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We show, within the framework of the Ginzburg-I andau theory, that both the conven-
tional and the anomalous temperature dependence of the lower critical field observed in high-
temperature superconductors may result from the Aux penetration through a set of separated
microdefects. Microdefects modeled by normal layers with proximity-induced superconductivity
can produce drastic enhancement of the lower critical field at low temperatures and can provide
strong-pinning centers. The pinning interaction between an isolated vortex and the normal
layer is primarily magnetic at high temperatures. At low temperatures, magnetic interaction is
reduced, due to the increase of the normal-layer coherence length.

I. INTRODUCTION

One of the intriguing features of high-T, (HTC) super-
conducting single crystals is the temperature dependence
of the lower critical field H, i(T) There a. re two qualita-
tively diAerent types of the experimental results. One is
the conventional BCS-like behavior exhibiting linear tem-
perat, ure dependence near T, and negative curvature at
lower temperatures, observed both in dc and ac magneti-
zation measurements. In the other, anomalous temper-
ature dependence there are two regimes: from T, down
to approximately 0.5T, H, i(T) is linear or with small
positive curvature; at lower temperatures H, i(T) rapidly
increases giving positive curvature. This type of behavior
was obtained by dc magnetization measurements.

There have been several attempts to account for this
anomalous H, i(T).5 Hirashima and Matsuura5 sug-
gested that it comes from the change of the symme-
try of the order parameter at a low T. Ye et a/. pro-
posed a theory based on the assumption of anisotropic
Cooper pairing. Koyama et aI. suggested that the
anomalous H, i(T) comes from the intrinsic property of
a Aux line in a multilayer structure of the oxides super-
conductors. In this paper we claim that the source of
the anomalous behavior of H, i(T) is intrinsic intragran-
ular defects —normal phases, present even in high-quality
single crystals. ~ In Y-Ba-Cu-0 one possible origin is
the decomposition of the off-stoichiometric phase into an
orthorhombic 07 structure and a tetragonal Os struc-
ture, preceded by a series of transient oxygen-ordered
structures. Recent electron microscopy evidence shows
that typical dimensions of defects in Y-Ba-Cu-0 vary
from 20 to 1000 A. When such microdefects are near
specimen boundaries, H, ~ can be lowered due to the
Aux penetration, in the form of quantized vortices
through the normal "channels. " We model these de-

fects by superconductor —normal-metal —superconductor
(SNS) junctions. Coherence through the normal (N)
regions is established by proximity effect. Common fea-
tures of HTC superconductors are that at T = 0 the
coherence length (, along the e direction (perpendicu-
lar to Cu02 layers) is very small and comparable to the
lattice constant, and that the Ginzburg-Landau (GL) pa-
rameter K is much greater than 1. In N defects, the co-
herence length (iv(T) is temperature dependent, but its
characteristic value (tv(T, ) is presumably comparable to
(„since the structure of the superconducting (S) phase
and of the microdefects, which are easily formed parallel
to Cu02 layers, is similar. Starting from a single nor-
mal defect in single crystal, we show that the thickness
of this defect, which provides anomalous H, i(T) depen-
dence, is significantly greater than (~(T,) and extends
over the region of several unit cells. Therefore, anoma-
lous H, i(T) dependence is not an intrinsic property of
the superconducting phase.

In Sec. II we study the Aux penetration and the pinning
of an isolated vortex in a SNS junction. The material
parameters will be chosen to correspond, first, to a typ-
ical conventional (artificial) SNS junction, ii with large
coherence length in N, and, second, to the SNS modeled
defect, characterized by small coherence length in N.

In Sec. III we find H, i(T) in the limit Ks » I, giv
and a~ && As, where zs, (s, and Ag are the GL param-
eter, coherence length, and the penetration depth in S,
respectively, and 2a~ is the N-layer thickness. This limit
is crucial in understanding N defects in HTC oxides. The
interaction between an isolated vortex and such defects
suggests a strong pinning mechanism that would provide
high critical current. A simple method, generalizing the
conventional image method, useful in theoretical treat-
ment of such junctions, is given. Finally, an experiment
that, might prove this pinning mechanism, is suggested.
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II. FLUX PENETRATION AND PINNING
IN THE SNS JUNCTION

A. The entrance of the magnetic fiux
in the SNS junction

Consider the N layer of thickness 2a~ in the Y'-Z

plane, embedded in the S matrix. The magnetic field
H is assumed parallel to z axis (Fig. 1). We begin by
writing GL equationsis for the order parameter tt and
the magnetic field H = 7' x A in both N and S metals:

X

FIG. 1. Geometry for the calculation of the lower critical
field II,i and the force f acting on the vortex displaced in the
x direction. Magnetic field H and the vortex are parallel to
the normal (N) layer, embedded in the superconductor (S).

(2)

Parameters n and P are piecewise constant functions of
position taking on values n = ns = ns(T —T,s) & 0
and P = Ps & 0 in S and cr = niv ——

nlv (T —T,rv) & 0
and P = Piv & 0 in ¹ T,s and T,rv are the bulk crit-
ical temperatures of S and K, respectively. The critical
temperature of the junction is T, = T,g. In general, the
nonlinear term of the first GL equation is small in N and
can be neglected; it does not qualitatively change the re-
sults when the temperature T is greater than the critical
temperature T,N of ¹~The free-energy density is

1 4 h
+i[»H(r)1 = ~l@l'+ 2&1@1'+

2
„(7I@l)'

m' t'cV' x H 1+ . +
i, 4~e" l@l 8

where @ = —ns/P is the bulk square order parameter
in zero field. At low fields the SNS junction exhibits
a Meissner state, due to the proximity effect from the
superconductors. If the field becomes larger than H, q

this state is destroyed and the magnetic field enters the
junction. Flux may enter in the form of linear array of
quantized vortices or in the form of a plane parallel
to N (laminar model). In a bulk superconductor, a vor-
tex state is more favorable than the laminar state. We
shall examine whether this is valid in a SNS junction.

First, we assume the vortex model for the Aux pene-
tration. The critical field H, ~ for the entrance of the first
vortex is given by the difference between the free energies
(per unit length) of the one-vortex and no-vortex states:

The coherence lengths (s iv and the GL parameters zs iv
for S and X are

4x
H, g

——

Cp
d'r (Fi[r H(r)] F0(r))

2 1 m c'l
(s,~ = 2,

l l

s, iv —2,g I Ps,~, (4)
We shall assume the variational form for the order param-
eter"

and the penetration depth in bulk superconductor Ag is f(r)g(z) e'~,

fD C

4~ (e')
where P = tan (y/z) and g(z) is the zero-field solution
of Eq. (1):

b l cosh [(z —c) /(~]tanh , lz —el&a~
2(s ) cosh a~

g(*) = ~

t'lz —cl ~ b —a~
tanh

I

2(s

the origin z = 0 being at the vortex position. Parameter b is chosen so that dg/dz is continuous at the S1V boundary

b = sinh i/2 coth
l

S —j N &N

2 s i iv)
Distance c between the vortex and the center of N is equal to zero in the calculation of H, i. Function f(i ), introduced
by Clem ~7

f(~) = ~/v'~' + t.".
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describes the core of the vortex. Parameter („gives the vortex core radius. For simplicity, the anisotropy of the vortex
core is neglected. Introducing reduced variables, p = r/As and h(p) = H(r)/~2H„where H, = C p/2rr~2As(s,
aN —+ AsaN, ( ~ As(, Eq. (6) becomes

4~ (fg)' &Oz)
2 2 2

+ sgn(o) —
~ g +, ~

+ —
l g (f +1) (f —1)

(sl ~ 1 dg i 1 r. &

( j Ks dzf 2 ~s)

+ 2g I g +2 f—1 Of (Of z dg

2s p p p
(10)

where h (p) is the solution of the equation

O 1 Oh

Oz (fg)~ Oz

O 1 Oh 2'
b(z)6(y),

and n, r, and ( refer to local values. In physical units line energy E is related to H, i as E = 4 pH, i/4' and in reduced
units s'=h, r4x/Ks. For simplicity we introduce rs/(4')Z = s = h, i. Using the limiting form of the solution h(p)
when p~0

h(p)—:h(z, y) = h(0, 0) —g (0)p /2~sf„,

Eq. (10) can be transformed into

h(o, o) +
2 4 ]2

(Xp(z) Xi(z) cos u 3g4(2 + 2 COS tL

i cosu 4 8~~s
(12)

where z = g„ tan u, Xp(z) = 0 for ~z —c~ ) aN,
Xp(z) = (AN/rs) —for ~z —c~ & aN, Xi(z) = 1 for

aN, and Xi(z) = (rN/rs) for
Line energy s has to be minimized with respect to („.
Magnetic energy h(0, 0)/2 comes from the magnetic field
and the supercurrents. Remaining part of z is the core
energy of the vortex.

Since Eq. (11) describes variation of the magnetic field
at distance of the order 1, the choice of parameters
aN (N (s = 1/res (( 1 best modeling the micro-
defects in HTC superconductors would be inconvenient
for a numerical treatment of Eq. (11). Therefore, we

choose zs ——5, although in HTC superconductors zs &)
1. To describe the classical SNS junction we put (N = 2.
For the SNS junction describing microdefects in HTC
superconductors we take (N = 0.4.

Introduction of the local penetration depth

A(z) = As/g(z)

enables us to define the parameter esN (Ref. 14) at the
SN interface:

rSN = AB/4N

where AB = A(c+ aN). For a typical value aN/(N=l
we get rsN = 0.47 for (N ——2 and zsN = 1.9 for

(N = 0.4. Small asN characterizes conventional artifi-
cial SNS junctions in which the screening in the N layer
is important and the vortex is primarily located in ¹

When zg~ ——1.9, screening in N is weak and the field
of the vortex penetrates deeper in S. The vortex field and
supercurrent distribution are obtained solving Eq. (11)
numerically. As an example, consider the supercurrent
distribution around the vortex centered in the N layer
with (N = 0.4 represented in Fig. 2(a). The streamlines
of the supercurrent, which also represent contours of con-
stant magnetic field, show that the changes of the field in
the direction perpendicular to the N layer (outside the
core of the vortex) are small throughout N, except at the
distance of the order of (N from the SN boundary, which
is smaller than Ag. In the superconductor, field variations
in this direction are stronger, resembling the common ex-
ponential decay of the external field near the surface. In
the limit aN « 1, Ks )& 1 and (N —(s = 1/rs, for
the thickness 2a~ containing several coherence lengths

(N, the pattern in Fig. 2(a) would change into the su-

percurrent distribution around a vortex in the insulating
barrier, having streamlines in N perpendicular to the in-
terface. In this limit, the component of the supercurrent
parallel to N acquires a jump across the barrier, which
can be calculated analytically (see Sec. III).

To solve Eq. (11) for the vortex field, we have used the
relaxation method, which is described in Ref. 15. This
method is unreliable for thick N metal, and we apply it
in the interval aN/(N & 2.5.

Next, possibility is that the flux enters according to
the laminar model. In this case the magnetic field has its
maximum at the center of N (z = 0), where it destroys
the proximity-induced superconductivity. We shall as-
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sume the variational form for the order parameter,

g(z)fi (z)

where ft (z) = tanh(z/(~) describes the region of de-
stroyedd

sup ercon du ct ivity. For the ext ern al fie 1d II'"'
parallel to X, Gibbs energy per junction unit height is

Gi ——AF — H'"' d r H(z)
4m

where AF is the free energy diA'erence between the
laminar and Meissner state and H(z) is the local

magnetic field . Then, introducing reduced units, we

get the reduced Gibbs energy per unit area [gt

Gi /(4o/4')(~2' )L &, I„being the length of the SNS
in the y direction]:

Kg
g l

2 7r
d h + l l

+ (f(2 —I )
1 /'dh

kg 2
E, dz

1
] g (ft' + 1) —I(z)g

( bl

2

Ks dz ) 27'

where I(z) = 1 for lz —cl ) a)v, I(z) = 0 for lz —cl & aN,
and

l
a(0+ ) l

is the reduced vector potential in the limit

z ~ 0+ and in the gauge where @ is real. It is obtained
from the equation

d' a/dz2 = (fig) a

w ith the boun dary con dit ions

( h(0), a(oo) = 0
dz J

(16)

Equation (16) is obtained by taking the curl of the sec-

ond GL equation, Eq. (2) . Parameters h(0) and (i are

obtained by minimizing g~ for fixed external fie 1d . Then,

h(0) = h'"" and (i 0.3 for ()v —0.4 and (i increases
from 0.3 to 1.6 when a)v/g)v increases from 0 to 2.5
for (~ = 2. In this way we get

FIG. 2. (a) Sup ercurrent distribution around a single vor-

tex in the middle of the normal layer N of thickness 2a ~
1 .6A, . The coherence length and the 6L parameter of N are

0.4A& and z~ = 0.2, respectively. The penetration

depth A g gives the length scale over which the m ag netic field

enters the sup ercon duct ors . The stream lines of the supe r-

current, which seem perpendicu lar to the SN inter face, show

that the screening of the magnetic field is weak in N (b) Su-.
p ercurrent distribution produced by a vortex located in the

superconductor at distance 0 .4 A g from the SN interface, for

the same parameters as in (a) .

P' ~1

(fP —1)g' —
I (fP + 1) —I(z) +, — — Ii'""la(0 ) I

2 Ks ) Ks dz 2IC'
lee

In obt aining Eq. (17) we used

lim
l

= h(0)a(0+)h(z) (dh
~-+o )g 2

g dz

The external fie ld for the first, flux entrance in the junc-

tionn

is obtained from g~
——0 . We find the critical field for

the laminar entrance of the magnet ic flux in N, for the

i

same parameters as in the vortex model ~

The resu its of the calculation are shown in Fig. 3 for

(~ = 2 and in Fig. 4 for (~ = 0.4. The dependence of h, i
on a~/(~ is exponential, except when a~/(~ becomes

small . The decay constant p, defined by

1(a~~/(~):

h~l (0) ex' (
—v )
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FIG. 3. Reduced critical field vs aiv/(~ for ss = 5, a~ =
0.2, and g~ = 2: ~, laminar solution; o, vortex solution. The
solid curve is the best exponential fit to the vortex solution:
h, i ——0.233 exp( —1.197a~/giv).

is equal to 1.2 for (~ = 2 and 0.9 for (iv = 0.4, for
the vortex solution. For (~ = 0.4 magnetic flux en-
ters in the form of vortices at any a~/(~, except near
a~/(~ = 2.5, when the two fields become approximately
equal. For (~ = 2, the laminar solution gives h, i, which
is approximately equal to or even lower than h, ~ deter-
mined from the vortex solution, when a~/(~ —1. V'k

may conclude that flux enters in the form of an array of
vortices in a larger interval of a~/(~ for tcsiv ) 1 than
for ~p~ & l. Expressing a~ in physical units, we ob-
tain that the thickness when two fields become similar
is aw --&s for (w = 0 4 and arv = 2As for (w = 2, so
that one may think that for vs~ ( 1 the SNS behaves
as a "good" superconductor, allowing vortices for large
N-metal thicknesses. In the SNS-modeled microdefects,

FIG. 5. Reduced variational parameter t„vs a~/$~.
Dashed line, giv = 2; solid line, t~ = 0.4.

when a~ && As and (iv (s, we may expect vortices in
a very wide interval of a~/(~.

In Fig. 5 the dependence of the parameter („on arv/(~
is plotted. For (~ ——0.4, („ is weakly dependent on
a~/(~, while for (Jv = 2, g„varies strongly showing
maximum at a~/(~ 1.5.

B. Interaction between a single vortex
and the normal layer

Let us suppose that the vortex changes the position
relative to the N layer. The distance c in Eq. (8) be-
comes difFerent from zero and s in Eq. (12) is c dependent.
Minimizing s with respect to („, for fixed c, we obtain
the position-dependent vortex line energy s(c), which is
shown in Fig. 6. I ine energy has a well-defined minimum
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FIG. 4. Reduced lower critical field vs a~/(~ for as =
5, riv = 0.2, and (~ = 0.4: ~, laminar solution; o, vortex
solution. The solid curve is the best exponential fi.t to the
vortex solution: h, i = 0.247 exp( —0.901aiv/t'iv).
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FIG. 6. Line energy e vs vortex position c for eg = 5
and a~ = 0.2: A, (iv = 2, a~/trav = 0.5 (dashed line); 8,
(~ = 0.4, aiv/t'iv = 1 and C, trav = 0.4, aiv/trav = 2 (solid
lines). The circles give the position of SN interfaces for each
line. All quantities are in reduced units.
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at the center of N, and it reaches the bulk value when
c —+ oo. The force acting on the vortex displaced from the
center of N is equal to the derivative of s'(c) (Fig. 7). The
greatest force is obtained when the vortex passes the SN
boundary. This is expected, since the derivative of the
zero-Geld order parameter is greatest at the boundary.
Note that curve C in Fig. 7 has a very sharp maximum
at the SN interface compared to the maximum on curve
A. This indicates that for small coherence length (iv the
line energy changes rapidly when the vortex core passes
the small region around the interface, with a width of the
order of $~ and (g in N and S, respectively.

Next we calculate the force acting on the vortex placed
at the SN interface, for different barrier thicknesses and
fixed (~. The results are shown in Fig. 8. For small
normalized thickness 2aiv/(~, the force for (~ = 0.4 is
smaller than the force for g~ ——2. At greater 2a~/(~
the coupling between the vortex and N is greater for
smaller coherence lengths. The two curves intersect when

Better understanding of these results is possible if we
look separately at the magnetic and the core interaction,
defined as the derivative of the magnetic and the core-
position-dependent energy, respectively. Let us consider
first the connection between the magnetic interaction and
the supercurrent distribution.

For small normalized thicknesses (2a~/(~ ( 1)
supercurrents around a single vortex in the superconduc-
tor near the interface are weakly perturbed by N in both
the "conventional" (~ ——2 and the "model" (~ = 0.4
cases, because the order parameter is not strongly re-
duced in ¹ For larger thicknesses the inhuence of the
N layer on the supercurrent distribution depends on (~.

0.3
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—0.1

—0.2—

—0.3—

—0.4 I I

3 2 1 2 3

FIG. 7. Force f acting on the vortex at distance c from
the center of N: A, (~ = 2, a~/(~ = 0.5 (dashed line); B,
(pr = 0.4, aiv/(iv = 1 and C, (iv = 0.4, aiv/(iv = 2 (solid
lines). Each line is obtained by differentiating the position-
dependent line energy in Fig. 6. The circles give the position
of SN interfaces. The GL parameters are Kg = 5 and ~~ ——

0.2 for each line. All quantities are in reduced units.
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FIG. g. Reduced force f acting on the vortex located at
the SN interface vs a~/(iv. A, (~ ——2; B, (~ = 0.4. The GL
parameters are eg ——5 and r~ ——0.2. Curve C is the core
interaction vs a~/$iv corresponding to curve B.

Figure 2(b) provides a plot of the supercurrent distri-
bution around a single vortex located in the supercon-
ductor at distance c = 0.4 from the interface, for the
N-metal thickness 2a~ = 1.6 and f~ = 0.4. Streamlines
are condensed in the region between the center of the
vortex and the SN interface. This pattern resembles the
set of streamlines that would result from the superposi-
tion of the supercurrents of the vortex and its image~2 on
the opposite side from the SN interface. On the other
hand, our results show that for (~ = 2 streamlines are
not much disrupted by the N layer with the same nor-
malized thickness, because screening in N is eA'ective in
the region near the SN interface of width (iv, larger
than Ag. Thus, the increase of a~/(~ causes significant
increase of the magnetic interaction when the coherence
length is small ((N = 0.4). When the coherence length
is large ((~ = 2), magnetic interaction saturates rapidly
with increasing a~/(~.

Core interaction behaves similarly both for (~ = 0.4
and (~ —2, saturating at a~ (~ and being as much
stronger as the coherence length (~ is larger. Curve C
in Fig. 8 shows the variation of the core interaction for

= 0.4 when the N-layer thickness increases. Core
interaction remains practically constant when a~ ) (~.

Thus, the intersection of curves A and B in Fig. 8
comes from a rapid increase of magnetic interaction when
aiv ) (iv, occurring when the N-metal coherence length
is small compared with Ag ((~ = 0.4).

Therefore, the behavior of the total pinning force act-
ing on an isolated vortex results from the addition of the
magnetic and the core interaction. The magnitude of
the magnetic interaction depends very much on the co-
herence length (~. When the barrier thickness is large
(aiv ) (~), it is as much stronger as (~ is smaller. For
(iv greater than Ag magnetic interaction remains smaller
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than the core interaction.
We can expect that in HTC oxides, with very small

coherence length (~, microdefects provide strong pinning
centers because they produce a significant decrease of the
line energy at a distance of the order of (~ from the SN
interfaces. Both magnetic and core pinning mechanisms
pin the vortex to the defect, the magnetic interaction
being larger than the core interaction in this case.

III. S1VS JUNCTION IN HTC LIMIT

A. Approximate solution
of the magnetic field equation

1. Formulation

We consider next the magnetic field and the current
distribution produced by a vortex in a SNS junction in
the limit

&s » 1, 6r(T ) —(s(0), a~ && ~s(0) .

In a homogeneous high-zs superconductor the size of
the vortex core („ is considerably smaller than As, and
the line energy is approximately equal to the magnetic
energy. The same approximation can be used for the
SNS junction under the conditions of (18). Assuming
that („(s,we neglect the core effects in Eqs. (10)
and (11), putting f = 1. As before, all quantities will
be expressed in reduced units, and we shall consider the
case T,~ ——O. In the present case, at temperatures not
too close to zero, Ks~ )& 1, and the Geld is essentially not
screened in N, so that the magnetic energy is located
practically outside N. To solve Eq. (11), we use the
Fourier transform

h(z, y) = (I/2x) dq e'q'qcq(z) .

Then, Eq. (11) becomes

q ll ( )
d 1 dcq(z)

g') ' dz g' dz ~s

Function g(z) is diferent from 1 in a small interval
that comprises the defect N and a region of order (s in
S on each side of the defect. We denote this region by
M. The reduced thickness of M is of order I/zs. Outside
M we get

2. Vortex centered in the defect

In this case outside M b function is zero. To derive the
boundary conditions for Eq. (20) we integrate Eq. (19)
in the interval (—R, R), where (1/les) « R « l. In this
interval function cq(z) is practically constant, but g(z)
is not, so that we get

(dcq

=-a
r'dc, )
(dz)

—cq(0) [ 2R(l + q )

+I'q'], (21)

where I' = Jdz(g ~ —1). Explicitly,

I' = 2~2 coth
l

—1
t~s'

2 &s

(2am l 2 (b~s &
+(tq sinh

l l
coth

l l

—2atq .

When z +R, cq(z) is asymptotically equal to the so-
lution Cq(z), and cq(0) = Cq(0), with accuracy cq(0)/rs
when a~ I/res. Now, in the scale of As, characterizing
the variation of Cq, R. « 1 and in this limit Eq. (21)
gives the boundary condition for Eq. (20):

dCq 5
(23)

The solution of Eq. (20) satisfying Eq. (23) is

1 + I'q2/2 +1+ q2
(24)

where

,'(z) = exp (
—(zi/1+ q')

Ksgl + q

is the solution without the N layer. We also studied the
numerical solution of Eq. (19), taking g(z) as constant
outside the defect and a~ I/Ks. The result is that the
relative difference between Cq and the numerical solution
is of the order of I/Iqs.

Therefore, N changes the structure of the vortex
through the term Cq(0)I'q in Eq. (23), which becomes
as important as the generating term 2qr/Ks when I' be-
comes of the order of 1. This condition is realized when
the order parameter in N is strongly reduced: at any
temperature T when

(1+q')Cq(z) — „', = „~(z)d2C, z) 2qr k4 )
(20)

and at any normalized thickness 2atq/g~(T, ) ) 0 when

where Cq(z) denotes the approximate solution of Eq.
(19), which is asymptotically equal to cq(z) outside M.
We shall solve Eq. (20) in each half-space outside of M
separately. In order to obtain the boundary conditions
at the defect, we distinguish two cases: vortex centered
in the defect, c = 0 and vortex outside M, lcm' )) 1/es.

t' 1 . 2a~b
l
I —T/T, l l

sinh
4+s (N

For (~ (s, the condition given in Eq. (26) becomes

1
a~ in(2zs) = atq2~s

(28)



2816 DAVIDOVIC AND DOBROSAVLJEVIC-GRUJIC 43

For example, when zs = 100, for arq/(rq 2.6 the
solution is strongly perturbed by ¹ The characteristic
"magnetic" thickness a~, which gives the thickness of N
that strongly perturbs the field of the vortex, is consider-
ably greater than the relevant thickness, of the order of
(rq, for the change of the core energy. When arq (rq, the
core energy of the vortex is significantly reduced from its
bulk value, while the magnetic energy, which is the main
part of the line energy, is still approximately equal to the
bulk value and becomes reduced only in a narrow temper-
ature interval around T, defined by Eq. (27). When the
thickness of the barrier 2a~ becomes greater than 2a~,
Eq. (27) is satisfied in the whole temperature interval,
except in a narrow temperature interval near T = O.

Next we calculate the line energy of the vortex, which
is now

where parameter p = (rq In(0.89(iv/Air). Equations (31)
and (33) give very similar expressions for H, i, the only

difI'erence arising between lengths Ag and a~ —p. The re-

sult of DG is valid when the vortex is wholly contained in

the N layer, and it is obtained by variational method as-

suming a reasonable analytic form for the magnetic field

of the vortex, i.e. , that the field in N is constant along

z up to a distance p of the SN interfaces and is zero

beyond that. This assumption is valid for thick N layer,

in the limit r.p~ (& 1, where Kp~ is defined by Eq.
(13). However, in the limit given by Eq. (18), ~st )& 1,
and a reasonable functional form for the magnetic field

is h(z) = h(0) exp( —~z~/As). Then, the variational prin-

ciple gives exactly Eq. (31).

8. Vortex deep in the superconductor

s(0) = dz 1 + — t." +—

The core of the vortex is modeled by the introduction of
a core-radius cutoff of order 1j~s, as in the usual London
model. ~ Then,

Now, in the region outside M, the b function in Eq.
(20) is different from zero. Integrating Eq. (19) in the

interval c —R ( z & c + R, and making the same as-

sumptions as in the previous case, we get the following

boundary condition:

s(0) =
2

1 dq 1
c (I/~s) =— Cq(I/~s)

( Cq& " q =C()r
& dz ). .+o dz .=, o

(34)

and

s(0) =
exp — 1+ q

dq
2+1+ q'+ rq' (29)

&Oh

$0z

The corresponding boundary condition for the magnetic
field is

t'Oh l &0'h

+o &&u'

When arq/(iv ~ 0, s(0) ~ In(zs)/2zs with a logarith-
mic accuracy. In the opposite limit I )) 1,

s(0) ~
2~st/2r

(30)

where A~ is the local penetration depth at the SN inter-
face, defined below Eq. (13), and

If I' is much greater than 1, either Eq. (26) or Eq. (27)
is satisfied. In these two cases, the lower critical field in

physical units is

C'o

4&a v'6q &s & . &rq ) '

Therefore, the supercurrent in the direction parallel to
the layer has the y-dependent jump, when either Eq. (26)
or (27) is satisfied. The solution of Eq. (20) satisfying this
boundary condition is

C, (z) = C, (z)—c,'(c) c,'(z —.)
1+2v'I + q'/(«')

(35)

Again, numerical studies of Eq. (19) showed that the ac-
curacy of this solution is I/~s. C (z) is the solution
without the N layer and the term —Co(c)Co(z —c)/Co(0)
is a Fourier-transformed field produced by the image of
the vortex, on the other side of ¹ The image of the
vortex is screened, with the q-dependent screening con-
stant

g~(T, )/As(0)
4 sinh(2arq/(~)

x 11——
~ T T ~T. .

II,i— 4p a~
exp —,a~/(~ )) 1,

4&a Q& (arq —p)
(33)

The first calculation of the lower critical field H, ~ in a
SNS junction was carried out by Dobrosavljevic and de
Gennes i (DG). It was found that

e(q) = 1+2+1+q'/I'q'.

In the limits T ~ T, or arq )) a~, e(q) ~ 1, and
therefore the image is not screened. If aiv/(iv ~ 0,
then e(q) ~ oo, the image is completely screened, and
the homogeneous solution C (z) is recovered. The de-
pendence of the screening constant upon the wavelength
2qr/q means that the image is spread out in the direc-
tion parallel to N at distance c from the N layer on the
opposite side from the original vortex.

Next we evaluate the line energy, which now consists
of "bare" energy so In(l"s)/2Ks and the interaction
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energy with the image U(c): s(c) = eo —U(c), 1.3/zs). For such small c*, magnetic interaction is ap-
proximately equal to

U(c) = 1

2+s

exp —2 c 1+ q2

~(q) QI+ q'
(36) 1 4c I'4c f 4c

f(c) = 1 ——exp I—
2~ c 1 ql

&(c) =
exp —2 c 1+/
1 + 2+I + q'/(I'q')

(37)

The greatest value of the force is obtained for the lowest
allowed value of c, which is of order I/zs. We choose this
limiting value c' so that r(c) is smooth and goes linearly
to s(0) when c ( c":

For c )) 1, the image term U(c) vanishes as e 2'. At c
1/zs, U(c) must be altered so that z(c) goes smoothly
to the value given by Eq. (29), rather than going to —oo
with ln(2lcl).

The derivative of the line energy ds/dc gives the at-
tractive magnetic force:

where Ei(z) = I dte '/t.
For a vortex located deep in the superconductor, total

force between the vortex and the N phase is equal to the
attractive magnetic interaction given by Eq. (37). When
c becomes of the order of I/zs, the vortex core passes
through the region M, and the core interaction has to be
considered in addition to the magnetic interaction. It is
equal to the derivative of the core energy in Eq. (1'2),
and it is greatest at the SN interface. For simplicity, we
assume z~ ——0 and („=~2/rs. Then, curve f, in Fig.
9 shows that the core interaction saturates at a~ —(~
and that it is approximately one-fourth of f(c*) when the
total force saturates.

s(0) + &(c')c' = s(c*)

i.e. , we assume that the magnetic energy has a kink at
the point c = c*. The variation of f(c*) when a~/(~
increases is shown in Fig. 9. We note that f saturates
when Eq. (26) is satisfied rather than at aiv/(~ —1
when the core interaction saturates. This behavior is
expected, because numerical results in Sec. II indicated
that the magnetic force continues to increase even though
the core interaction is saturated.

The limiting value c* depends weakly on the material
parameters, and, typically, it is in the interval (1/zs,

B. Temperature dependences of II„and J,

Now, it is easy to extract the temperature dependence
of the lower critical field H, i(T) and the critical current
density J,(T) from the previous results.

The temperature dependence of the coherence length
in the N phase is

g, (T) = h /2mn~(T) = g~(T, )T,/T,

where it is assumed that T,~ ——0. In reduced units we

get

& (t) = & (1)V'(I —t)/t (38)

0.2

&c

0
0 4

FIG. 9. Reduced force f acting on a vortex displaced from
the N layer vs aiv/$~. ma. gnetic force f{c')is defined by Eq.
{37) and the core interaction force f, equal to the derivative
of the position-dependent core energy at the SN interface, for
(„=~2/Ks. The GL parameters are zs = 100 and r~ = 0,
and the coherence length of the N layer is (iv = As/zs.

and a~(T) = a~(0)gl t, since A—s(t) = As(0)/gl —t,
where t = T/T„(iv(1) = (iv T, )/A~(0), and a~(0) =
aiv/As(0). Then, H, i (T) = 2H, (T)z(0).

In the limit T ~ T„when Eq. (27) is satisfied, H, i
vanishes as (1 —t)i 2 . This rather unusual behavior
originates from a well-known characteristic of a proxim-
ity system: The order parameter at the SN interface
vanishes as (1 —t) rather than as gl —t in bulk super-
conductor [see Eqs. (7) and (8)j. Taking parabolic tem-
perature dependence for the thermodynamic critical field
H, (T) = H, (0)(1 —t ), rather than the Gl dependence
H, (T) oc (1—t), valid near T„we plot H, i(T) in Fig. 10.
Various curvatures are obtained for diferent a~/(~(T, ).
When atv/(tv(T, ) = 1, the curvature is negative in the
whole temperature interval except in the extremely nar-
row region near T, . This negative curvature originates
from the negative curvature of H, i(T) in the bulk su-

perconductor. When a~/(~(T, ) = 3, the thickness of
N is greater than the magnetic thickness 2a~, and Eq.
(27) is satisfied in the whole temperature interval. As a
result, negative curvature in H, y for bulk superconduc-
tor is completely suppressed. This suppression becomes
extreme when a~/(rv(T, ) 7: H, i(T) reveals a drastic
increase when t decreases at low temperatures.

The explanation of various curvatures observed in
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where f is the derivative of the line energy s, given by
Eq. (12), at the SN interface. The magnetic energy
s = h(0, 0)/2 gives the magnetic interaction

I

d&m ~m &m

C=Q~ II

The remaining part of the line energy z, gives the core
interaction:

0.2

/' ds,

( dc
C=Q pg

0
0 0.2 0.4 0.6 0.8 1.0

Since parameter („ is obtained from [B(s +s,)/B(„j, =
0, we get

(Bs 'r Bs. d(,
Bc ) ( B(„dc

FIG. 10. Temperature dependence of the lower critical
Geld H, ~ of the SES junction with the GL parameters
xg ——100 and z~ = 0, and the coherence length of the N
layer at the critical temperature T, of the superconductor

gyes(T, ) = As(0)/as, for different barrier thicknesses 2a~.

so that in total force the contributions oc d(„/dc cancel,
and f = f~ + f, can be approximated by

HTC oxides becomes very simple. The anisotropy of
the crystal does not qualitatively change the obtained
temperature dependence, since anomalous H, q(T) depen-
dence originates from the strong reduction of the zero-
field order parameter in the defect. As before, suppose
that the defect is perpendicular to the c axis and that
the field is parallel to the defect. Then, the coherence
lengths Q and g~ characterize the order parameter's
spatial variation along the c direction, and the above-
described temperature dependence applies to the field

H, &
perpendicular to the c axis. II,&

exhibits anoma-
lous temperature dependence when the thickness of the
defect is of order or greater than the magnetic thick-
ness 2a~. For example, if zg ——300 the defect causing
anomalous behavior is thicker than 5Q(0), where it is

assumed that (s(0) (~(T,) Therefore, t. he proximity-
induced anomalous HP~(T) dependence originates from
the N phase extending over the region of several unit
cells, and it is not an intrinsic property of the super-
conducting phase. On the other hand, weak logarithmic
dependence of a~ upon xg gives thicknesses of N phases
much smaller than Ag. Therefore, these defects may ex-
ist even in very small single crystals. Negative curvature
in HP&(T), observed in Refs. 1 and 2, still allows pres-
ence of N phases of thicknesses less than the magnetic
thickness, so that the inAuence of N on II,q is small.

Next, we find the temperature dependence of the criti-
cal current density J,(T) for the displacement of a single
vortex from the N defect. If the largest pinning force
per unit vortex length is F (in physical units), then the
critical current is determined from the balance between
the Lorentz force 4p J,/c and F: J, = cF/4 p, or

'The approximation g„~2@used in f, does not quali-
tatively change the results. The resulting critical current
densities J, = J, +J, , with J, and J, corresponding to
f(c') and (Bs,/Bc)~&&, respectively, are shown in Figs.
ll and 12. J, has maximum at the temperature, which
is as much lower as the thickness of N is larger. Since
f(c*) vanishes at zero temperature, J, ~ J; when t ~ 0.

CV

E
LJ

0
0 0.2

T/Tc
0.6 0.8 1.0

FIG. 11. Temperature dependence of the critical current
density J, for the displacement of an isolated vortex from
the SN S-modeled microdefect, with ~~ ——100 and x ~ ——0,
As = 10 A, and the coherence length (~(T,) = As(O)/rs, for
a~/(~(T, ) = 1, 3, and 5.
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scale of Ap, seem squeezed to the interface. Thus, the
supercurrent distribution is strongly perturbed at higher
temperatures. Then, if the vortex moves from S to N,
the supercurrent distribution changes drastically when
the vortex core passes the screening region of the de-
fect. In this region, the vortex transforms into the weak
vortexis having energy s(0) in the center of ¹20This
change causes a strong magnetic interaction at higher T.

For typical values of parameters (s(0) 10 A. , zs—
100, and As 2000 A our model gives that J, is of the
order of magnitude 10"—10 A/cm~. We conclude that
the pinning of vortices on N phases in HTC oxides causes
very large critical currents in single crystals. In order to
check the predicted behavior experimentally, the easiest
way would be to measure the temperature dependence
of J, in a HTC S/N superlattice, with the current and
the external magnetic fiel H'"")H, i(T) in the plane of
the layers, and with the appropriate choice of 9 and N
thicknesses as and a~ (as As, a~ (~ln~s).

FIG. 12. Temperature dependence of parts J, and J, of
the critical current density for the displacement of an isolated
vortex from the SNS-modeled microdefect, with Kg = 100
and K~ = 0, As = 10 A, and the coherence length (~(T,) =
&s(0)/&s, for a~/(~(T, ) = 1, 3, and 5. J™:solid lines; J;:
dot-dashed lines.

For a~/(rv(T, ) = 1, Eq. (27) is not satisfied (except very
close to T, ) and the critical current has no pronounced
maximum as a function of T.

If a~/frv(T, ) 3, the thickness of the defect is com-
parable to the magnetic thickness. In this case, Eq. (27)
is satisfied even at low T, and J, increases rapidly with
temperature, due to the rapid increase of f(c*) This in-.
crease corresponds to the drastic increase in anomalous
H, i(T) dependence at low temperatures. At higher tem-
peratures, the term f(c') in Eq. (39) dominates, and,
therefore, the interaction between a vortex and this de-
fect is primarily magnetic (see Fig. 12). After the maxi-
mum J, slowly decreases.

This behavior of thick defects (a~ a~) results from
the change of the supercurrent distribution around the
vortex in the superconductors with temperature. Recall
that t, he screening of the vortex field in the defect is efFec-
tive only in the region of thickness (~ near the inter-
faces (screening region). At low T, so that (~ )) a~, the
supercurrent distribution is almost unperturbed. With
increasing T, (~ rapidly decreases, becoming smaller
than the thickness of the defect. Then, the supercur-
rent density decays exponentially in the defect and the
screening region is located near the interfaces. Since this
region is much smaller than Ag, the streamlines, in the

IV. CONCLUSION

In this paper we have shown how a single defect, mod-
eled by a SNS junction, can lead to diA'erent curvatures
in H, i(T) dependence. In HTC superconducting single
crystals a set of separated microdefects, each modeled by
an N layer, would lead to similar H, i(T) dependence (al-
though the Meissner state would be gradually destroyed
by the successive field penetration through various N
"channels" ). Assuming that the characteristic coherence
lengths for the superconducting and for the normal phase
are similar, we find that the thickness of the defects pro-
ducing anomalous H, i(T) dependence is of the order of
or greater than the magnetic thickness 2a~ = (s lnas.
This leads to the defects that are significantly larger than
the crystal unit cell.

Our study of the interaction between a vortex and the
N defect shows that this interaction produces strong crit-
ical currents for the displacement of an isolated vortex.
This interaction is primarily magnetic at high tempera-
tures, due to the formation of narrow screening regions
in the defect, which are located only near the interfaces.
At low temperatures (when the coherence length in the
defect is large) magnetic interaction is reduced.
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