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A simple theoretical model is proposed for the reversible magnetization of type-II superconduc-
tors as a function of the applied field H for the entire field region between H„and H, 2. For
H =H„, the theory reduces to a variational model, from which H„can be accurately computed in
the Ginzburg-Landau regime. In calculating the free energy, we include, in addition to the super-
current kinetic energy and the magnetic-field energy, the kinetic-energy and the condensation-
energy terms arising from suppression of the order parameter in the vortex core. The model is fur-
ther extended to include anisotropy by introducing an effective-mass tensor for the case when H is
parallel to one of the principal axes. The theory is compared to reversible-magnetization data on a
YBa2Cu30, single crystal. The method permits an accurate determination of H, 2 versus tempera-
ture from measurements of the magnetization versus temperature at fixed magnetic field and ex-
plains why the measurements have diff'erent slopes in diff'erent fields, contrary to what might have
been expected from the linear Abrikosov formula near H, 2. The deduced dH, ~/dT is ( —1.65+0.23)
T/K for H parallel to the c axis near T„implying g,b(0) = ( 17+ 1) A.

I. INTRODUCTION

The vortex structure of a type-II superconductor was
first studied by Abrikosov, ' based on the Ginzburg-
Landau equations, for the cases of low and high magnet-
ic field H, i.e., H —H, ) «H, ) and H, 2

—H «H, 2, where
H, &

and H, 2 are the lower and upper critical fields, re-
spectively. For the intermediate field H„«H «H„,
where the Ginzburg-Landau equations cannot be solved
in closed form due to their nonlinearity, the London mod-
el ' has provided the only detailed phenomenological
description for extreme type-II superconductors for
which the Ginzburg-Landau parameter tv= k/g obeys
tr)) 1 (here A, is the penetration depth and g is the coher-
ence length). In the London model the local magnetic
Aux density of a type-II superconductor in the mixed
state (vortex state) is represented by a linear superposi-
tion of the fields of isolated vortices, which is valid only
when ~ is large and the vortex spacing is large compared
with g. Although the London model can give a good
qualitative account of the mixed state in the restricted
field region, it suff'ers from its singular property that both
the magnetic Aux density and the supercurrent density of
an isolated vortex diverge on the axis of the vortex, be-
cause the depression of the order parameter to zero on
the axis is not accounted for by the model.

In Ref. 5, one of the authors proposed a variational
model for an isolated vortex, which reduces to the Lon-
don model outside the vortex core but has the added ad-
vantage of yielding realistic results in the vortex core vi-
cinity. Simple analytic expressions for the magnetic Aux
density and supercurrent density of an isolated vortex

easily can be obtained from this model, and they have the
same qualitative behavior as found by solving the
Ginzburg-Landau equations numerically. In Ref. 6, it is
argued that the procedure of obtaining the local magnetic
Aux density by a linear superposition of contributions of
individual vortices is valid for arbitrary ~ and vortex
spacing, provided these contributions are calculated us-
ing the correct spatially-dependent magnitude of the or-
der parameter that is appropriate for the given vortex
spacing.

In this paper we extend the work of Refs. 5 and 6 to
construct a model for the mixed state of a type-II super-
conductor and compare it to experimental results on a
YBa2Cu307 single crystal. This test case is of particular
significance because of the considerable ambiguity in the
determination of H, 2 of the high-temperature supercon-
ductors. Here we will focus on a diamagnetic H, 2,

" the
upper critical field for the onset of diamagnetism (in a
mean-field sense, ignoring diamagnetic Auctuations at
higher temperatures). It is now widely recognized that
the magnetic phase diagram of these superconductors
contains a vortex Auid regime at the temperatures just
below the diamagnetic H, 2, in which the magnetization
behavior is fully reversible and the transport data show
Aux Aow. According to Fisher, Fisher, and Huse, be-
cause the phase y of the local superconducting order pa-
rameter 4 varies with the Brownian motion of the vor-
tices, a nonzero voltage appears for arbitrarily small ap-
plied currents, and so, strictly speaking, this regime is not
superconducting, even though it may show substantial di-
amagnetism. This suggests that the diamagnetic H, 2 is
only a crossover, rather than a true phase transition as in
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the usual mean-field theory.
Nevertheless we presume that entropic effects in this

regime are small, so that the diamagnetism of the vortex
Quid resembles closely that of an ideal Abrikosov mixed
state. Indeed, our theoretical treatment also neglects the
specifically hexagonal vortex structure and merely as-
sumes some averaged close-packed configuration.

The mixed-state diamagnetism can readily be mea-
sured, and, when compared to theory, can give the di-
amagnetic H, 2. Close enough to H, z, the diamagnetism is
given by'

F=Fc +Fk& +Fg& +Fg

where

(2)

F = fd —'(1 f —
)

Fkg= Jd P 2(Vf)=1 21
(4)

in a plane perpendicular to the vortices, measured rela-
tive to that of the Meissner state, can be expressed in di-
mensionless form as

H, 2( T) H-—4mM =
(2~ —1)P~ jd2 f2a& 1

a, =a+ —Vy
K'

where P„ is 1.16 for a hexagonal array. This suggests
that a linear extrapolation of M(H) or M(T) data should
determine H, ~( T). Welp et al. first carried out such ex-
periments on a YBa2Cu307 crystal and deduced in this
way a linear dependence of H, 2 on temperature, with
slopes of —1.9 T/K and —10 T/K for a field parallel to
the c and the ab axes, respectively. As we shall show, our
data are substantially the same as those of Welp et al.

Nevertheless, their data for M(T), and ours, show a
noticeable field dependence in the slope dM/dT, in con-
trast to the prediction of Eq. (1). This leads to the pecu-
liar result that if the same data are plotted as M(H) at
fixed temperatures and extrapolated to determine H, z( T),
the H, z(T) is nonlinear with, on average, much lower
slopes than those quoted above. Therefore there is a seri-
ous ambiguity in determining the correct H, 2(T), which
the theory in this paper can help resolve. As we shall see,
much of the data correspond to fields H far below H, 2( T)
and thus are not adequately described by Eq. (1). The
more complete theoretical treatment explains the field-
dependent dM/dT slopes and restores the linear H, 2( T)
behavior, but leads to a somewhat revised value of —1.65
T/K for dH, 2/d T with the field parallel to the c axis.

Another issue addressed by the experimental results is
whether YBa2Cu307 falls in the clean or dirty supercon-
ducting limit. Our crystals show resistivities in the range
50—80 pOcm just above T„' whereas the crystal of
Welp et al. shows 120 pQ cm. In the dirty limit,
dH, 2!dT should scale linearly with resistivity. The simi-
larity of our results and those of Welp et al. confirms the
clean-limit behavior of these materials parallel to the
CuOz planes, which has also been deduced from trans-
port" and optical' measurements.

In Sec. II we give the details of our model and obtain
an expression for the reversible magnetization of an iso-
tropic type-II superconductor. In Sec. III we take the
effect of anisotropy into account. In Sec. IV we report
experimental results on a YBazCu307 single crystal, com-
pare the results to the theory, and summarize.

II. REVERSIBLE MAGNETIZATION
OF TYPE-II SUPERCONDUCTORS

We consider an infinite type-II superconductor in the
mixed state. As can be shown, ' ' the Ginzburg-Landau
free energy per unit volume over cross-sectional area 2

and

Jd2 b&

j= f 'a, , — (7)

where j is the supercurrent density.
For a vortex centered on the z axis, in terms of cylin-

drical coordinates p, P, and z, with unit vectors p, P, and
z, y= P, b=zb (p), j—=Pj&(p), and a=Pa&(p). We
have Vy = —VP= —$(1/p), a, =P(a& —1/trp), and
therefore

V Xa, =z b, — 5(p)
2w

For an array of vortices at positions p, , we have

VXa, =z b, — +5(p —p, )
2&

l

where each term in the summation represents one vortex
carrying one quantum of magnetic Aux centered at p, .

are the condensation energy, kinetic energy associated
with gradients in the magnitude of order parameter, ki-
netic energy associated with supercurrent, and magnetic
geld energy; f and y are the normalized magnitude and
phase of the order parameter 4=+ofe'~ (+o is the mag-
nitude of order parameter in absence of field); a is the
vector potential satisfying V a=0; b=VXa is the local
magnetic Aux density; and the two-dimensional integral is
taken over A.

We use in this paper dimensionless units, which corre-
spond to measuring the magnitude of the order parame-
ter in units of Vo, length in units of A, , magnetic field in
units of &2H, =trio/2m', , vector potential in units of
&2H, k=trgo/2nk, and energy in units of H, /4', where
H, is the thermodynamic critical field, and
Po =hc /2e =2.07 X 10 G cm is the fiux quantum (Po
corresponds to 2m/a in the dimensionless expressions).

In Ginzburg-Landau theory, the temperature depen-
dence of a superconductor is contained in the scaling fac-
tors, such as &2H, ( T) and k( T), and therefore all physi-
cal quantities in their dirnensionless form are independent
of T, and the only parameter intrinsic to the sample is ~.

The second Ginzburg-Landau equation is
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Using Eqs. (7) and (9), and with the help of Ampere's
law j=V'Xb and the divergence theorem, we find that
the electromagnetic free energy per unit volume
F, =Fk +F can be simply written as

F, =BI,(0), (10)

where B=2~/aA„» is the averaged magnetic flux densi-
ty, 2„,& is the unit-cell area of the Aux-line lattice
(B=$0/A „» in conventional units), and b, (0) is the local
magnetic Aux density at the center of a vortex resulting
not only from the vortex's own field but also that of all
surrounding vortices.

Our approach is to apply superposition and write

&,(p)=g &„(p—p;),

Bf„Ko(g,(f„+2B~)' )

xg, K, (f„g, )
(14)

F, =
—,'(1 f '„)'+— (1 f '„)ln—

With f being given by Eq. (12), F, and Fk are calculat-
ed by taking the integral over one lattice cell, which is ap-
proximated by a circle centered at a vortex axis and hav-
ing the same cell area. As mentioned in the Introduction,
this approximation means that we neglect the energy
difFerences between specific vortex structures (hexagonal,
square, amorphous, ...), which we expect to be only a few
percent. We find

where bo, (p p; ) is —the magnetic flux density of an isolat-
ed vortex located at p;, and the summation runs over all
vortices; and to obtain bo, we follow the procedure of
Ref. 5 and take into account the effect of overlapping of
vortices. We assume for the order parameter a trial func-
tion

Bf„(I +B~g, )
Fkg =

a(2+BI~/, )

2+ Bag~

(16)

P
( 2+(2 )i/2 ~~ (12)

where g, and f„are two variational parameters
representing the effective core radius of a vortex and the
depression in the order parameter due to overlapping of
vortices, respectively. It is expected that f ~1 as
B~O and f ~0 as B~B,2 (B,2=H, 2=~ in the dimen-
sionless units). Then, with the help of Ampere's law and
b=VXa, the second Ginzburg-Landau equation can be
solved analytically, and we find

bo, = f K (f (p2+g2 )1j2)
(13)

ag, K, (f„g, )

where K„(x) is a modified Bessel function of nth order.
We calculate b, in the Appendix, where we introduce a

Fourier transform of bo„ transform the lattice summa-
tion in Eq. (11) into one in the corresponding reciprocal
lattice, and then make the approximation of replacing the
summation by an integral. Therefore, Eq. (10) becomes

Now the variationally-calculated total free-energy den-
sity F is the sum of F„Fk~, and F, , given by Eqs. (15),
(16), and (14), where the variational parameters f„and
g„satisfy

and

BF
df„

()F
ag,

(17)

(18)

The thermodynamic magnetic field H is given by

1 dF
2dB

aF
2 BB

where the second line is obtained by using Eqs. (17) and
(18). By a straightforward calculation we find

2 2
2 +1

B~g,

1 f f — f (2+3Bxg, )+
~ ~

+2+Beg„(2+Beg„) 2v(2+Beg, )

+B+ Ko(g, (f„+2B~)'~ )2~,K,
Bag„K,(g, (f„+2B~)' )

(y2„+2B~)'" (20)

where the first two terms correspond to F, and Fk~, re-
spectively, and the last two terms correspond to F,
The magnetization M is related to H by

(21)

Equations (20) and (21) give us the implicit function
M(H).

Note that H is the internal field, which is equal to the
applied field only for a sample of zero demagnetization
coefficient, but is approximately equal to the applied field
when the demagnetization effect can be neglected. For
the case when the demagnetization e6'ect is important, H
is equal to the applied field minus the field of demagneti-
zation (see Ref. 4).
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Eqs. (3) and (6), since they do not involve mass explicitly
(when written in conventional units). The second
Ginzburg-Landau equation is

lCK=
CX

a=(m, sin Ocos P+m2sin Osin P+m3cos 0)'

(3&)

(39)
2

falsi
(29)

m3m;+i

b, =b; (b, =b, 5,3),

(30)

(31)

a„=
Qm,

j, =Qm, j, ,

(32)

(33)

and

Qm,
(34)

This transformation preserves the relations that j=V Xb,
b =V X a, and V-b =0, and it suggests that we assume for
the order parameter

P
(
—2+g2 )1/2

(3S)

with

X X1 2
p — +

m m
(36)

which can be transformed to isotropic form [Eq. (12)] by
the above transformation. Thus we can calculate the
properties of the vortex state in the transformed frame
exactly as in the isotropic case, except that the usual
Ginzburg-Landau parameter K is replaced by k. There-
fore, the final results can be obtained by simply replacing
~ by K in the expressions for their isotropic counterparts.
For example, for the isotropic case we have H, z=~ and
H=H(B, K); then for the anisotropic case with the field
applied along the x3 axis we have H, 2=K—K/Qm3 and
H=H(B, K)=H(B,K/Qm3), where H(B,K) is given by
Eq. (20). Note that, if the vortices are aligned along the
x

&
or xz axis, the corresponding results can be obtained

by cyclic perinutation ( 1~2~3—+I or a +b ~c—+a ). —
For the case that H is applied along arbitrary direc-

tion, H, z has been found' by linearizing the first
Ginzburg-Landau equation, i.e., essentially in the same
fashion as in the isotropic case:

H, &=K,

where

It was shown in Ref. 17 that the free-energy density and
Ginzburg-Landau equations can be transformed to iso-
tropic forms by a simple transformation if ~ is replaced
by a k that depends on the orientation of the vortices.
This transformation was later shown to be valid only
when H is along a principal axis. ' We consider here
only the case when H is applied along one of the principal
axes. For vortices aligned along the x3 axis, the transfor-
mation reads

and 0 and P are the polar and azimuthal angles of the ap-
plied field with respect to the principal axes. Equation
(34), for example, corresponds to the case when 0=0.
For lower fields, when the field is not applied along one of
the principal axes, the vortex structure is much more
complicated, because the direction of b(p) is not a con-
stant. ""

IV. DETERMINATION OF THE UPPER
CRITICAL FIELD OF A YBazCu3O7 z SINGLE

CRYSTAL FROM REVERSIBLE
MAGNETIZATION MEASUREMENTS

In this section we apply the theoretical results of the
last two sections to analyze the experimental reversible-
magnetization measurements for a YBazCu307 single
crystal and obtain the temperature dependence of the
upper critical field H, z near the transition temperature
T, . H, 2( T) is an important quantity, since it provides in-
formation about the microscopic properties of the super-
conducting state, including the magnitude of the coher-
ence length and the degree of anisotropy.

A twinned single crystal of YBazCu307 was grown by
methods described elsewhere. ' It weighed almost 1 mg
and was 110pm thick. Low-field Meissner measurements
showed over 90% Aux expulsion, indicating it was close
to fully superconducting (see Fig. 6 of Ref. 22). The ac
susceptibility showed a single loss peak less than 0.2 K
wide, comparable to the best of our samples. The
temperature-dependent dc magnetization was measured
in a Quantum Design superconducting quantum interfer-
ence device (SQUID) magnetometer in fields up to 5 T.
A scan length of 5 cm was used and the temperature was
stabilized to within +0.05 K of tiNe target temperature
prior to measurement. A 15-min delay was introduced
after field changes in order to permit full stabilization of
the system. An accuracy of 2 X 10 emu was obtained
for these measurements. The onset of irreversibility
could be detected by a deviation from approximately
linear M ( T) behavior at lower temperatures.

Figure 2 shows the temperature dependence of the
zero-field-cooled magnetization near T, for various
values of applied magnetic field H, oriented parallel to
the c axis (perpendicular to the Cu02 planes). We ob-
serve that the magnetization is reversible in a tempera-
ture range of approximately 8 K below T, . The solid
lines are the corresponding theoretical fittings based on
the data in the reversible region. The deviation of the ex-
perimental points for 1 T from the theoretical curve
below 84 K, for example, is attributed to magnetic ir-
reversibility of the sample in this region; the theoretical
curve describes only the reversible magnetization.

The fitting procedure is as follows. In the last two sec-
tions we obtained a function 4vrM'(K, B'). Note tha—t
B'=H'+4~M' gives the connection between the experi-
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FIG. 2. Magnetization vs temperature for various values of
applied fields parallel to the c axis. Points represent data on a
1-mg YBa&Cu307 crystal, taken in increasing temperature after
zero-field cooling; solid curves represent theory described in the
text. The deviations of the experimental data from the theoreti-
cal curves below about 85 K are due to pinning effects.

FIG. 3. Magnetization vs applied field in reduced (dimen-
sionless) units. Points represent the same data as in Fig. 2 for a
YBazCu307 crystal with field parallel to the c axis. The scaling
factor &2H, (T) and the value of R, are obtained using the
method described in the text.

mental quantities. Here we use primes to denote dimen-
sionless units in which fields are measured in units of
&2H, (T). Because the magnitude of the magnetization
is small compared with the applied field, the demagneti-
zation effect can be neglected; thus
H'=H, ' =H, /&2H, (T). We choose a set of data

I 4vrM;, H„ I
—(i =1,2, . . . ) at the same T from the rever-

sible region in Fig. 2, and take the ratio
—4~M;/H„= 4~M'/H'. —Assuming a value of K, this
ratio corresponds to a value of B'. We solve for this
value of B', compute the corresponding —4~M' and H',
and then compute +2H, (T). We do this for i =1,2, . .. .
If the value of K is "right, " we get the same value of
&2H, (T) for each data point. The value of K is deter-
mined to give the smallest deviation. We then take the
average of &2H, (T) for the chosen K. Therefore, from

the fitting we obtain both the value of ~ and the tempera-
ture dependence of H, (T) [or H, z(T) =tv'2H, (T)].

The data points used for the fits to obtain K, and H, ( T)
are in the ranges 84~ T(89 K and 1 ~H, (5 T. Here
K means the value of K for H parallel to the c axis. Our
best fit gives k, =57+5. Figure 3 shows —4aM' versus
H' of the experimental measurements and the theoretical
fitting. Here the range of the error estimate has the
meaning that for all values of k, within the range, the re-
sulting fittings can be considered as good (the differences
between any two of them is not obvious to the eye), while
for the values of k, outside the range the resulting fittings
clearly become worse than the best one (the differences
becomes visually appreciable). In Fig. 4 the solid points
exhibit &2H, (T) versus T, and the line shows a fit to the
BCS temperature dependence of H, (T),

H, = 1.7367 1—
C Tc

1 —0.2730 1—T
T.

—0.0949 1— (40)

H, 2(0) =0.5758
dH, 2

Tc dT T,
(41)

which yields &2H, (0)=(1.56+0.09) X 10 Oe with
T, = (94. 1+10.2) K. [If a 1 —

( T/T, ) temperature
dependence is assumed, slightly lower values of
&2H, (0)=1.40X10 Oe and T, =93.9 K are obtained. ]
The slope dH, z(T)/dT from the fit to the BCS tempera-
ture dependence is ( —l. 65+0.23) T/K at T, .

To estimate the coherence length at zero temperature
one may use the expression H, z~~, (0)=Pa/2~$, &(0),
where we ignore anisotropy in the ab plane. The rela-
tionship between H, z(0) and dH, z/dT at T, in the isotro-
pic superconductors is '

In the dirty limit lr&(0)/lr=1. 20, ' while in the clean
limit 1~,(0) /~ = 1.26. These expressions yield

g,&(0)= (17.6+1.3) A assuming the dirty limit and

g,&(0)= (17.2+1.2) A assuming the clean limit.
As discussed in the Introduction, evidence favors the

clean limit. The deduced H„~~~, (0) and H, zii, (0) are
(784+12) Oe and (112+16)T, respectively. The H„~~, (0)
value agrees reasonably with extrapolated values from
high-temperature Aux penetration experiments, though
not with low-temperature studies which give much
higher values, but which may be affected by surface
barriers. The H, z~~, ( )v0alues are significantly larger than
values reported in pulsed field measurements, which
may indicate some problem in the extrapolation to low
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FIG. 4. The temperature dependence of &2H, (points) and
the fit to the BCS temperature dependence (solid curve), de-
duced from magnetization data on a YBa2Cu307 crystal with
field parallel to the c axis.

temperature. The thermodynamic critical field H, (0) is
(1.10+0.06) T.

The theoretical curves of —4~M versus T in Fig. 2 are
calculated using the above fitting results. The slope of—4irM( T) for constant H, is given by

d(&2H, )
(42)dT

B( —4mM), dB'
dT dH'

which becomes H independent in the Abrikosov linear
I eglon,

dH 2 (P„=l. 16) . (43)
(2rc ' 1)I3„—

As we can see from the solid curves in Fig. 2, the Abriko-
sov linear region (as calculated from the mean-field
theory neglecting tluctuations) is limited to values of T
very close to T, for these values of H, . For example, for
H, =1 T this region is restricted to a region of the re-
duced temperature (T,2 T)/T, (0.02. The—field depen-
dence of the slope shows that the apparently linear curves
in the lower-temperature region are outside the true
Abrikosov linear region. Figure 3 shows more clearly
that the majority of the data points are in the lower-field
region where Abrikosov's high-field result does not apply.
Therefore, the conventional procedure in which one
focuses on the apparently linear region at the lower tem-
peratures and extrapolates to —4~M=0, ignoring the re-
gion near T„results in values for T,2 and T, that are too
small and a magnitude of the slope of H,,2 versus T that is
too large. The reason that the slope of H, 2(T) is less with
the present method of analysis is that the difference be-
tween T,2 by the present method and T,2 by the conven-
tional method is greater at lower fields than at higher
fields.

We also find that in order to fit the data in the region
T ~ 90 K, much larger and temperature-dependent values
of k, must be used, e.g. , K, =70 for T=90 K and K, = 110
for T=91 K. Such behavior is very different from the

ACKNOWLEDGMENTS

The authors acknowledge useful conversations with T.
K. Worthington, M. Daeumling, L. Krusin-Elbaum, G.
Crabtree, U. Welp, and V. G. Kogan. Ames Laboratory
is operated for the U.S. Department of Energy by Iowa
State University under Contract No. W-7405-Eng-82.
This work was supported by the Director for Energy
Research, Oftice of Basic Energy Sciences. It also was
supported in part by IBM and the Oak Ridge National
Laboratory High Temperature Superconductivity Pro-
gram, Ofl5ce of Energy Storage and Distribution, Conser-
vation and Renewable Energy, under Contract No.
DE AC05-84OR21400, with Martin Marietta Energy
Systems, Inc.

APPENDIX A: CALCULATION OF THE LOCAL
MAGNETIC FLUX DENSITY

For a two-dimensional array of vortices at the posi-
tions p; =L, where L is a lattice vector, there is a corre-
sponding two-dimensional reciprocal lattice of lattice
vector 6 such that e' =1. Now let us introduce the
Fourier transform of bo, given by Eq. (13)

bo, (q)= f d pbo, (p)e

2vrf Ki(g, (q +f )' )

ir(q +f )' K (f g)
where we have used the formulas

(A 1)

d g e ix coso —J (x )
0

(A2)

prediction of the Ginzburg-Landau mean-field theory, ac-
cording to which the value of k, is a constant near T, .
This suggests that T ~ 90 K is a fIuctuation region where
the mean-field theory becomes invalid.

The extrapolated transition temperature of (94. 1+0.2)
K can be compared to the observed onset of ac loss in the
1-MHz ac susceptibility at (93.7+0. 1) K and a loss peak
at (93.5+0. 1) K. While these values are just about
within experimental error of each other, the results sug-
gest that the diamagnetic mean-field T, may be slightly
higher than the true T„as expected theoretically. How-
ever, such shifts due to critical phenomena are clearly
small, limited to a few tenths of a degree at most.

In summary, we have introduced a new method for ob-
taining from the Ginzburg-Landau theory a good approx-
imate analytic expression for the mean-field-theory mag-
netization of an anisotropic superconductor as a function
of field H for all values in the range H, &

to H, 2. We have
applied this method to analyze experimental magnetiza-
tion data from a single crystal of YBa2Cu307, taken as a
function of temperature at constant values of the applied
magnetic field. We have obtained a good determination
of the upper critical-field slope for H parallel to the c axis
by making use of the data in a window of temperatures
above those for which Aux pinning makes the magnetiza-
tion curves irreversible and below those near T, where
Auctuations occur.
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and

f dx xjo(Px )Ko(a(x +z )'/ )

(A3)
ZK, (z(a +P )' )

(a'+ p')'"
(Note that bo, (0)=2'/tr is the fiux quantum. ) Then Eq.
(11)becomes

by setting p =0:

( (G2+ 2 )1/2)
b, (0)=B 1+ g (G2+f 2 )1/2K (f g )

(A7)

We approximate the summation in G space by an in-
tegral taken over the outside of the first Brillouin zone:

b, (p) =g b&, (p I-)—
L

f . d'G,
G~o ABZ G- GBZ

(A8)

y f 6 b (q)ei(P —L) q
d2

(2~)

g bo, (G)e't'
~ cell G

where the relation

A„„pe' 'q=(2~) g 5(q —Cx)
L G

(A4)

(A5)

( (G2+ 2 )1/2)
b, (p) =B 1+ e'P

(G2+f 2 )1/2K (f g )
(A6)

The magnetic Aux density at the vortex center is obtained

has been used. Using the fact that B=2~/~A„ll and
separating the term with 6=0 from the summation, the
above equation becomes f„Ko(g,(f„+2Btr)' )

&(.Ki(f-k. )
(A9)

The above equation shows the properties that
b, (0)—+bo, (0) when B~O and b, (0)~B when B be-
comes large.

where ABz =vrGBz =(2') /A„&& is the area of the first
Brillouin zone, and the zone boundary has been approxi-
mated by a circle of radius GBz - That B=2' l&3
gives Gsz=V'2Bir. Note that, although the approxima-
tion of Eq. (A8) is valid only at low field when the re-
ciprocal lattice spacing (which is inversely proportional
to the vortex spacing) is small, for high field the error due
to the approximation is reduced by the fact that the con-
tribution of the sum becomes small compared to that of
the Ca=0 term; we therefore use the approximation for
the whole field region. Thus, we get
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