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We study thermal fluctuations in a layered superconductor in the presence of a magnetic field ap-
plied orthogonal to the layers. A phase diagram for this case is proposed. In the weak-field region,
fluctuations of a vortex lattice are of three-dimensional (3D) nature. This leads to a two-stage melt-

ing: When the temperature is raised, a phase transition to the vortex-line liquid occurs, then in-

dependent liquid systems of 2D vortices in different layers are formed. For fields larger than the
crossover value, both fluctuations and melting of the vortex lattice become of 2D type. We study
the effect of vortex-lattice fluctuations on the long-range superconducting order. We demonstrate
the existence of a phase transition within the vortex-lattice state: The superconducting coherence
between distant layers vanishes at a temperature which is substantially lower than the melting tem-
perature.

I. INTRODUCTION

Thermal Auctuations in high-temperature supercon-
ductors are much stronger than in conventional ones due
to several reasons: the small value of the coherence
length g,b, the high value of the transition temperature
T„and the layered structure of these compounds. The
layered structure can lead to quasi-two-dimensional Auc-
tuation behavior. In most layered compounds (Bi-Sr-Ca-
Cu-O, Ta-Ba-Ca-Cu-O), the superconducting transition
in the absence of the magnetic field is similar to the
Berezinskii-Kosterlitz-Thouless transition in two-
dimensional systems. ' Some latest experiments indi-
cate the importance of thermal Auctuations in the pres-
ence of the magnetic field. In particular, for
B12Sr2CaCuzO8 pinning is absent in a wide temperature
region below T, . That leads to the suppression of critical
current ' and the emergence of a long tail on the resis-
tive transition down to T-30—40 K. Such behavior is
connected with the destruction of the vortex lattice due
to thermal Auctuations. In the presence of the magnetic
field, the damping of mechanical oscillations caused by
the Bi-Sr-Ca-Cu-O sample changes drastically at the
same temperature T-30—40 K. This was also inter-
preted as the manifestation of lattice melting.

In this paper, we study the properties of a layered su-
perconductor in a magnetic field applied along the c axis
of the crystal (i.e., orthogonally to layers). The fiuctua-
tion behavior is rather complicated in such a field. First,
thermal fluctuations cause the melting of the Abrikosov
lattice at temperatures well below the superconducting
transition temperature T, (B) (here B is the magnetic in-
duction in the superconductor). There is a characteristic

value B =B„which separates regions of three-
dimensional (3D) and two-dimensional (2D) melting. In
the strong-field region (B ))B„),the melting tempera-
ture T (B) is close to that of a single layer and weakly
depends upon B. Second, vortex thermal Auctuations
substantially enhance Auctuations of the order parameter.
There are contradictory statements about this influence.
It was shown by Maki and Takayama and Moore' that
the mean-square Auctuation of the order parameter
diverges logarithmically in the mixed state. These au-
thors ' conclude that vortex Auctuations destroy long-
range superconducting order. This statement was ques-
tioned by Pelkovits et al. " because the order parameter
is not a gauge-invariant quantity and its divergence does
not carry any special physical significance. The opinion
of these latter authors" is that Auctuations of the gauge-
invariant phase

y(r )
— J A( l ).dl

C 0

are finite and the long-range superconducting order is
conserved [here y(r) is the phase of order parameter,
A(r) is the vector potential].

We study the long-range asymptotics of the gauge-
invariant correlation function of the order parameter and
demonstrate that the long-range superconducting order is
absent in the a-b plane at any temperature. Phase coher-
ence along the c axis is conserved up to some definite
temperature depending on magnetic field To(B). In the
strong-field region (B ))B„),the value of To(B) is much
smaller than the temperature T of the vortex-lattice
melting. Moreover, at T = To(B), vortex fluctuations
remain weak. Such behavior is caused by a nonlocal rela-
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tion between the disturbance of the order parameter and
the displacements of the lattice. Thus, there is a broad
region of temperatures and fields within which the long-
range superconducting order is absent but the long-range
order in the vortex lattice is conserved.

Suppression of the phase coherence across layers mani-
fests itself in some effects connected with the excitation of
the superconducting currents along the c axis. Particu-
larly, at T= To(8), screening of a weak magnetic field
applied parallel to the a-b plane vanishes.

[k,b ( T) and A,, ( T) are the components of the London
penetration depth], and the z axis coincides with the c
axis. The anisotropy parameter @=A,, /A, ,b is assumed to
be large, y))1. Expression (1) is valid if the gauge-
invariant phase varies along layers on a scale that is
larger than the coherence length, i.e.,

2eVq„— Ati «1/g. b

+EJ 1 cos

' f ""a,dz
g 2+fd"~'8~

(We fix the gauge by the condition div A=0. ) Here

4'od

7r(4vri, ,b )

is the stiffness constant characterizing phase fluctuations
in a single layer,

PoE~=
~(4mB, , ) d

is the energy of Josephson coupling between layers

II. VORTEX LATTICE ELASTIC ENERGY
FOR A LAYERED SUPERCONDUCTOR

Consider a layered superconductor in the magnetic
field H applied orthogonal to the layers. We restrict our-
selves with the case H„«H «H„. Within this inter-
val, the magnetic induction 8 inside the sample almost
coincides with the strength of the magnetic field H.
Equilibrium phase distribution and phase fluctuations for
a layered superconductor are determined by energy:

2

~=X fd'r —'»&„—'
A„

It is well known that, at low temperatures in the range
of the fields H )H, &, the triangular vortex lattice corre-
sponds to thermodynamic equilibrium. In a layered su-
perconductor, the Abrikosov Aux line consists of "sec-
tions. " Each "section" is a vortex excitation in a single
superconducting 2D layer. Below we shall call these ex-
citations 2D vortices. The energy of a layered supercon-
ductor in a mixed state is a function of the positions of
the 2D vortices in each layer.

The fluctuation behavior of a vortex lattice is deter-
mined by its elastic energy at small deviations u(R, n) of
the 2D vortices from equilibrium positions (n is the
layer's number, R is the vortex position in a layer). The
elastic energy for a three-dimensional isotropic supercon-
ductor was calculated by Brandt' (the generalization for
the anisotropic case was made, e.g. , in Ref. 13). Because
of the weak interlayer coupling, there is a wide interval of
fields where fluctuations are determined by the whole
range of wave vectors k, across the layers. [The elastic
energy for the arbitrary dependence of 2D vortices dis-
placements u(R, n) on the layer's number n is obtained in
the Appendix. ] On the other hand, the wavelengths of
vortex displacements in the a-b plane are usually quite
long. If the inequality a «A, ,& holds, then the bulk
modulus C» is much greater than the shear modulus C66
(a is the vortex-lattice parameter). Hence, the fluctuation
behavior is basically determined by the transversal lattice
deformations u, (R, n) (divtt[u, (R, n )]=0). We shall only
consider this type of deformation. In this case the elastic
energy can be written down in a simplified form:

2dk, d kii"=-'f f [Cbbk[[+C44(k„k[[)k, ][u,(k„k[[)I—vryd 27r k~~ &Ko (2m)

2

1+gzk()+g, bk, 2(4vrk, ,b) y Ko+(k, /y)

k, =2 sin(k, d/2)/d .

ln(1+k, /Eo)
(A,,bk, )

(2a)

Here'

Cbb =PQ/(8~A, ,b )

k,„—1/g, b(1+ T/T, )

24'Xb
(4') A, d

For the sake of simplicity we approximate the 2D Bril-
louin zone by a circle with radius

Ko =(4mB/$o)' —1/a

and use the quadratic in the k~~ expansion within the
whole zone. Such an approximation slightly modifies
only the numerical factors. The effective tilt modulus
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C4&(k„k~~) consists of two terms. The first term corre-
sponds to a nonlocal contribution to the tilt energy, ' the
second one is caused by the tension of separate vortex
lines. This "single-vortex" contribution is usually omit-
ted, ' ' ' but it exceeds the nonlocal contribution for

k
kll))K0 ln, k '"

Xo+(k, /y)
(3)

i.e., in the largest part of the 2D Brillouin zone. Note
that the tilt stiffness of the vortex lattice is preserved due
to the magnetic interaction between vortices in different
layers even in the absence of the interlayer Josephson
coupling (A,„y~~). Magnetic interaction is given by
the "single-vortex" contribution in (2a). It exceeds the
Josephson contribution if the anisotropy is su%ciently
large, y & A,,b /d. In the following sections we use expres-
sion (2) to study the fiuctuation behavior within the field
interval H, &

& B & H„.

III. EFFECT OF THERMAL FLUCTUATIONS
ON THE VORTEX LATTICE

A. Region of small fluctuations

dk, kii exp(ik, nd + ikllR)=T ""' ''2"' C«kll+C

(4)

The fluctuation behavior of layered superconductors is
substantially different in the regions of weak and strong
magnetic fields. The characteristic magnetic field
separating these regions (crossover field) B,„can be es-
timated from the relation

C6bKO —C4~ (ir/d )

If the Josephson coupling dominates over the magnetic
one in the tilt energy (i.e., A,, & A.,b /d), then the crossover
field is estimated as

goin(yk, „d)
B„=2m

In the weak fields, B «B„,the relative displacement
of 2D vortices in adjacent layers is much smaller than the
fluctuation displacement of the vortex itself,

([u(R, n+1) —u(R, n)] ) «(u ) .

In this case an usual concept of a vortex lattice as an ar-
ray of well-defined Aux lines penetrating through super-
conducting layers is valid. The main contribution to
( u ) is given by the wave-vector region k, « m. /d,
0 & kll & Ko, and because of the large logarithmic factor in
(3), one can neglect the nonlocal tilt modulus in compar-
sion with "single-vortex" contribution. Thus, we obtain
the following estimation:

The main characteristic of fluctuation behavior of the
vortex lattice is the correlation function of displacements:

(u(R, n)u(0, 0) )

4 dC4~dC«a
and long-range order in the vortex lattice is conserved at
low temperatures.

B. Vortex-lattice melting

The increase of temperature causes the destruction of
the long-range order in the lattice. The melting tempera-
ture T depends on the magnetic field B. As it was men-

tioned in a number of papers, ' ' ' a high-transition
temperature, small coherence length, and high anisotropy
of high-T, superconductors lead to a substantial reduc-
tion of T (B) in respect to the mean-field transition tem-

perature T, (B) for the wide range of applied magnetic
fields.

The character of lattice melting depends on the rela-
tion between the magnetic induction B and the crossover
field B„. At B «B„,the vortex lattice is similar to a
lattice of strings. Due to this reason, one can expect that,
at the melting point, only the shear stiffness disappears
but the tilt modulus C44 remains finite. The estimation of
the melting temperature valid for this range of fields was
obtained in Refs. 13 and 15 from the Lindemann cri-
terion

z~~n—

Expression (2a), which takes into account the linear
strain energy of separate vortices, allows us to determine
more precisely the field dependence of the melting tem-
perature' T (B):

1/2B„
B

2 d 2

& (B)=
2 (4irk), (9)

Melting corresponds to the transition from a vortex
lattice to a liquid of vortex lines. ' In the latter phase,
the tilt modulus C44%0. A further increase of tempera-
ture leads to the destruction of the vortex lines and the
vanishing of the tilt modulus C44. The temperature cor-
responding to this destruction, T (B), can be estimated
from the relation

2 )
16ir Tkc ~ah

a) y'"B'"
In Refs. 13 and 15 the estimation for ( u ) was obtained
without a "single-vortex" contribution to the tilt energy.
This leads to an overestimation of (u ) in the logarith-
mic factor ln' (k,„a).

In the strong-field region B )&B„,an interaction be-
tween 2D vortices in the same layer is stronger than the
interaction between 2D vortices belonging to the same
vortex line. This leads to quasi-two-dimensional behavior
of fluctuations. In a strictly 2D case, the long-wave soft
excitations induce logarithmic divergency in the mean-
square fiuctuation displacement (u ). The coupling be-
tween vortex lattices in adjacent layers suppresses Auc-
tuations with small wave vectors k~~ &&(yda) '. That is

why fluctuation displacements are finite,
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( [u(O, n +I)—u(O, n)]2) &a~,

which, with help of (4), gives
1/2

(10)

(T)=a exp[bT /(T T—)] (14)

dimensional hexatic are characterized by a correlation
length g that diverges in the vicinity T as'

T (B)-T (B)

At B ))B„,the vortex lattice in a layered supercon-
ductor behaves as a quasi-two-dimensional object, con-
sisting of weakly interacting vortex lattices in different
layers. In this region, the melting temperature is close to
the one for a single superconducting layer T . The
latter is field independent

0T = 3&1
8~3' (4~k )

(12)

Both moduli C44 and C«drop to zero simultaneously at
the melting point. The phase emerging at T )T is usu-
ally called the vortex hexatic because it conserves long-
range orientational order; the true liquid is realized at a
somewhat higher temperature. ' Note that criterion (8)
in the quasi-2D region determines the boundary of the
fluctuation region.

For a rough estimate of the field dependence of the
melting temperature in the entire interval of magnetic
fields, one can use a modified Lindemann criterion:

([u(a, 0)—u(0, 0)] )' =c a . (13)
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FIG. 1. The melting line on the B-T plane for a layered su-
perconductor obtained from criterion (13) in the case T «T, .

[In the region B «B„,criterions (8) and (13) differ from
each other only by the definitions of the Lindemann con-
stants cI and c .] Equations (12) and (13) give an esti-
mate c & I/2m&2. The function T (B) obtained from
Eq. (13), assuming weak field dependence of c, is plotted
in Fig. 1.

The exact asymptotic of the deviation of T (B) from
T at B »B„can be obtained as follows. In a wide re-
gion of temperatures T )T, vortex hexatics in different
layers are independent. Fluctuations in a two-

&=0.37, b is a numerical constant of order 1. The two-
dimensional character of transition is violated if the
Josephson energy related to the area —[g ( T) ] be-
comes of the order of temperature:

E«( T)[$2D( T) ]2 T

This relation determines the B-dependent difference be-
tween the melting temperature T and limiting value
T . Thermal fluctuations suppress the energy of the
Josephson coupling in comparison with the bare value
EJ. This suppression is studied in the next section. Us-
ing Eqs. (14), (15), and (31), one finds

b 1/v
T (B)=T 1+

ln' (B/B„)
The T (B) dependence was also obtained in Ref. 8. The
difference of a numerical factor is caused by taking into
account here the suppression of EJ by Auctuations.

We conclude this section with a remark considering
the microscopic inhomogeneity of the internal magnetic
field. A magnetic Aux quantum "attached" to a single
vortex line corresponds to a field that is distributed over
the area A,,I, ~ At B))B

~
the condition a/A. ,I, &&1 holds

and areas X,& belonging to different vortices overlap.
That is why the modulation of the magnetic field is small.
(The remaining effect of the Ilux quantization for each
vortex line is that the Aux through the elementary cell in
a vortex lattice is quantized. ) In the absence of Iluctua-
tions, 2D vortex lattices in different layers are positioned
exactly on top of each other. Hence, the in-plane period-
ic modulation of the magnetic field has the same phase in
all planes and field 8 has only a z component. Fluctua-
tions produce a relative dephasing of this modulation in
different planes. As a consequence of the magnetic Aux
conservation law, a nonzero B~~ component of the field
should appear. The stronger the Auctuations in the vor-
tex positions, the larger the rms of this component is.
However, B~~ remains small even after the 2D melting be-
cause of the condition d, a «X,I, . An estimation based
on the London equations gives

(B ) ' —(da /A. )B

and shows that the component B~~ may be neglected.

IV. FLUCTUATIONS OF PHASE
AND LONG-RANGE SUPERCONDUCTING ORDER

A. Region of small Auctuations

In Refs. 9 and 10, a statement about the absence of the
long-range superconducting order in a vortex-lattice state
was made. This statement was based on the logarithmic
divergency of a mean-square fluctuation of the order pa-
rameter ((g—(g) ) ). This divergency, however, has no
physical significance because the order parameter is not a
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gauge-invariant quantity. In fact, the long-range super-
conducting order is determined by the behavior of the
gauge-invariant correlation function

. 2&G(r, r')= g(r)g*(r')exp i —f dl A
Po r'

(17)

at large distances between r and r'. The integration in
the exponent should be performed along the straight line
connecting points r, r' and not intersecting vortex cores.
For small fluctuations it is convenient to rewrite the last
expression in the following form:

B d q
V,&(k)=2~ g f q, 6(q —k —K)

(2~)

1+A,,bk

q
+

1+k2k2II+A2bk2

X u, .
k q

(20b)

Perturbations of vector potential components are propor-
tional to the components of Vy:

G (r, r') =Go(r, r')exp[ —S (r, r') ],
r

S(r, r')= — f dl Vy(r) — A
2 r' Po

(18)

(18a)

(21a)

dk, dq n, qu(r)= f f ' '
u, ( k„q)exp(i k, z +iq rii) .

(2rr)' q

In the linear approximation

V, cp(k)=2~ g J 5(q —k —K)d q
fo K (2~)

1+~,'k
1+A, k +A, k kq

(19)

(20a)

Here Go(r, r ) is an equilibrium value of the correlation
function, cp and 3 are fluctuations of the phase and the
vector potential. The suppression of long-range order is
determined by the asymptotic behavior of the phase
correlation function S(R) at R ~ ~ (R=r —r'). Below
we study this behavior for diA'erent orientations of R.

One can relate the fluctuations of the gradient of phase
to the long-wave transversal lattice distortions

~ (k)
'

2~ 1+k k
(21b)

The parallel to layers component of the phase gradient
V~~y contains a singular part: a sum of 5 functions local-
ized on vortex cores. [This part corresponds to a term—q/q in the large parentheses in (20b).] The singular
part, however, does not contribute to the S(R) function
because the path of integration in (17) avoids vortex
cores. The corresponding part in the vector potential is
not localized on cores and that is why it should be taken
into account. This can be done with a certain
simplification: because of the condition a/k, b ((1, the
only relevant term in the lattice sum for J(k) [see expres-
sions (20a), (20b), (21a), and (21b)] is the term with K=O.
The part with K=O in V~~cp tends to zero at k, =O, i.e.,
transverse lattice deformations only cause a weak pertur-
bation of the magnetic field. With the above-mentioned
simplifications, one finds '

S(R)= 2rr
B
0o

2
d k kii(k'll)( 1 +A k ) kiik n +k (kii'Ilii)/kii

(1—cosk. R)(2'�)' (k'n)k l(1+X2b k ~+ A 2k
i' )

T
C66k

ii
+C44(k)k,

(22)

(23)

here n=R/R.
It is possible to neglect screening in a wide interval of

distances, i.e., to omit part of S(R) connected with the
vector potential and to use an expression

B2
C' (k)=

4 A. kC

for the tilt modulus. These approximations lead to a log-
arithmically increasing S(R) function:

(4~) A,,bA, ,TS(R)=
16 o 4'o

(K,R „)4+(y K,R, )'/4
Xln

1+(yKod/2')

Dependence (23) corresponds to a power-law decay in the
order-parameter correlation function (in accordance with
Refs. 9 and 10).

The asymptotic of the S(R) function as R ~~ de-
pends significantly on the vector R orientation. We start
with the asymptotic for the direction in a-b plane
(R, =O). As was mentioned above, perturbations of the
parallel component of the vector potential caused by
transversal distortions of the vortex lattice are small.
That is why the only e6'ect of the screening for the paral-
lel direction is the renormalization of the tilt modulus
that occurs on the scale Ri~

)A, This renormalization
leads to a change from the logarithmic increase of S(R)
to a linear one at distances R

~~

~ A,, :
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S(R)= (4') A,,bT
Riiat R, =O, Rii &A, ,

4o 0o

((@„,—y„)'&

(B) T2D(B /B)1/2 (28)

(24)

and to an exponential decay of the order-parameter
correlation function (18).

In the transversal direction (R~~ =0) at R, ~~, the
S(R, ) function approaches finite value due to screening.
The logarithmic increase of S(R, ) saturates at distances
R, -R, ,„ that can be estimated as follows. The main
contribution in S(R,) originates from the region of wave
vectors k~~ ~2mKo/yR, . On the other hand, screening
becomes important under the condition A,, k~~

~ 1. Hence,
a logarithmic increase of S(R,) stops at R, -R, ,„,
R, ,„-2~Kok, i,,b, and S (R, ) approaches the value

(4m) A,,bl, ,T
S(R ~~,R =0)=z $2

(Kok,, )
Xln (25)1+(yKod /2vr )

So, the lattice Auctuations at low temperatures do not
destroy the long-range order in the direction of the mag-
netic field.

B. Vanishing of the long-range superconducting order
in the direction of the field

The destruction of the long-range superconducting or-
der in the magnetic field direction occurs as a result of a
phase transition. Here we show that, at B »B„, the
temperature of this transition is well below the melting
temperature of the vortex lattice. To study the phase
transition under discussion, it is convenient to introduce
a simplified Hamiltonian H that does not include
screening and describe phase fluctuations on the scale
d &R, &z,z., ra, a &R~~ &X, :

H„= g f d r —(bg„) +EJ[,1 —cos(y„+,—y„)]

At B »B„ this temperature is substantially lower than
the melting temperature in a single layer T (12).

To demonstrate the existence of the phase transition,
we show that the power-law decay of the correlation
function G(R), (19), changes to an exponential one at
T» To. In this temperature region, the high-
temperature expansion can be used which is similar to
the one for the XY model. It leads to the following re-
sult for the correlations in the z direction:

(exp I i [p(X)—g(0) ] I & = 2' To

T In(T/To)

N

(29)

In the range T « To the value of J, is given by J, =EJd
The existence of this stiffness leads to the screening (on
the length scale A,, ) of a weak magnetic field B applied
along the layers (the considered geometry is presented in
Fig. 2). We suggest that, in an analogy with the
Berezinskii-Kosterlitz- Thouless transition, the phase
stiffness jumps to zero at the transition point. Experi-
mentally, the jump in the stiffness should manifest itself
as a vanishing of the screening of the field B.

In the temperature region T )To(B), the effective
interplanar Josephson coupling energy

This expression is valid on all scales of R, =Nd and
screening does not change the exponential asymptotic.
Thus, at T- To, the system undergoes a phase transition
that is accompanied by the destruction of phase coher-
ence in the field direction. The corresponding line is plot-
ted in Fig. 3.

The transition u.nder discussion is similar in a number
of features to the Berezinskii-Kosterlitz-Thouless transi-
tion in a degenerate two-dimensional system. At temper-
atures T (To, the system with the Hamiltonian (26)
possesses with a transversal stiffness that determines the
increase in free energy F caused by a small change of the
phase across the layers (i.e., in the z direction)

2

d'r 'J,
2 Bz

Here

d$3

(4m)B A,,b.
(26) E"=E.&cos(m. +i V. )&-

is also significantly suppressed,

21T ToE' =E
T ln( T /To )

(31)

(4~) X,bk, , T
(@.+i —k. )' =2

0 4o
(27)

The temperature To(B) of the destruction of the phase
coherence along the field direction is estimated from the
relation

At low temperatures, the Hamiltonian (26) allows us to
reproduce the result (23) for S(R). The suppression of
the interplanar Josephson coupling is determined by a
mean-square Auctuation:

C. The influence of pinning
on the long-range superconducting order

The large-R behavior of the order-parameter correla-
tion function is determined by the small-k elastic energy
of the vortex lattice. That is why even weak pinning
strongly affects the S(R) asymptotic. Pinning lifts the
translational degeneracy of the lattice. The increase of
energy 5E under a small homogeneous shift u of the lat-
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$0(T, —T)
B (T)=a

(4~A, , ) dT, T
(34)

Here e is a universal constant. Using the experimental
values dB /dT=10 Oe/K and A,, =7X10 cm for the
Y-Ba-Cu-O compound, one can obtain the estimation
a -0.1. With this value of a, Eq. (34) gives, for the
compound BizSrzCaCuz08, an estimation dB /d T=20
Oe/K. The rather low value of this slope explains the ex-
istence of the long resistance tail.

We note, finally, that, for the compound
BizSrzCaCuz08 (d =15 A, A,,b =3000 A, y=50), the 2D
melting temperature (12) T =30—40 K is well below
T, . The typical crossover field [see (5)] B„can be easily
achieved because of strong anisotropy, B„—1 T. That is
why the predicted features of the phase diagram at
B )B„,in principle, allow the experimental validation.

APPENDIX: DYNAMIC MATRIX
FOR A LAYERED SUPERCONDUCTOR

Under the condition d «k, b, one can change the con-
tinuous function A(z) to a discrete one A„. So, the dis-
tribution of fields and currents in a layered superconduc-
tor is determined by a set of London equations:

1 0

~b 2w
V((y„A ()„+(6((+b,, ) A((„—0, (Ala)

leads to the appearance of the vortex-glass state without
linear resistance. In the vortex-line-liquid state, Aux
lines move almost independently of one another. Howev-
er, disorder effectively pins each line and linear resistance
is also absent. On the other hand, in the vortex-liquid
state, 2D vortices in different layers move independently
of one another and can overcome the disorder potential
relief due to thermal activation. It means that true super-
conducting transition takes place at the temperature
T (B) (11). In the vicinity of T„ the field B at which
linear resistance appears depends upon temperature in a
linear way:

Here the symbols
~~

and z correspond to the directions
parallel and orthogonal to the layers, respectively, the
symbols V', and 6, denote the lattice gradient and the lat-
tice Laplace operator:

rot~tV~~%„=2~n, g 5(r~~
—r "') .

(n)
(A2)

Here r'"' are the coordinates of the vortex cores in nth
layer.

Using Eqs. (Al) —(A2), one can obtain the perturbation
of the phase cp and vector potential A under a small dis-
placement u of the 2D vortex in the nth layer from the
equilibrium position. Fourier components of g(k) and
A(k) are given by

I+A,,'(k'„+k,') (k~~ Xu)
y(k)=2nd exp(ik~~ r+ik, nd),

1+A,,k
ii

+A,,bk, k

(A3a)

$0 ik, g
A, (k)= e p[i ~~. + k, (n+1/2)d],1+k', (k

~~~
+k,')

(A3b)

$0 iklly —2mdn, Xu
A~~(k) = exp(ik~~ r+ik, nd) . (A3c)

1+A,,b(k
i~

+k, )

We use the notation k, =2sin(k, d/2)/d. Substituting
these relations into formula (1), we obtain the following
expression for the elastic energy:

2
d00

E,
~

——— g 8; (r —r', n —n')
Ir, r,

n, n'

V.f.=(f.+—i f. )—/d

6,f„=(f„,+f„, 2f„—)/d
Equations (Ala) —(Alc) should be completed by a topo-
logical relation:

X u;(r, n)u, (r', n'), (A4)

V,y„—3,„+(b,~~+ b,, ) A,„=O,
A . 2

VfJ A)in +V'z Azn ] 0

(A lb)

(A 1c)

where the dynamic matrix 8; (r, n) is determined by rela-
tions:

(1) At (r, n)W(0, 0),

/d dkz dk
(r,~n)= f ' f z WJ(k)exp(ik~~ r+ik, nd),2' (2~)~

k, 6;. [I+A,,(k„+k, )]k,k,
8;~(k) = —.+v 4~ 1+g2k2+g2 k2 (1+g2k2+g2 k&)[1+g2 (k2+k&)]

(A5a)

(2) At (r, n) =((),(j)

W, (0,0)= — g W~. (r, n) .
(r, n)X(0, 0)

(A5b)
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