/4)

The single-particle eigenstates break up into upper and
lower bands:

H„qt+(k) ~0) =+.(k)qt+(k) ~0),

with energies

E(k) =2g[cos (k„a )+cos (k a)+2cos(8/2)cos(k a)cos(k a)]'~—:2jI (k, 8),

where

=
~y~ +(t5) +2t5~y~cos(8'/4 y/4)—

0

and a =3.8 A is the Cu02 lattice constant. The eigen-
states are a linear combination of the Fourier modes on
the even and odd sublattices:

g+(k) =2 'i [c,(k)+g (k)c, (k) ],
where the phase factor g (k) is given by

e' cos(k a)+e ' ~ cos(k a)
g(k)=

~e' cos(k a)+e ' cos(k~a)
~

These electron eigenstates provide a convenient basis for
the calculations that follow.

The energy density of the Maxwell flux generated by
orbital currents is always insignificant and does not
influence the saddle point. The maximum current that
passes through a link is given by 2te/A'. That value is for
an electron with momentum Am/2a. The typical magnet-
ic field caused by such current is of order te/%ca. It can
be shown that the geometrical factor due to adding up
the contribution from all the links on a lattice is at most
of order 10. Typical energies per site are thus
a B —t(e /a)/m*c . Here r =Pi /2m*a and m* is
the noninteracting effective electron mass which takes the
value m*/m =0.26 eV/t. So the importance of the

magnetic-field energy is reduced by the ratio of a few eV
divided by the electron rest mass energy. Likewise, the
amount of real flux is reduced from go=bc/e by the
same factor. The flux P appearing in Eq. (6) may there-
fore be set to zero for the purposes of our energy-
optimization calculation. Nevertheless, note that the
magnitude of the expected magnetic fields (ignoring the
geometric and other factors of order unity which we
evaluate in this paper) is $0/a X(e /amc )-0. 1 T.
Indeed, rather enormous fields might be expected.

The determination of the saddle point is now a
straightforward task at zero temperature (we consider
nonzero temperature later). The total-energy density E is
given by

E =(4/J) lyl' —(2/N)g' E(k),
k

where N is the number of sites and the prime denotes a
sum only over the filled states which is achieved by ad-
justing the chemical potential. Given a particular filling
fraction, the energy can now be minimized numerically
and the optimal value of ~y~ and 8' found. We proceed
by first fixing 0, the combined phase of t6+y. Then, for
fixed 0, we optimize the energy with respect to 0' by in-
verting Eq. (6) to determine a constant value of ~g~. Fi-
nally, the energy is optimized globally as a function of 0.
The saddle-point value of 8(5) determines y (and hence
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the size of the circulating currents and real magnetic
fields) as a function of doping. We plot 8(5) and 9'(5) in
Fig. 2. The saddle-point value of 0 decreases steadily
away from ~ as the doping increases. At a doping of ap-
proximately 5 =0. 12, the ground state undergoes a
second-order transition to one with no Aux: a free Fermi
sea. The saddle-point energy is the sum of two parts: the
hopping energy [the term in the Lagrangian (4) which is
proportional to t5] and the magnetic exchange energy
[the terms in (4) which involve y, ]. To emphasize the
competition between hopping and exchange energies, we
plot each in Fig. 3 in terms of the difference between the
values calculated at the SFP saddle point and the values
at the zero-flux saddle point (which is unstable for
5 ~ 0. 12). In general, we see that nonzero flux favors the
magnetic correlations and disfavors the hole kinetic ener-
gy.

III. REAL MAGNETIC FIELDS

The current on any link can be calculated by evaluat-
ing the rate of change of the expected number of elec-
trons (n„):—(c„c„)at site x. (The bosons do not con-
tribute to the electric current because they carry zero
charge. ) Actually, ( n„) = 1 —5 is independent of time
because currents j„„Aowing into the site through two of
the links are balanced by currents Aowing out through
the other two links. Thus,

=i/fi( [H, , n„] )

=i/RQ'((t5+y„„)ct c„—H. c. ) . (12)

0
0 0.05

Doping
0.1 O. I 5

FIG. 2. Phases of y and y vs doping. Solid line: 0'; dashed
line: 0.

Here the prime denotes a sum over sites y that are neigh-
bors of site x. This expression may be simplified by using
the equation of motion y „=(//2)ct c„ to obtain the
charge current along link xy):

4t5e
Jxy ~ Im+xy .

-2

e
-6

-8

-10
0 0.05

Doping
0.1 0.15

FIG. 3. Hopping and magnetic exchange energies per pla-
quette vs doping. Each is plotted as the difference between its
value at the staggered-flux saddle point and at the zero-flux sad-
dle point. Solid line: hopping energy; dashed line: magnetic
energy.

Note that y„„c„c„hasno imaginary part and so does
not contribute to the charge current. The currents cease
in either insulating limit (5=0 or t =0) reflecting the lo-
cal gauge invariance that exists in pure antiferromagnet.
The microscopic balance of the charge mentioned above
is now apparent: at the saddle point, Imp„„ is the same
on every link up to a sign given by Fig. 1. Clearly these
signs are such that no net currents Aow into any site.

Using Eqs. (9) and (10) and substituting for the electron
operators (see the Appendix for more details), the current
can also be written

j„„= sin ——g'[cos(k~a )
—cos(k„a)]t6e . 0 2

x(g'(k)g (k))l(k, 8) '

[I was defined in Eq. (8).] This formula includes the sum
over the spin; (g (k)g (k)) picks out the ground-state
occupation of single-particle states of either spin, and the
prime means a sum over the reduced Brillouin zone. We
see that states in the middle of the band contribute most
to the orbital current. As we dope (increase 5) or raise
the temperature, states near momenta (+m/2a, +n/2a)
are depleted first. The current, however, changes little
(until the flux decreases) since these states contribute rela-
tively less to the orbital current.

The current expressed as the magnetic field found at
the center of a single arc of length and radius a =3.8 A is
plotted in Fig. 4. Upon doping, the field rises and peaks
at about 10 G. In order to convert the current into the
magnetic field at a given point in the unit cell, we must
sum over all nearby links of the CuO2 lattice with the
correct sense of the current direction. We sum these con-
tributions numerically to determine a geometrical factor
that multiplies the field strength plotted in Fig. 4. For
points close to a link (Cu—0—Cu bond), the nonzero
size of the Wannier functions is important. (If the
currents were modeled by vanishingly thin wires, the
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FIG. 4. Magnitude of current expressed in terms of a mag-
netic field (see text) vs doping. Solid line: mean-field approxi-
mation, zero temperature; dashed line: mean-field approxima-
tion but with electron occupancy given by the Fermi-Dirac dis-
tribution at a temperature of 150 K; dash-dotted line: Gutzwill-
er projection, zero temperature.

magnetic fields would diverge near the wires. ) We model
the distribution of currents in the Cu02 planes with Wan-
nier functions of size g by setting the current density
equal to a constant for distances r (g away from the
Cu—0—Cu bond and zero outside this region. (For a
single infinitely long bond, this ansatz clearly gives
H ~I/r for r )g and H ~Ir/g for r (g.) In Fig. 5 we
plot the geometric factor for a doping of 6=0. 1 as a
function of position for points near an oxygen atom (both
in and out of the plane of the lattice). We have set g
equal to the Cu—0 separation -2 A to cut off' the mag-

0

netic field at short distances. g-2 A is an upper bound
because there is one Wannier orbital for each Cu atom

0

and these atoms are separated by 4 A. We consider the
effect of diff'erent values for g later. To find the field at
other dopings one simply rescales the fields plotted in
Fig. 4.

In comparing the calculated cruxes to muon-spin-
rotation experiments, there are several complications. In
doped samples, the presence of superconductivity is one
possible complication. However, since the energy scales
of the staggered fiux phase (t and J) are of order 1000 K,
the SFP and its magnetic cruxes should be present at tem-
peratures just above T, . At nonzero temperatures, the
holes are not completely Bose condensed, complicating
the calculation of the free energy. Based on our experi-
ence with the original large-n formulation of this problem
(without the hole bosons), we expect, however, that the
quantitative results of our zero-temperature calculation
survive for temperatures T ((J/k& —1000 K. We check
the temperature dependence of the circulating current in
a naive way by assuming the holes remain completely
condensed in the lowest level (so that we may continue to
set b„=5'~ ), whereas the fermions occupy excited levels
with a Fermi-Dirac distribution. We keep the Aux fixed
at the zero-temperature value and simply examine the
effect of the Fermi-Dirac occupancy on the current, Eq.
(14). The current at a temperature of 0. 1J—150 K (again
expressed as the magnetic field at the center of a single
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FIG. 5. Geometric factors for the magnetic field (see text).
(a) z component of the magnetic field at points in the CuO2
plane near an oxygen atom as a function of perpendicular dis-
tance from the Cu—O bond. Other components of the

0
magnetic-field vector are negligible. Solid line: /=2. 0 A;

0
dashed line: /=1. 0 A. {b) Transverse component of the mag-
netic field at points vertically above a planar oxygen as a func-
tion of vertical distance. The z component of the magnetic-field
vector is negligible. Solid and dashed lines as in (a). (c) z com-
ponent field at the center of a plaquette as a function of vertical
distance from the plane, independent of g.
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arc) is plotted in Fig. 4. For small dopings there is very
little change since the single-particle states near the Fer-
mi level do not contribute much current [see the discus-
sion following Eq. (14)]. However, at a doping of 5=0. 1,
the current is suppressed by about 30%.

The muons may not see the magnetic fields if they
prefer to lie far away from the CuOz planes or in some
position of high symmetry. KieA et a1'. and Brewer
et al. have recently studied muon-nuclear quadrupole
level-crossing resonances in Y-Ba-Cu-0 with ' 0 substi-
tution. Their results strongly suggest that the dominant
muon site in Y-Ba-Cu-0 is 1.0 A away from a planar oxy-
gen and on the outer side of the paired Cu02 planes in
the unit cell. (We study the expected magnetic fields near
a planar oxygen for this reason. ) Brewer et al. have also
argued that the muon site is not likely to be close to the
plane based on the internal fields observed by Birrer
et al. in Gd-Ba-Cu-0 and the fact that an in-plane
muon site is inconsistent with the observed isotropic
copper nuclear dipole background.

The results plotted in Figs. 5(a) and 5(b) show that, if
the muon lies in the Cu02 plane, it could be in a field of
80 G at the optimum doping. If muons avoid the plane
(the more likely case) and instead are bound to oxygens
vertically above the plane, they would see fields of order
10 G. This latter value, owing to the steepness of the
curve, is sensitive to the size of the Wannier functions.
To understand the effect of our choice of Wannier func-

0
tion size g, we also plot the geometric factors for g= 1 A
in Fig. 5. For this choice of g, fields of up to 60 G could
be expected at the muon site. The field is very sensitive
to g but it is probably fair to say that, without special
tuning, transverse magnetics fields (parallel to the Cu02
plane) of order tens of G should be seen by the muons.
Note that, from Fig. 5(c), we can see that the contribu-
tion to the magnetic field from other layers is small—
about 2 —3 G if the layers are separated by 4 A. This
contribution decreases rapidly as the separation between
layers increases.

Screening of the muon charge and muon-induced dis-
tortion of the Wannier functions is another complication.
The positive muon charge probably suppresses the hole
density near it. To see how the muon charge may change
the local environment, we plot the geometric factor for
the magnetic field, as in Fig. 5(b), but with the current in
the nearest (vertically below) link turned off (see Fig. 6).
This is presumably an extreme limit. Within our calcula-
tion, screening effects are uncertain because we do not
have a good theory for hole dynamics. The resulting
plots show that, at (=2 A, turning off the link actually
increases the expected field at the muon site by a factor of
3. This behavior has the following explanation: because
the muon is well inside g (it is only 1 A away from the
bond), the contribution to the net field from the nearest
link is, in fact, overwhelmed by contributions of opposite
sign due to the next-nearest links. Thus, when the
nearest link is turned off, the partial cancellation ceases
and the magnetic field increases. If g= 1 A then the field
is dominated by the nearest link and turning off the
current in that link suppresses the field by a factor of 7.
Nevertheless, in both cases we should still expect to see

1.2

O
0.8

lO
LL

O.6—
tD

O 04

0.2

0
0 2 3

Out-of-Plane Distance (A}

FIG. 6. Same geometric factor as in Fig. 5(b) but with the
current in the nearest (vertically below) link turned off for both
values of g.

field strengths of order 10 G at the optimum doping.
The most serious problem in comparing our calcula-

tion to muon experiments is the persistence of quasistatic
spin moments at dopings of a few percent. According to
neutron-scattering experiments on YBa2Cu30 at various
oxg yen concentrations, long-range antiferromagnetic
order disappears at a doping of about 2%%uo which corre-
sponds to an oxygen concentration of about 6.4. The
disappearance of long-range order is deduced from the
absence of Bragg scattering. Note, however, that quasi-
static, but spatially disordered, spin moments may sur-
vive even if long-range order disappears. Between oxy-
gen concentrations x =6.4—6.5, the doping rapidly rises
by an additional 0.1 —0.15 and T, increases from 0 to 50
K. The effective doping is found by assuming that, at
small doping, the spin-spin correlation length is given by
5=(a/g) . Muon experiments on Y-Ba-Cu-0 have ex-
amined the antiferromagnetism-superconductivity
boundary and show that, as x increase from 6.4 to 6.5,
the ordered magnetic field at the muon site drops from
about 250 to 0 G. The rms deviation of the magnetic
field peaks at about 50 G in the middle of this doping
range. The pSR samples and neutron-scattering samples
show essentially the same dependence of T, on oxygen
concentration. That agreement provides some added
confidence in the sample consistency.

If x =6.4—6.5 corresponds to hole concentrations in
the range 0—0.1 (not unreasonable at all), then it may be
impossible to see the staggered Aux emerge from the
sharply dropping background of the quasistatic spin mo-
ments. (We have no reason to believe that the muon site
changes as one adds holes. We do not consider, however,
secondary muon sites such as the one which lies in a field
of 1300 G in the oxygen-depleted Neel phase. 2s). The
peak in rms deviation in intriguing but could easily be
caused by sample inhomogeneity. Actually, an intrinsic
microscopic inhomogeneity probably arises from irnpuri-
ty potentials (especially due to random oxygen positions).
At small doping these potentials may localize holes to
within a few lattice sites. While this situation is not ac-
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counted for explicitly in our calculation, it seems possible
that hole localization might cause fields to appear at
some muon positions and not at others.

In summary, there is no clear experimental evidence of
a staggered Aux from muon-spin-rotation data. However,
because the size of the expected fields is small (of order 10
G), because quasistatic spin moments persist at nonzero
doping, and because of the various theoretical uncertain-
ties discussed in this section, we cannot rule out the SFP
with the available observations. As a final remark, we
note that static spin moments (for example, Neel order)
and staggered fictitious Aux are compatible, at least at
half-filling. ' '

Sg(Q

0.00l

0.000

(0

IV. NEUTRON SCATTERING

The pure two-dimensional nearest-neighbor spin- —,
'

Heisenberg model is Neel ordered at zero temperature
and exhibits a Bragg peak in the elastic spin-spin correla-
tion function at momentum (rr/a, rr/a). Neutron-
scattering experiments on both the 2:1:4and 1:2:3materi-
als show this peak, ' ' and the dynamical behavior of the
spin-wave excitations can be understood using the non-
linear o. model or series expansions about the Ising lim-
it. The spin-spin correlations in the undoped Aux phase
were discussed in Ref. 4. The fIux phase has no Neel or-
der because the order parameter g„„ is a singlet under
SU(2) rotations. Indeed, the flux phase is a true spin
liquid with no broken symmetries. (Since O=vr at 5=0
and ~ Aux is equivalent to —~ fIux, translational symme-
try is restored at half-filling. ) But small peaks in the low-
energy inelastic spin-spin correlations show up at mo-
menta (~/a, n/a), (vr!a, o), and (0,~/a) jsee Fig. 7(a)].
These peaks just reAect the fact that low-energy spin exci-
tations occur only near the discrete Fermi points in the
(undoped) flux phase. (For recent work on how Neel or-
der may arise in the Aux phase beyond the mean-field ap-
proximation, see Refs. 10 and 29.)

The nature of the spin-spin correlations at nonzero
doping is more subtle because the mobile holes disorder
the spins. To gain some understanding of how the Aux
phase incorporates the hole motion, we repeat the calcu-
lation of Ref. 4 but now at nonzero doping. We focus on
low-energy spin excitations (0 & co « J) since most of the
neutron-scattering experiments are performed at low en-
ergy with respect to J. In addition to electron-hole pair
excitations between the upper and lower bands, we also
must include pairs that lie entirely within the lower band
(for p-type doping) in our calculation of

&g(Q) = (1/N)g e'~ "(S„.SD) ~ .

Here Q is the scattering momentum and the subset'ipt on

0,00I

0,0005

(7r, 0

FIG. 7. Three-dimensional plots of the low-energy {6=6
meV) inelastic spin-spin correlation function for {a) 6=0.0 and
{b)6=0.075.

the expectation values denotes an integration over co

(where co is the decrease in the neutron energy due to the
production of a spin excitation) with a Gaussian distribu-
tion exp —(co /2b, ).

We proceed by factorizing (using our mean-field ap-
proximation ) the required four-fermion expectation
value into products of the terms like

(c," (co, k)c, (co, k))

and

(c™(co,k)c, (co, k)) .

These expectation values can, in turn, be expressed using
the occupation numbers in the upper and lower bands
and the phase factor g (k). The resulting formula for the
zero-temperature spin-spin structure factor is given by an
integral over the reduced Brillouin zone:

~~(Q) =-,'I, ~l E(p)+v](l:1—g *(p+Q)g (p)]exp I
—

I s(p)+E(p+Q)]'/»']

+&I —p —E(p+Q)][1+g*(p+Q)g(p)]expl —[s(p) —E(p+Q)]'/26'] ) .
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Here the step function 0(x ) = 1 for x )0 and equals 0 for
x (0. The structure factor for 5=0.075 and 5=6 meV
is plotted in Fig. 7(b). The splitting of the peak at
momentum Q=(7r/a, vr/a) simply refiects the new length
scale that has been introduced upon doping: the average
separation between holes.

Quasielastic scattering is observed to persist at low
doping in the 214 compound. In fact, neutron and muon
experiments on a single La, 94Srp p6Cu04 sample demon-
strated the existence of quasistatic but spatially disor-
dered spin moments. ' The quasielastic neutron-
scattering intensity increased sharply as the sample tem-
perature dropped from 40 to 20 K. The muons, on the
other hand, saw the local spin moments freeze at around
6 K. This temperature difference was attributed to the
slower response time of the muons to magnetic Auctua-
tions mentioned in the Introduction. Evidently this
glassy state, like the undoped Neel ordered phase, cannot
be described by the highly inelastic processes in our
mean-field approximation. Extensions of the nonlinear o.

model that include holes seem better suited to describe
this structure. On the other hand, quasi-elastic scatter-
ing diminishes (possibly to zero) as the doping increases
in both the 2:1:4 material and the Y-Ba-Cu-0 materi-
al. So we might expect our theory to describe the spin
excitations in this more highly doped (superconducting)
region.

A splitting of the peak at the ordering wave vector
(~/a, vr/a) has been seen in neutron-diffraction experi-
ments on superconducting La2 „Sr Cu04 samples.
(No such splitting was seen in superconducting
Y-Ba-Cu-0 compounds. ) However, the observed neu-26

tron scattering may be too strong to be explained by
highly inelastic processes predicted by our mean-field
theory. The experiments typically scan along the line
that connects (0,0) with (m/a, n/a). But the additional
structure along the Q„=O and Q =0 axes shown in Fig.
7(b) has not been observed.

Neutrons interact not only with the magnetic moment
of electron spins, but also with the magnetic fields pro-
duced by the orbital currents. Since these currents
preserve the &2 unit cell, Bragg scattering at momentum
(w/a, ~/a) will occur. To determine whether it is possi-
ble to separate this orbital contribution from quasistatic
spin-moment scattering, we ignore interference between
these two processes and consider the (spin-independent)

coupling of electrons on a given link to the gauge field of
the neutron magnetic moment:

r

t5c„c„exp i f A dl
AC x

(16)

Here x and y are nearest-neighbor sites. The neutron
magnetic moment

p= —1.91 S
eA

foal C
(17)

produces a gauge field

i c„ c„ f A dl . (19)

Substituting for A we find

Rx+we —r„f"A dl= f dt's
" " (eXp),

0 ~R„+toe —r„~
(20)

where R„ is the position of the ith site and the unit vector
e runs from x to y. Sandwiching this expression between
initial and final neutron states with k; —

k& —=q and in-
tegrating over the neutron coordinates, we obtain

(1/V)f d r e "f Adl
x

(4 /y 2)
q'

x(1 iq ae) e'(p
q.e

(21)

where V =L L L, is the volume of the system.
For now we pull out a factor xep(i qR'„)L, ' from this

expression. We shall reinsert it when we consider Bragg
scattering from more than one Cu02 layer. The next step
is to sum over all the links of the lattice and substitute
the electron eigenfunctions g+ for both spins. Writing
only the relevant parts (we drop the spin index for the
moment):

The first approximation we make is to cut off
~ r, —r„~ at

about d =1 A (roughly the size of the Wannier func-
tions). Because

f A.dl —(e /d). (m„c ) '((1,
the coupling simplifies to

x e=x, y

c„+qc„2[cos(k ae) —cos(k ae+q ae)]
e=x, y

2[c,(k+q)c, (k)+c, (k+q)c, (k)][cos(k.ae) —cos(k ae+q ae)]
e=x, y

[cos(k ae) —cos(k.ae+q ae)][g(k)+g*(k+q)][gt (k+q)g (k)+Pt+(k+q)P (k)+ ] .
e=x, y

(22)

The primes indicate the sum is over the reduced Brillouin zone. For Bragg scattering (q, q ) is a multiple of
(vr/a, vr/a ),
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g(k)+g *(k+q} =2i sin(8/4)(cosk„a —cosk a )I (k, 8)

and [cosk ae —cos(k ae+q. ae)] =2cos(k ae}. The Bragg-scattering matrix element is

(23)

g'( P (k+q)g (k) )sin(8/4)I '(k, 8)(cosk a —cosk„a ) gAc% -„-„(aq) q e
(24)

2

(aq)'
Q —g' sin(8/4)I '(k, 8)(cosk a —cosk a)

Converting this to a cross section, averaging over the neutron spin, substituting for t =A' /2m 'a, multiplying by 2 to
account for electron spin, and finally assuming that there is no momentum transfer in the z direction, we obtain

2
2 2

do. 1.91e m

mc' m*

The quantity ~5 . .
~

may be estimated by noting that it is
the current plotted in Fig. 4 multiplied by
fiac/te=3. 5X10 G '. Thus, the quantity ~5

. .
~

has
a peak value of around 0.037 at optimum doping. For
the case of scattering at (vr/a, m/a, 0), the rest of the di-
mensionless terms contribute a factor -0.42. So alto-
gether we have a numerical factor 5.7X 10 multiplying
(1.91e /mc ) .

Let us compare these numbers to the cross section for
Bragg scattering from the spins. In this case,

2
2

(S, )'~ f(q)I' .
dQ

(26)

The magnetic structure factor for copper spins in
K2CuF~ was measured by Akimitsu and Ito. Interpolat-
ing their data for our scattering wave vector, the struc-
ture factor is f(q)-0. 8. For an ordered moment of
50%, (S, ) -0.25 and the total numerical factor is
4.0X10 . This number is about 70 times greater than
scattering from orbital moments. This large factor comes
from the fact that orbital moments are proportional to
the doping 5-0. 1 so the scattering intensity is propor-
tional to the square of the doping. The expected Bragg
peak intensity is below the resolution presently achieved
by neutron-scattering experiments.

Bearing in mind the preceding result let us, neverthe-
less, consider nonzero-momentum transfer in the z direc-
tion. To be definite, let us suppose that the Aux from ad-
jacent layers is opposite in sign (in analogy with the spin
moments in the Neel ordered state), causing a cancella-
tion if q, =0. We shall show that such behavior should
manifest itself in the behavior of the scattering amplitude
as a function of q, . Let us consider the case of
Y-Ba-Cu-0 at scattering wave vectors

0

q=(rt/a, n/a, 2nn/c). We take c =11.8 A to be the
unit-cell dimension perpendicular to the planes. Because
adjacent planes (which are separated by z =3.4 A) have
opposite fiux, sin(8/4) changes sign between the two
planes. Since we are considering Bragg scattering, the
neutron spin is conserved. Spin-Aip processes have a
different q, dependence and, in fact, this different q,
dependence was originally used to deduce that the Neel
ordering direction is parallel to the Cu02 planes. '

Note that the only q, dependences come from the

q /(a q) term in Eq. (25} and exp( iq, R '„)L, ' which we
factored out earlier. The scattering cross section is thus

proportional to

e i 2~nz
/c

~

2/[ 2~2+ ( 2~na /c )2 ]2 (27)

For n =0, 1, 2, and 3, the relative amplitudes are 0, 0.42,
0.26, and 0.06. This n dependence would be a signature
of an orbital moment pointing in the z direction. Again,
the expected magnitude for this signal is probably too
small to be observed.

V. CONCLUSIONS

Unlike the anyon' and commensurate-Aux ' theories
of the high-temperature superconductors, our mean-field
theory exhibits real magnetic fields only at low doping
(0 & 6 &0. 12). Without special tuning we expect fields of
order 10 G to appear. There are a number of uncertain-
ties including (a) whether the actual doping in a given ex-
perimental sample is uniform and close to the optimum
doping 0.1, (b) hole localization at low doping due to mi-
croscopic (mostly oxygen) inhomogeneity, (c) the actual
size of the Wannier function carrying the current and
how the muon may distort it, (d) screening of the muon
charge, (e) nonzero temperature, and (f) the validity of
the mean-field approximation itself. Note, however, that
the Gutzwiller projection approach yields similar values
for the magnetic field (see the Appendix).

Local spin moments are observed to persist at nonzero
doping and may mask the orbital magnetic moments (if
they exist) at the muon site. At present we can only con-
clude that the muon experiments do not rule out the stag-
gered Aux phase. However, it may be possible to use the
different response times of muons and neutrons to Auc-
tuating magnetic fields to set more stringent bounds on
the static orbital contribution. Finally, the orbital mo-
ment is too small to be observed directly by neutron
Bragg scattering.

On the other hand, our mean-field theory clearly does
not reproduce the quasistatic spin moments observed at
low doping. Neel order may be incorporated into the un-
doped Aux phase by giving the fermions a mass gap
whether this hybrid can explain features at nonzero dop-
ing like the disordered static spin moments or the incom-
mensurate spin structure remains to be seen. The fact
that the SFP inelastic structure shows some qualitative
similarities with neutron experiments on the supercon-
ducting 2:1:4 samples suggests that such a fusion might
be possible. We also note that the staggered Aux phase
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shares some features with the "double-spiral" phase of
Kane et al. : both phases exhibit staggered chiral spin
order which changes sign upon translation by one site or
time reversal.

For dopings greater than about 12%, the currents in
our mean-field theory cease to Bow and the magnetic
fields vanish. Muon-spin-rotation experiments in this (su-
perconducting) region set a stringent upper bound (less
than half a G) on the allowed local magnetic fields and
seem to rule out anyon and commensurate-flux theories.
But the measurements appear to be consistent with the
zero-Aux Fermi-liquid phase. Furthermore, the quasistat-
ic spin moment diminishes with increasing hole concen-
tration, ' so our spin-liquid phases are better suited to
this region. Finally, recent work by Grilli and Kotliar'
suggests that the Fermi-liquid phase could support a su-
perconducting condensate.

Note added in proof If w. e included next-nearest-
neighbor hopping t NNN

=0.06 eV in the mean-field
theory, then the critical value of the doping at which the
Aux vanishes is reduced slightly to 5=0.10.
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9+(I—n„tn„i)= g g„, (A2)

where Q„are projection operators onto the 3 possible
real-space configurations [(I) up spin, (2) down spin, and
(3) empty site] on the two sites of set B. The matrix ele-
ment of some operator 6, which acts on the sites of 8, is

(A3)

Evaluation of the matrix elements of operators acting on
set B is easy because we are evaluating expectation values
of two-body correlations for free electrons. The dificult
factor to evaluate is g„E„Po which is the conditional
probability that the expectation value of g„E„Po is
nonzero given that a certain configuration of up spins,
down spins, and holes exists on B. We evaluate it very
crudely.

Let X be the total number of sites and N„~ be the
number of electrons of spin 0. on set A, B. We assume
zero magnetization so that

N„+Ng =N +N(1 —5)/2 .

The number of real space configurations of spin cr elec-
trons on A is

Po = + Po = g (1 n» n„& )— (A 1)
sites x sites x

is approximated by dividing the lattice into two sets of
sites. In this calculation they will consist of two adjacent
sites (set B) and all other sites (set A). Let us also decom-
pose the projection on set B into

APPENDIX

The calculations presented in this paper are justified in
a large-n limit. In this section we perform instead a vari-
ational calculation using a Gutwziller-projection scheme.
With this technique we find similar values for the real
magnetic fields as a function of doping. We also obtain
fairly accurate values for the magnetic and hole kinetic
energies near half-filling. The philosophy behind this ap-
proach is the following: since we wish to compute physi-
cal quantities, we ought to minimize the variational ener-

gy of a physically sensible ground state with respect to a
physically sensible Hamiltonian. Here we choose our
variational wave function to be Gutzwiller-projected
noninteracting electrons moving in the staggered Aux.
(Before projection, the electrons occupy the lowest
single-particle states. ) This wave function is a physically
sensible variational ground state because it strictly obeys
the single occupancy constraint —there is either a hole or
an electron at each site. (The saddle-point approach only
satisfies the constraint on average. ) We calculate the ki-
netic and magnetic energies variationally with respect to
the t -J Hamiltonian and then adjust the staggered Aux in
order to minimize the total energy.

The Gutzwiller-projection operator

N !(N„N„)!— (A4)

We assume that they all have equal weight —that is, we
neglect the quantum degeneracy pressure of set A. For
every spin-o. configuration only

(N„—N„)!
N„!(N„N„N„)!—— (AS)

(N~ —N~ Na ) 25—
+O(1/N) .I+fi (A7)

We may now write down our analytic approximations
for projected matrix elements. We first calculate (unnor-
malized) probabilities for various spatial configurations of
electrons on the two adjacent sites of set B. We shall use
the notation P( t, 0) (introduced in Refs. 9 and 10) to
denote the probability that on set B we have, say, an up
spin on site x and a hole on site x+e. For example,

configurations manage to avoid all the spin-o. electrons.
Therefore, the probability of a nonzero result after pro-
jection is simply (AS) divided by (A4), or,

(N„—N~t )!(N„N„)!—
(A6)

N„!(N„N~i N i )!— —

The eFect of g„~~Po is simply to introduce a fugacity
for holes. Suppose we decrease the number of up-spin
electrons on set B by one thereby increasing the number
of up-spin electrons on set A by one. Then, the above
probability changes by
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P( l1):—( ~PGn„ t(1 —n„& )n„+, t(1 —n„+ &
)PG ~

)

=(n„ tn„+-, t )((1—n„~)(1—n„+, &)),
P ( $0) = ( ~PGn„ t (1—n, ~ )(1—n„+, t )(1—n„+-,

&
)PG ~

)

=(n„ tn
&
)((I—n„) )(I —n + f t)) X 26

(A8)

(A9)

where ( ) denotes an expectation value for the free elec-
trons before projection (in this situation, spin indepen-
dent). In order to calculate some particular matrix ele-
ment, one would normalize by the sum of the nine such
probabilities P (

. ).
Let us calculate some quantities for electrons in a

staggered-Aux ground state. One such expectation value
that appears in the formulas for the kinetic energy,
current, and magnetic exchange energy is

( t ) =—g'(,t(k), (k) '"")
x even

2

x = g'(g P )e'""g(k, O)
N „

(A 1 1)

N „2gk
= ——y ' „(q'(k)q (k)&.

(A 10)

We have dropped the spin index; instead of summing
over it we are now considering each spin separately.
Again the prime means the sum is restricted to the re-
duced Brillouin zone.

Another useful quantity is the nearest-neighbor
density-density correlation (c +,c + c„c„)(for either
spin species). Its value is n —x, where the exchange
hole x is given by

t ~ t = t 25(1 —4x + 126x —16x ) .

The charge current in the e direction (from even to odd
sublattice) is then:

ite 2
x+ae x x x+ae

—'V' c c —c c
k

—g' e'""[g*(k)—g(k)]
N „

x(g' (klan (k)) . (A14)

Multiplying by an additional factor of 2 to take into ac-
count the two spin species and substituting for g (k), the
expression for current in a link becomes

—2—sin ——g'e'""[cos(k a) —cos(k„a)]

(A16)

x(g' (k)y (k) &r(k, e)-' . (AIS)

In the ground state (p (k)1(t (k)) is invariant under
k~ —k and k ~k so that the expression for current
simplifies to

—sin ——g' [cos(k a) —cos(k a)] I (k, 8)te. 0 2
4

Using these quantities and setting n =n =(1—5)/2,
we may calculate the unnormalized probabilities

P( 1' t') —(n —x )[(1 n) —x], —

P(11)—(n n+x )—
and so on. The normalization factor g P( ) is, to lowest
order in 5 and x,

g P( )=—,'+ —,'5+ 435 +4x

Using the projection prescription to calculate the
current or kinetic energy simply requires that we multi-
ply the free-electron expression for spin o by

The kinetic energy per plaquette, defined by

Ek;„——t(PG(c„c +H. c. )PG ),
summed over both spins is

Ek,„=—2t cos ——g'[cos(k a)+cos(k~a)]0 2 2

x(1t'(k)p (k))I(k, 9) ' . (A17)

The magnetic exchange energy as a function of Aux
and doping is made easier to calculate because the
ground state is a singlet,

E, —:J(S„S+ )

where

(( I —n„)(1—n„+,-, ) )

1+5 gP

2

(A12) =31 (S'„S'„+,, )

4
X

P(11'+P(11)—P(11)—P( 41)
gP( )

((I n„)(l——n + ))= 1+5
2

(A13) (A18)

The factor (A12) can be viewed as a renormalization of t:
The variational calculation proceeds in the following
way: for a fixed value of hole concentration 6, the phase
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8(5) which minimizes E„;„+E, is found. For that
value of 8(5) the absolute current in a link is calculated.
The resulting current is plotted in Fig. 4. Like the large-
n limit, the ground state becomes one with no flux (that
is, a projected free Fermi sea) at a doping of about 0.10.

The main difference is that the current has a maximum of
about 15 6 (50% larger than at large n) at a doping of
about 7.5%. These results give some insight into the
quantitative limitations of the large-n mean-field approxi-
mation.
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