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We calculate the nuclear spin-lattice relaxation rates (1/T, ) in the quasi-two-dimensional antifer-

romagnet La2Cu04, both above and below the Neel temperature T&, paying particular attention to
the form factors associated with different nuclear sites. The smallness of the interplanar coupling J'
compared with the intraplanar coupling J and the absence of on-site Ising anisotropy result in some

interesting behaviors of the relaxation rates. For J))T) T&, and to leading order, (i)

1/T, "—(a T/Pic ) g/a, where g is the two-dimensional correlation length which diverges exponen-

tially at low T, c is the T=0 two-dimensional spin-wave velocity (proportional to J) and a is the lat-
tice spacing; (ii) 1/TP-(aT/Ac)'; and (iii) 1/TL' —A(aT/Ac)'+B(aT/Ac)'~'g/a, where we ex-

pect 8 « A although a precise estimate is unavailable. If anisotropies of the couplings (in spin

space) are neglected, the only other relevant temperature scale is set by 6=2&JJ', which defines

the crossover between two- and three-dimensional behavior; in La2Cu04, 6=20 K. In the two-

dimensional regime Tz ))T))6, (i) 1/T&" -(a T/Pic ) T/6, (ii) 1/T& -(aT/Pic )"ln( T/6); and (iii)
1/T&' —A'(aT/Pic) ln(T/6)+8'(aT/Sic) T/3, with 8'/A'-8/A. In the three-dimensional re-

gime T & 6, one has (i) 1/T~ "—(aT/Ac)(T/6); (ii) 1/T~ —(aT/Rc) (T/5); and (iii)
1/T&' —A "(aT/Ac) (T/6)'+8 "(aT/Ac) (T/b ), with 8"/A"-8/A. These results for T & T&

are sensitive to the hyperfine interactions assumed; we take the coupling to the Cu nuclei to be high-

ly anisotropic and the couplings to La and 0 to be isotropic. However, gaps in the spin-wave spec-
trum, of, say, magnitude E, give rise to rates which vanish as e at temperatures T&E. In
La&Cu04, Dzyaloshinskii-Moriya interaction gives rise to an E not too different from 4, and so a
clean two- to three-dimensional crossover should not be present even though the quasi-two-
dimensional behavior should hold over a wide range of temperature between T& and 6, and the re-
laxation rate for Cu in that temperature regime should be considerably larger than what one might

expect based on the rates in cubic cuprate materials.

I. INTRODUCTION

There appears to be considerable interest in the subject
of nuclear magnetic resonance (NMR) in high-
temperature superconductors and particularly in the
spin-lattice relaxation rates I /T, . ' In particular,
difFering behaviors of 1/T& for Cu and 0 nuclei are being
used as a diagnostic tool to understand the low-frequency
spin dynamics in these materials. Because a number of
interpretations of 1/T& rely on strong short-range anti-
ferromagnetic correlations, it is useful to study the insu-
lating, antiferromagnetic parent compounds. Possibly,
the nature of short-vange spin correlations is not drasti-
cally modified as the parent compounds are doped to
form superconductors; at the very least, most theories of
NMR in high-temperature superconductors assume this
to be the case." Of course, magnetic resonance in quasi-
two-dimensional, S =

—,', quantum antiferromagnets is in-

teresting in its own right and can be used to explore the
low-frequency spin dynamics of such systems. In the
present paper we develop a theory for the relaxation rates
both above and below the Neel temperature T&. For the
sake of concreteness, we focus our attention specifically
on LazCu04, though similar considerations should apply
to the parent compounds of the other cuprate supercon-
ductors.

The organization of this paper is as follows. In Sec. II

the important magnetic properties of La2Cu04 are sum-
marized, and the hyperfine interactions are discussed in
Sec. III ~ The key ideas underlying the calculations are
described in Sec. IV, followed by the actual calculations
in Sec. V, which is supplemented by an Appendix. Sec-
tion VI contains a summary, a discussion of the relevance
of this work to experiments, and comments on possible
extensions of the calculations.

II. MAGNETIC PROPERTIES OF La2CuO4

It is by now well established, on both experimental and
theoretical grounds, that La2CuO4 is a quasi-two-
dimensional antiferromagnet which is well described by
an S =

—,
' Heisenberg model. The intraplanar exchange

constant J is about 1500 K, while the eff'ective interpla-
nar exchange J' is antiferromagnetic, but much smaller:
J'=0.035 K=2X10 J. One of the most prominent
features which distinguishes the cuprate perovskites from
previously studied antiferromagnets such as K2NiF4 is its
complete lack of on-site Ising anisotropy, because S =

—,
'

for Cu +. The three-dimensional Neel transition seen in
La2CuO& at 200—300 K (depending on the precise con-
centration of oxygen) is due to the weak interplanar cou-
pling and takes place well below J. In contrast, the Neel
transition in K2NiF4 is primarily a two-dimensional Ising
transition occurring at Tz =J (more precisely,

43 2796 1991 The American Physical Society



43 THEORY OF NUCLEAR RELAXATION IN La2Cu04 2797

T~=97.23 K and J =104+1 K), with a crossover from
two-dimensional Heisenberg to two-dimensional Ising be-
havior taking place at a temperature readily distinguish-
able from T&, at about 102 K. ' (Of course, for tempera-
tures sufficiently close to Tz the critical behavior should
ultimately become d =3 Ising-like, but experimentally
this asymptotic critical region has been unobservably nar-
row in K2NiF4. ) It is therefore not unreasonable to ex-
pect that the spin dynamics in La2Cu0~ must be very
different from that in K2NiF4.

The dominant anisotropy in the intraplanar couplings
in La2Cu04 turns out to be an antisymmetric
Dzyaloshinskii-Moriya (DM) interaction and corresponds
to an energy scale E of roughly 10—20 K (as will be dis-
cussed below in Secs. V and VI). The strength of this an-
isotropy is proportional to the orthorhombic distortion of
the crystal structure, and it vanishes for tetragonal crys-
tals. Other anisotropies, such as the dipolar anisotropy,
are much weaker. Hence it is sensible for the purpose of
discussing the cuprate perovskites generally to consider
the behavior of the relaxation rates for a wide range of
values of E.

We now summarize the remaining relevant facts con-
cerning La2CuO„. From various experiments it is now
known that the in-plane spin-wave velocity in this materi-

0
al is Ac=0. 85 eVA. ' ' Moreover, inelastic neutron-
scattering experiments have demonstrated that the dy-
namics of spin fluctuations above T& is, to an excellent
approximation, independent of the momentum corn-
ponent perpendicular to the CuO planes. ' Thus a two-
dimensional model is reasonable for the disordered phase.
At present our understanding of the neutron-scattering
experiments in the thermally disordered phase appears to
be quite satisfactory, as there is good agreement between
the data and theory developed by Chakravarty, Halperin,
and Nelson' (CHN) and Tyc, Halperin, and Chakravar-
ty' (THC). With respect to static properties, the correla-
tion length g is found to diverge as g/a = C&exp(2', /T)
for T) Tz, where C& is a pure number of order unity and

p, (=0.16J in spin-wave theory at S =
—,') is the spin

stiffness of a two-dimensional square-lattice antifer-
romagnet at T =0." With respect to dynamics the
agreement between theory and experiment is equally
good. " In the theory, relatively long-lived spin waves
must be present for length scales smaller than g, while for
scales larger than g the spin dynamics must be diffusive,
corresponding to a dynamic structure factor which exhib-
its a peak at zero frequency known as the quasielastic
peak. (This intrinsic quasielastic peak is distinct from the
extrinsic central peak phenomenon, unfortunately also
known as the quasielastic peak, which may arise from
magnetic defects such as two-level systems. )

As mentioned earlier, the three-dimensional transition
in this material is due to interplanar coupling. Even
though the interplanar coupling is extremely small, the
system orders antiferromagnetically well above J', when

g becomes sufficiently large. In mean-field theory the
Neel transition is determined by the criterion
(N/XD) (g/a) J'= T&, ' where iii'/XD ( =0.606, in
spin-wave theory) is the ratio of the sublattice magnetiza-

tion at T=0 in the two-dimensional antiferromagnet to
its maximum possible value.

III. HYPERFINE INTERACTIONS

In La2Cu04 the orbital angular momentum is
quenched. ' Therefore, the spin-lattice relaxation is due
to the coupling of the nuclear moments to the electronic
spin degrees of freedom, described by a suitable hyperfine
Hamiltonian. It is now generally believed that the
relevant spin degrees of freedom are described by Wan-
nier functions of d & 2 symmetry centered at Cu sites.x —y
This orbital has vanishing amplitude at the nucleus, and
hence the Fermi contact interaction is not relevant for
the Cu nuclei. Instead, the hyperfine interaction for Cu
must be due to electron-nuclear dipolar interaction or
core polarization effects. This leads to an anisotropic
Hamiltonian for Cu, given by

ac — I„.Ac. S„, (3.1)

where "I„is the nuclear spin at site n, S„ is the electron-
ic spin, and Ac„ is the hyperfine tensor with two indepen-
dent components Ac„„„(= Ac„~ ) and Ac„„. Here we
have ignored the orthorhombic distortion (present below
about 520 K) which may give rise to further anisotropy,
but which should be negligible for our purposes. Howev-
er, Mila and Rice' have pointed out that it is necessary
to incorporate an additional term in Hc„. Because the
Wannier function centered on a given site has a nonvan-
ishing projection on neighboring Cu 3s or 4s orbitals, it is
possible to have a sizable additional term due to the large
magnitude of the Fermi contact interaction. Thus we
may write

~cU= "In'AcU'Sn+&cU& "4 Sn+s
5

(3.2)

where the vectors 5 connect the site n to its neighboring
Cu sites n+5. Because the source of the second term is
the contact interaction, Bc„can be assumed to be isotro-
pic. As will become evident below, the additional term
does not contribute to the leading temperature depen-
dence in the Cu relaxation rate below T~ (as the two-
magnon relaxation mechanism associated with the first
term dominates the three-magnon relaxation coming
from the second), while above T~ it only modifies the
magnitude, but not the temperature dependence, of the
rate. Hence, although the full interaction (3.2) is neces-
sary to understand some aspects of the problem' (partic-
ularly the dependence of the Knight shift and relaxation
rate on the orientation of the magnetic field), (3.1) will be
adequate for our purposes.

The Hamiltonian for the 0 nucleus can be obtained in
a similar manner, as shown by Shastry, ' for example,
giving

ao = Wo y oI..S.+s
Ql

(3.3)

where the vectors 5' connect the 0 site to the two neigh-
boring Cu sites. It is commonly assumed that Ao is iso-
tropic, as displayed here. Strictly speaking, this is not
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correct. The observed anisotropy in Ao has been inter-
preted as being due to the fact that it is the 0 p orbital
which hybridizes with the Cu d 2 2 orbital. However,x —y
because the anisotropy is small, it is probably not impor-
tant for our purposes.

Similarly, one would expect the dominant hyperfine in-
teraction for a La nucleus to be

HL, = AL, g 'I„.S„+s~,
/It

(3.4)

where the vectors 5" connect the La site to the four Cu
sites in the plane adjacent to it. As above, the coupling
will be assumed to be isotropic. In writing (3.4) we have
neglected any coupling to Cu spins on the next-nearest
CuO plane; while this may seem eminently reasonable
(because the next-nearest plane is roughly twice as far as
the nearest plane), it is not fully adequate. ' In that
next-nearest plane, a single Cu spin is coupled most
strongly to the La nuclear spin, rather than a set of two
or four Cu spins. Thus HL, has an additional term which
we write as

BL~ 'I„'S„+ (3.5)

IV. OVERVIEW OF THE CALCULATIONS

In the present section we summarize some of the key
ideas employed in the calculations which are given in the
following section. Consider first the regime above T~.
The relaxation rate for Cu has been calculated by
Chakravarty and Orbach using the dynamic structure
factor of CHN (Ref. 14) and THC. ' That part of the La
relaxation associated with the hyperfine interaction (3.5)
may be calculated in the same way, since the coupling is
the same as that for Cu. However, this structure factor is
valid only in the regime k «T/Ac, that is, for wave-
lengths larger than the thermal de Broglie wavelength of
the spin waves. [Here and below k is measured with
respect to the antiferromagnetic ordering wave vector
Q = (~/a, vr/a)]. Although the Cu rate can be accurately
calculated, the O rate cannot be calculated using this
structure factor because its associated form factor [see
(5.29) below] vanishes as k~0. The integral over the

where the prime indicates that the Cu spin lies in a
different CuO plane than the spins S in (3.4). It seems
best to assume that BL, is an isotropic coupling as well.
We expect BL, « AL„but, as will become evident, the
contribution of (3.5) to the La relaxation may be iinpor-
tant, nonetheless. Let us also point out here that the
hyperfine interaction for Y in Y-Ba-Cu-0 is much like
that for La in La2Cu04, but there is no contribution of
the form (3.5), because of its particular crystal structure.

As we shall see, the anisotropy (or lack thereof) of the
hyperfine interaction plays an important role in determin-
ing the temperature dependence of the relaxation rates
below the Neel transition. Above the transition, when
the electronic spin correlations are isotropic, anisotropy
in the hyperfine couplings does not affect the temperature
dependence of the rates, though it does affect the magni-
tudes and field dependences of the rates.

Brillouin zone which determines 1/T, is not dominated
by the critical Auctuations, and a priori the entire Bril-
louin zone appears to contribute. To the extent that the
La rate is due to the interaction (3.4), similar considera-
tions apply in that case as well.

A calculation of the 0 rate above T& has been given by
Bulut et al. , who use the dynamic structure factor due
to Arovas and Auerbach. However, the correctness of
that form for the structure factor has been questioned,
and it is not clear whether the resulting expression for
1 /T

&
is correct.

Our method is a spin-wave expansion, which, at least
in principle, can be systematically improved. Let us first
discuss the situation for T) T&. Even though the system
is disordered, the correlation length is quite large for tem-
peratures small compared to J, and thus magnons with
wave vector k satisfying kg)&1 should be well defined.
Indeed, explicit calculations have confirmed that the
damping is small compared to the frequency for such
magnons. The recent neutron-scattering experiments of
Aeppli et al. also support such a picture. '

As noted above, the expressions for the 0 and (part of)
the La relaxation rates involve Brillouin-zone integrals
which contain little weight at small wave vectors because
of form factors associated with the position of those nu-
clei relative to the lattice of Cu spins. Thus, at first sight,
spin-wave calculations for the 0 and La rates appear to
be meaningful even above T~; indeed, one can set the
long-wavelength cutoff on the magnon wave vectors to
zero with impunity. However, this can lead to complete-
ly erroneous results as the spin-wave picture explicitly
breaks rotational invariance, because magnons are, by
definition, transverse excitations in the broken-symmetry
phase. But the symmetry is unbroken in the disordered
phase, and therefore a naive spin-wave expansion is not
meaningful at any wavelength even if the integrals deter-
mining the relaxation rates are convergent. In order to
circumvent this problem, one may make a local spin-
wave expansion in which different domains, of typical
size g, have their order parameter (the staggered magneti-
zation) oriented in different directions. In this picture
rotational invariance is restored. Equivalently, and what
is done here, is to use the magnon picture to calculate
only rotationally invariant quantities, so that any
"memory" of a particular broken-symmetry direction
that one may have chosen is lost. Since the relaxation
rates in the thermally disordered phase can indeed be
written in terms of a rotationally invariant dynamic
structure factor, this approach permits us to calculate
them.

We now discuss the regime below Tz. Of course, in
this regime a spin-wave expansion is sensible, and such
calculations of relaxation rates have a long history.
However, an interesting feature that should be kept in
mind is the highly (spatially) anisotropic nature of the
spin-wave dispersion in La2CuO~, due to the exceedingly
small interplanar coupling. The spin waves are nearly
dispersionless for momentum components perpendicular
to the Cu0 layers. Above an energy scale 6 given by
b, =4Si/JJ', the dynamics of the system is effectively two
dimensional, with a low-energy cutoff A. In La2Cu04 we
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estimate 6 to be between 10 and 20 K, and so there is a
large temperature range even below T& in which the spin
dynamics is essentially two dimensional.

Finally, it might be argued that our treatment leaves
out an important bit of physics associated with spin
diffusion, which in principle may contribute significantly
to the low-frequency spin dynamics in low-dimensional
materials. However, it has already been pointed out that
spin diffusion is actually irrelevant at the temperatures of
concern to us, which are small compared to J.

V. CALCULATIONS AND RESULTS

HI = NS—)'o+S X )'o(akak+bkbk)
k

+S g yk(akbk+akbk),
k

where

yo=zJ +z'J',

(5.10)

(5.1 1)

(5.1}, lead to a boson representation of that Hamiltonian
which is nonlinear in the boson operators. Consider for
the moment the linearized Hamiltonian which describes
noninteracting spin waves, namely,

A. General considerations
zJyk= [cos(k„a)+cos(k,a)]+z'J'cos(k, a~), (5.12)

Consider the Heisenberg Hamiltonian for spins situat-
ed on a simple cubic lattice:

H =
—,'J g S;.S,+s+ —,

' J' g S,'S;+s
j,5 j,5'

(5.1)

where the vectors 5 connect the site j with its nearest
neighbors on a square lattice (representing the CuO
planes), and 5' connects j with its neighbors on the adja-
cent planes. Since the Cu + in La2Cu04 do not form a
simple cubic lattice, this must be considered to be an
effective Hamiltonian (recall Ref. 6); but as will be seen,
the only effect of the interplanar coupling is to generate a
small energy scale, and we expect the precise lattice
structure to be unimportant.

Let us now use the Holstein-Primakoff transforma-
tion ' to rewrite the spin operators in terms of boson
operators. Divide the lattice into two sublattices 3 and
B, and define on the 2 sublattice

1/2

~k akbk Ukak

where

(5.14)

uk —
Vk =12 2— (5.15)

and

~k/'Vo
2QkVk —

2 1/2 (5.16)

In the long-wavelength limit,

z (the intraplanar coordination number) is 4, z (the inter-
planar coordination number) is 2, d (the planar dimen-
sionality) is 2, a is the intraplanar lattice constant, and a~
is the interplanar lattice constant.

A Bogoliubov transformation diagonalizes HI . The
new boson operators are defined by

(5.13)

S+=&2S 1 — a a
1

1 2S
1/2

(5.2) 2 2
kVk k Vk

2( 3'o

Xo (5.17)

S =+2sa 1 — a a
1

(5 3) The diagonalized form of HI can be written as

S =S —a,~a,-,
and on the B sublattice

(5.4)
HL = NS(S +1)l o+g sk+g ek(akak+f3kpk), (5.18)

k k

with c,k the spin-wave dispersion, namely,

1/2

S.+ =&2S b 1 — b b. .1

2S
(5.5)

E„=S(y'—y')'"=4JS(1+-'r)(1 —X')'"

where

(5.19)

S =&2S 1 — b bJ 2SJJ
1/2

(5.6}
and

» =J'/J, (5.20)

S'= —S +b bJ J J (5.7)

ik x-a„=N ' ge 'a, ,
J

(5.8)

The Fourier transforms of the boson operators are
defined to be

[cos(k„a)+cos(k a)+r cos(k, a~)] .1

2+»
(5.21)

Since we are concerned with temperatures small com-
pared to J, it will be sufficient to linearize the spectrum in

k~~
=(k +k )', and thus

b„=N '"g e
' "'b, ,

J

(5.9) Ek=2+2JS I (k~~a)'+2» [1—cos(k, a, )] I
' ' . (5.22)

where X is the number of sites on each of the sublattices,
so that the total number of lattice sites is 2X. These
transformations, when applied to the spin Hamiltonian

Given the spectrum Ek, one can readily calculate the den-
sity of states p(e), obtaining (for S =

—,
'

)
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1 aP(E)=
2rr3/'2r Pic

2

3

e, e «3/2r,z Rc
a

(5.23)

1 a(e)=
2~ Ac

A'cJ ))E )) 3/2r (5.24)

If we define the energy scale 6 by

a= '&2r =2&m,
a

(5.25)

1/T, =2W, (5.26)

where 8'is the transition rate given by

(5.27)

then for energies smaller than 6 the density of states has
the form appropriate to a three-dimensional system,
while for energies greater than 6 the system appears to be
two dimensional. Here the spin-wave velocity c in the
plane was taken to be A'c =3/2', which is its value in the
linear spin-wave approximation for S =

—,'.
The nuclear relaxation rate can be obtained from

Fermi's golden rule:

tern should behave as though it were at T =0 on length
scales smaller than the thermal de Broglie wavelength
proportional to Ac/T; hence, on these scales, the above
considerations imply that one should have only a harrn-
less T =0 renormalization of the physical parameters.

The effects of thermal renormalization are more seri-
ous. In particular, in a strictly two-dimensional system
such renormalization would become increasingly impor-
tant on longer length scales, and magnons would not exist
as well-defined quasiparticles at scales larger than the
finite-temperature correlation length g. Of course, the
situation is better for the three-dimensional system in the
Neel-ordered phase. However, a correct and consistent
calculation of finite-temperature renormalization effects
(due to thermal vertex and self-energy corrections) ap-
pears to be formidable (see the Appendix. ) Even if one
were to perform the calculation, it would not change the
leading temperature dependences of the relaxation rates,
although the absolute magnitudes would change since the
magnon-magnon interaction is expected to renormalize
the spin stiffness, which would become scale dependent.
We are assuming that for short length scales such renor-
malizations are small, and that the quantities we calcu-
late are dominated by short-wavelength excitations.

This is an exact formula within linear response theory.
Here E„are the exact energy eigenvalues of the electron-
ic spin system, and the hyperfine interaction Hamiltonian
H, , which was already discussed in Sec. III, causes transi-
tions between the exact initial and final states of the spin
system. For simplicity, we shall take the nuclear matrix
elements equal to unity when we evaluate Eq. (5.27) ex-
plicitly. This means that we have, in effect, calculated
1/T& for the +—,

' transition for an I =
—,
' nucleus. The ex-

tension to a transition rate between given nuclear spin
states is straightforward. The factor Z is the partition
function of the electronic spin system.

In our calculation we shall take E, to be the energy
spectrum of the noninteracting spin-wave states. Thus
there should be two sources of corrections to our results:
(i) T =0 renormalization of the magnon spectrum and (ii)
thermal renormalization. It is now well established that
the renorrnalization of the T =0 spectrum is not substan-
tial. The magnon-magnon interaction simply renormal-
izes the spectrum, for all k, by a multiplicative factor,
which amounts to roughly a 15%%uo correction for S =

—,
' in

two dimensions (and is a smaller correction for larger
S). The spectrum remains concave throughout the en-
tire Brillouin zone, which implies that a magnon cannot
spontaneously decay, into, say, three magnons, because of
the restrictions of energy and momentum conservation.
Moreover, the correction as calculated by the spin-wave
expansion (which is an asymptotic expansion) agrees re-
markably well with more refined numerical calcula-
tions. Thus it appears that the magnon spectral func-
tion at T=O should have a well-defined quasiparticie
peak and a broad multimagnon background above that
peak. The broad background is due to the decay of mag-
nons off resonance; the situation is similar to that of
quasiparticles in Fermi liquid theory. At T & 0 the sys-

B. T&T~

A rather detailed and unified description of the calcula-
tions of the relaxation rates in the disordered phase, but
at temperatures small compared to J, is given in the Ap-
pendix. Here we will present brief discussions of the
relevant calculations and the results.

1. Cu relaxation

The hyperfine Hamiltonian associated with Cu nuclei
was given in (3.1). As shown by Chakravarty and Or-
bach, 1/Ti" is dominated by critical fluctuations at the
incipient antiferromagnetic ordering wave vector and,
hence, can be calculated using the dynamic structure fac-
tor of THC. We shall not repeat this calculation, except
to note the principal temperature dependence:

1/Tcu ~ T3/2g ~ T3/2 epx(~J/T)

where the constant ~ is close to unity.

(5.28)

(5.29)

2. 0 relaxation

As noted earlier, there appears to be no justification in
using the dynamical structure factor due to THC to cal-
culate 1/T& as it is not dominated by critical fIuctua-
tions. Instead, we shall use spin-wave theory, since the
short-wavelength magnons are well defined, and as will
become evident, there is little weight at long wavelengths.
However, as stressed above, we are restricted to calculat-
ing only rotationally invariant quantities.

In the disordered phase, the relaxation rate for the 0
nuclei can be expressed as
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The form factor f ' ' is given by

f' I(q)=1+cos(q, a) . (5.31)

This arises from the observation that the relaxation takes
place through the transferred hyperfine coupling to two
adjacent Cu spins, assumed here to lie along the x direc-
tion. The calculation of the rate is described in detail in
the Appendix. Here we quote the final answer for S =

—,
'

systems:

~ (~o/&)' aT
To 3 (c /a) A'c

(5.32)

The result for the low-temperature 0 relaxation rate in
an isolated Cu0 plane quoted by Bulut et al. is identi-
cal to this, except that theirs is smaller by a factor of
6/~ .

3. La relaxation

Let us first set BL,=O; that is, we consider only the
hyperfine interaction with the four nearest Cu spins. In
this case the calculation of the relaxation rate for La is
similar to that for 0. The form factor is different, but
like that for 0, it vanishes at the antiferromagnetic order-
ing wave vector so that critical fluctuations do not pro-
vide the dominant relaxation channels. The spin-wave
calculation yields

4~ (~L./&)' aT
9 (c /a) pic

(5.33)

A nonzero BL, can change the results; the correlations
one needs to determine [cf. Eqs. (5.29) and (5.30)] are
(T(t).T(0)), with

where the sum covers the full two-dimensional Brillouin
zone, not the antiferromagnetic Brillouin zone, and
S(q, co) is the dynamic structure factor of the electronic
spins:

S(q, co)=g f ™
dt e ' (S (t) So(0)) . (5.30)

For Cu, with its highly anisotropic hyperfine interac-
tion, the term in the interaction Hamiltonian that dom-
inates the relaxation process is of the form

H; = AI+S', (5.35)

which gives rise to two-magnon relaxation processes. In
contrast, the term in the interaction of the form I+S
gives rise to three and higher magnon processes, which
we shall show below to yield contributions to the relaxa-
tion rate which vary to higher powers of T than that of
the two-magnon processes.

For the interaction (5.35), one finds

1

Tcu
1

8~3
u i upi ( 1+n, )n~5(E, —E2)

C. k&&T& TN

We have already noted that in the disordered phase the
temperature dependences of the relaxation rates do not
depend on the degree of anisotropy in the hyperfine in-
teractions, because the electronic spin correlations are
isotropic. Below T&, however, this is no longer true.
The calculations that follow are similar to those of Bee-
man and Pincus, except that the system considered here
is highly spatially anisotropic. We should note, however,
that we do not explicitly take into account the exchange
enhancement considered by Beeman and Pincus; this is
precisely the T=O renormalization effect which, as ar-
gued above, should cause only a multiplicative renormal-
ization of the rates without changing their temperature
dependences. We also do not take into account the
thermal renormalization effects noted before. Such
effects are presumably small for temperatures well below
the Neel transition, but may become important close to
the transition. However, one advantage of the present
problem is that T& &(J, unlike the case considered by
Beeman and Pincus. At least we may expect our theory
to be correct to leading order in T, and the leading be-
havior may be the dominant contribution until quite
close to T~.

1. Cu relaxation

(5.34)

but (S„'+& S„+s.) is entirely negligible because J' is so
small. Thence, dropping the cross terms in the correla-
tion function, one is left with the result that, in addition
to the contribution to 1/T, ' described by (5.33), one also
has a term proportional to BL„which is of the same form
as 1/T, " [see (5.28)]. (Note that in the disordered phase
of the electronic spins, T) T&, the anisotropy of the
hyperfine couplings does not affect the temperature
dependence of the relaxation rate. ) It is possible that this
additional contribution to 1/T&' may be significant, at
least for small enough T/J, even though the associated
hyperfine coupling may be small. The experimental sig-
nature would be unmistakable: The relaxation rate
would increase, rather than decrease, with decreasing
temperature.

8 f de u (E)p (s)n (E)[1+n (E)]

2 2 2 4ASyo f dE n(E)[1+n (E)]
Ac

1 (3/A') aT T
(c/a) Rc

(5.36)

To see the effect of higher-order processes, consider an
additional interaction term of the form

H; = A'I+S

Note that this term does not interfere with the two-
magnon relaxation calculated above. The spin operator
can now be expanded using the Holstein-Prirnakoff trans-
forrnation. The one-magnon term does not contribute to
nuclear relaxation, while the three-magnon contribution
1S
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&2
1 mA

(u ]u zu 3 +4u ]u zv &
+4v, u zv 3 +v, v zv 3 )( 1 +n, )nz n 3 5{E] Ez E3 )

2 2 2 2 2 2 2 2 2 2 2 2

T] (3) 2SAN
(5.38)

1

T "(3)
2

51n2 (2'Ifi) aT
16M'2 zS (c /a ) Pic

This contribution can be evaluated like the previous term, and one finds

5 ( 2 'Ifi) aT x+y
dx

16]/'2i] S (c la) Pic /]. /T 6/T (e' —1)(e]'—1)(e +~—1)

(5.39)

2. 0 relaxation

We have noted earlier that the hyperfine interaction for 0 nuclei is isotropic, and so below T& there are no two-
magnon relaxation processes and the leading contribution to the relaxation comes from three-magnon processes. In
this case the interaction Hamiltonian is given by

H, =,' ~,or (s,++-s,+ ), (5.40)

where the 0 nucleus is coupled to its nearest-neighbor electronic spins. As above, we rewrite this in terms of magnon
operators, truncate to lowest order, and apply Fermi's golden rule. The result is

~~o
(1+n, )nzn35(E] Ez E3)

T i 25AN

X [ [u, uzu3+v, vzv3g(1, 2, 3)] +4[u, uzv3+v, vzu3g(2, 1,3)]

+4[v, uzv, +u]vzuzg(3, 1,2)] +[v, vzv3+u, uzu, g(1,2, 3)] I, (5.41)

where
I'a (k + k + k )g(I I n) —e Ix mx nx

Introducing the magnon density of states, this can be rewritten as

(5.42)

1

TO

- 4
( ~ p I&)' aT - - (2x'+xy)e +'

dx dy(c/a) Pic a/T s/T (e —1)(e —1)(e"+ —1)

5 (~ol')z) aT 1.1T
ln

24V2S ( c /a ) A'c
(5.43)

3. I.a relaxation

s in Sec. y A, let us first consider the case BL, =0. Since the hyperfine interaction for La is isotropic, just as in the

case of 0, the leading contribution to the relaxation is due to three-magnon processes. Recall that each La nucleus is

coupled to four electronic spins, and thus the interaction Hamiltonian is given by

H, =,' ~„,"r-(s,++s,++s,++s,+ ) .

Consequently,
2

(1+n] )nzn35(c] —
Ez

—e3)

(5.44)

X [ [u u ]uz3f (a1, 2, 3) +v]vvzf 3(3b, 2, 1)] +4[u]uzv3f](2, 1,3)+v]vzu3fb(3, 1,2)]

+4[v]uzv3f](3, 2, 1)+u]vzu3fb(1, 2, 3)] +[v]vzv3f, (1,2, 3)+u]uzu3fb(3, 2, 1)] I, (5.45)
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where
ia(k +k —k —k —k —k )

(( m n) 1+e Ix ly mx my nx ny (5.46)

A calculation similar to the one for 0 yields

1 1 (AL /~) aT T
ln

4&2S (c/a) Pic 1.16 (5.48)

What is the effect of the BL, term in the hyperfine in-
teraction? Although S„'+& and the S„+&- are correlated
below T&, their fluctuations are uncorrelated, just as in
the disordered phase, because the spin waves have little
dispersion perpendicular to the CuO plane. We may sim-

ply add to 1/T", ' a contribution of the form (5.39) (i.e.,
three-magnon relaxation), but with A ' replaced by B„,.

D. T «6
The calculations for the temperature regime T «5

proceed in the same manner as those for T~) T))A.
The only difference is that the relevant momentum in-
tegrals must be done using the three-dimensional density
of states (5.23), rather than the two-dimensional form
(5.24) used above, because the integrals in every case are
dominated by wave vectors corresponding to energies of
order T. We now just quote the final results for the lead-
ing contributions to the relaxation rates:

1 ir (Ac /'Ii) aT T
(5.49)

3S (c/a) Pic b,

4 3po ( Ao/A')

To S (c/a)
T

4 3
QT T
Ac

2 3
aT T
Ac

aT
Ac

P q' ( A L, /fi )

TL' S (c/a)

Ps' (BL, /fi)+ S (c/a)

(5.50)

(5.51)

where P, P~', and P~' are linear combinations of vari-
ous lattice sums (Riemann g functions and two-
dimensional generalizations thereof) for which numerical
evaluations yield

P =3 415 P '=3652, P '=0194 . (5.52)

E. Anisotropy in the spin Hamiltonian

So far, all the calculations of relaxation rates have as-
sumed that the Hamiltonian governing the electronic
spins is given by (5.1), which is fully isotropic. However,
as noted in Sec. II, in La2CuO4 the spin Hamiltonian is
not isotropic. More precisely, the DM interaction splits

(the a in the exponent signifying the lattice spacing), and
—ia(k +k —k )

—ia(k —k +k )
(~ m n) e Ix mx nx +e ly my ny

b

(5.47)

+E,' "'/(2&ZJS) I
'" (5.53)

It should be clear that if the larger of the anisotropy
gaps is sufficiently large (i.e., of order or larger than b, ),
then there is no temperature regime in which the formu-
las of Sec. V C above are applicable, since (5.23) is never
an accurate approximation for the density of states.
What about temperatures small compared to the anisot-
ropy gaps? Magnon populations are then exponentially
small in 1/T, and one expects all relaxation rates to van-
ish exponentially as well as T~0. Let us consider explic-
itly the case of Cu and suppose, for the sake of simplicity,
that Eo =ED =Eo « A. Then one has

2
1 2 (A/fi) aT T

T " rr (c/a) Pic b,

2

x f,"„dx e

I (e"—1)' (5.54)

Observe that in the limit EO~O the integral here yields
and the result (5.49) is recovered. However, for

—Eo/T
Eo ))T the integral is approximately 2(Eo /T)e
and thus

'2
1 4 (A/iri)' o T E,yr-

(c/a) Pic b,
(5.55)

VI. CONCLUSIONS

We have presented a rather detailed account of the
temperature dependences of nuclear spin-lattice relaxa-
tion rates in La2Cu04 which should also be largely
applicable to the other antiferromagnetic, insulating cu-
prate perovskites. Experimental investigations of such
materials would shed considerable light on the properties
of low-energy spin Auctuations, an interesting topic in the
area of low-dimensional magnetic systems involving
S =

—,
' spins, small anisotropy in spin space, and small in-

terlayer coupling. The functional forms of the tempera-
ture dependences of the relaxation rates for Cu and O in
various regimes (disordered phase, ordered phase with
two- and three-"dimensional" spin waves) is fully deter-
mined by the analysis; in contrast, for La the behavior of
the rate depends on the ratio of the hyperfine interaction
2 L, with the nearest Cu spins to the interaction B„,with
the nearest spin on the next-nearest CuO plane. Even
though one expects AL, ))BL„the farther-neighbor in-
teraction may play an important role: It allows the La
nuclei to couple to critical Auctuations in the disordered
phase.

the magnon spectrum into two branches with distinct en-
ergy gaps Eo' ' at the zone center. These gaps have been
measured both directly, by neutron scattering, "and in-
directly, by determinations of the magnetic field required
to induce various spin-Aop transitions at low
temperature; ' ' roughly speaking, the gaps are 10 and 25
K. The generalization of Eq. (5.22), the long-wavelength
magnon spectrum, in the presence of anisotropy is

Ez""'=2+2JS
I (k~~a)~+2r [1—cos(k, a~ ) ]



2804 SUDIP CHAKRAVARTY et al. 43

We are not aware of any experimental investigations of
the temperature dependence of relaxation rates to which
our theory should clearly pertain. Indeed, there is only a
single published work describing results on which we can
comment at all. Alloul, Ohno, and Mendels studied the
relaxation rate for Y in YBa2Cu306 4&, which they
presumed to be an antiferromagnetic insulator, and found
that the rate was proportional to T. The temperature
dependence of the Y rate in antiferromagnetic Y-Ba-Cu-
0 should be the same as that of the La rate in La2Cu04
[but with BL,=O; recall the discussion following Eq.
(3.5)]. The latter is in turn proportional to T or t—o an
even higher power of T in the ordered phase —so we
must conclude that the observed relaxation cannot be as-
cribed to short-wavelength spin fluctuations. If correct,
this indicates the presence of other relaxation channels
besides those present in the Heisenberg model. It is an
amusing coincidence that a T' law for the Y relaxation
rate follows if the spin dynamics are assumed to be that
of the classical spherical model, ' but there is no reason
to suspect that such dynamics is appropriate for the real
systems. Further experimental investigations are clearly
called for.

One result of the calculations that is important to note
is that the Cu relaxation rates in the layered cuprate
perovskites should be considerably larger than those in
cubic cuprate perovskites; for example, in the ordered
phase (but above the crossover to anisotropy-dominated
or quasi-three-dimensional behavior), the relaxation rates
are larger by a factor of order (J/T) (J/J')'

It is also appropriate to comment brieAy on an experi-
mental and theoretical study of the temperature depen-
dence of the sublattice magnetization in La2Cu04 by
Singh et al. Although we have not discussed the sub-
lattice magnetization explicitly in our work, it may be
calculated by the spin-wave approach straightforwardly
(indeed, that is the theoretical approach of Singh et al. ),
and similar considerations regarding the relevant energy
scales apply. For an isotropic spin Hamiltonian, the
same energy 6 separates quasi-two-and quasi-three-
dimensional behaviors [(T/J)ln(T/b, ) and (T/J)(T/b, ),
respectively, in the deviation from the T =0 magnetiza-
tion]. Singh et al. did more, and calculated the relevant
integrals numerically so that the results could be applied
to fit the experimental data over the entire temperature
range studied; they claimed to be able to estimate 6 in
this way, and their result was consistent with other esti-
mates. However, it appears to us that one cannot be
completely confident of their analysis. In particular, the
DM anisotropy should also afT'ect the temperature depen-
dence of the sublattice magnetization, and as the experi-
mental data at temperatures comparable to or smaller
than the observed crossover temperature is quite sparse
(indeed, it appears to consist of a single data point. ), it
seems impossible to ascertain whether there is ever a
crossover to isotropic, quasi-three-dimensional behavior.

We should conclude by noting that it may be difFicult
to observe any of the low-temperature crossovers in the
temperature dependences of the relaxation rates. If the
samples contain magnetic impurities or defects such as
magnetic two-level systems, these will give rise to extrin-

sic relaxation, which may overwhelm the intrinsic relaxa-
tion channels at low temperatures, where the intrinsic
rates are vanishing rapidly as T—+0.
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APPENDIX: RELAXATION RATES FOR T & T~

The relaxation rates for all the nuclei can be written in
terms of the dynamic structure factor S(q, co=0)
[defined in Eq. (5.30)] in the form

Ax

6NA q
g f ' '(q)S (q, co =0), (Al)

where Az sets the magnitude of the hyperfine coupling
for a nucleus of type X, and the sum is over the full Bril-
louin zone (BZ) of the square lattice. Recall that the total
number of lattice sites is 2N. The form factors are given
by

(A2)

f 'o'(q) = 1+cos(q, a), (A3)

f' '(q)=l+cos(q a)+cos(q a)+cos(q a)cos(q a) .

(A4)

(We have neglected the BL, term in the hyperfine interac-
tion for La with the knowledge that its contribution to
1/T&' has the same form as 1/T& ".) Although the relax-
ation rates involve the correlation functions
(S+(t)So (0) ), they can be written in terms of the rota-
tionally invariant correlation function because of the ro-
tational symmetry of the disordered phase.

The relaxation rate for Cu has been calculated using
the structure factor of CHN (Ref. 14) for the square-
lattice antiferromagnet. However, that structure factor is
valid only for kk, „&&1, with the thermal wavelength
K,z =—Pic /T and where k—:q —Q is measured with respect
to the antiferromagnetic ordering wave vector
Q=(~/a, ~/a). Note that for wave vectors close to Q,
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the form factors f' ' for 0 and La vanish as (ka) and
(ka), respectively. Hence, although the Cu rate can be
accurately calculated using the structure factor of CHN,
the latter cannot be naively taken over to calculate the
rates for 0 and La, since the form factors kill substantial-
ly the weight at k=O. On the other hand, for kg))1
spin-wave calculations should be reliable.

Because we prefer to work in the reduced BZ of the an-
tiferromagnet, we fold the outer part of the full BZ into
the reduced BZ and write

, g [f' '(k)S(k, co=0)
T'] ' 6NA

+f,', '(k)S„(k, a)=0)], (A5)

f '„'(k)= 1 —cos(k„a), (A6)

f,', '(q)=1 —cos(k a) —cos(k a)+cos(k a)cos(k a) .

where k runs over the reduced BZ, and we have defined
the staggered form factor and structure factor via

f,', '(k)=f' '(k+Q) and S„(k,a))—:S(k+Q, ai). When
k is restricted to the reduced BZ, we shall from now on
refer to S(k, a)) as the total-spin structure factor. The
staggered form factors for 0 and La are, explicitly,

gk S„(k,O)= g k„S„(k,O)+ g k S„(k,O)
k ski k /k/ok

(A10)

and choose ko so that for ski & ko the expression for the
structure factor given by THC (Ref. 15) may be used, and
for ski) ko the rotationally invariant structure factor
may be calculated by spin-wave theory. A reasonable
choice for ko is ko=qlk, h with g«1. The fact that k()
should be chosen proportional to 1/K,„, and not any oth-
er power of K,h, is a consequence of the fact that the Bose
occupation factor n(kk„h) cuts off' the momentum in-

tegration at k= 1/K, h. Using then the scaling form for
S„given by THC, ' we find that the contribution of the
first term in (A10) is proportional to
ri(T/2~p, ) (a/k„h)- T, and it will become evident that
this term is negligible compared to the second term of
(A10).

It can be shown that within perturbation theory the
total- and staggered-spin structure factors at co=0 and

'«k «a ' for Ta/))ic «1 are of the form

TQ T T
S(k,O)= R'" +

c2 Ack Ack 2mp Ack

(A7) +O(T ) (A 1 1)

g [2S(k, O) + —,
' k a S„(k,O) ],

T, 6NA
(A8)

'V 4S(k, O) .
TLa 6~g2

(A9)

The leading-order contribution from S„ to the La rate
vanishes, because the staggered form factor for La van-
ishes as k . Higher-order momentum dependence will in-
troduce a correction factor of the form
[1+O((a/X,„) )]. In contrast, the two contributions to
the 0 rate have qualitatively the same properties [see
Eqs. (Al 1) and (A12) below]. The fact that the La rate is
less sensitive to the staggered-spin fluctuations than the 0
rate is clear: the La nuclei are coupled to four spins with
equal weight, while 0 nuclei are only coupled to two
spins. Because the average of four spins is a better ap-
proximation to the total spin than the average of two
spins, the total-spin structure factor is comparatively
more important for the La rate than the 0 rate.

Because S„(k,O) diverges exponentially in 2vrp, IT for
k =0, it cannot be calculated perturbatively for small mo-
menta. However, the factor k, in (A8) will reduce the
weight of the region k=O in the sum. To estimate the
contribution of this long-wavelength regime to 1/T&
quantitatively, we write

At low temperatures, that is, a/Kth- T/J ((1,the cal-
culation of the relaxation rate greatly simplifies, because
the structure factors depend only on ski and are exponen-
tially small if kP th))1. This justifies the use of small
wave-vector expansions for the form factors. Hence we
write

S„(k,O) =4 1

ka

'2
Ta T (i) T T (2)

st g k 2 st

2

R "'(x)= I dr g((v )g2(~,x),
277 0

XR,',"(x)= I "d~ '
2'ir 0 gi 7

with

g, (r) =Pl+2,
( )

gl( )/2/( gi( )/2
1)2

(A13)

(A14)

It follows that the rates at low temperatures
(Ta/Pic «1) are given by

2
1 ~i) ~o& Ta

Co
T& 3' c ]ac

2 T=CL,T"' 3A c gc

3

3

1+Co() +O(T )
27Tps

(A15)

1+C,".' +O(T2)
2&ps

(A16)

+O(T ) (A12)

where the functions R ' '(x) and R,'i() (x) are exponentially
small at large x and have at worst integrable singularities
at the origin. The functions R"' and R,'," are given ex-

plicitly by
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dx R (1) = dx R
0 0 3

(A17)

and it follows that the prefactors in (A15) and (A16) are

C'"=— dx R'"x +—R,'," x (A18)

C'„", =— dx 2R ' "(x) = —~ .
1 4

0 3
(A19)

Let us now describe the calculation of the two-loop
coefficients Co' and C'„,'. In terms of the functions
R' '(x) and R,'P(x), which appear in (All) and (A12),
the coefficients are given by

C' '= dx R' '(x)+ —R' '(x)oo 1
st (A20)

The prefactors Co" and C'„", can be determined from a
one-loop calculation. To this order only the S'S' part of
the rotationally invariant correlation function survives
the co~O limit. It is easily shown that

plicitly calculated the two-loop functions R' '(x) and
R'„'(x). The coefficients Co' and CL,' can then be writ-
ten as four-dimensional integrals. At this order both the
transverse and longitudinal parts of the correlation func-
tions contain logarithmic divergences, which are only re-
moved when the two parts are added to form the desired
rotationally invariant quantity. Motivated by (A15) and
(A16), one might imagine using precise magnetic reso-
nance data to determine p, without having to know the
strength of the hyperfine interactions —all one needs to
know, in principle, are the two-loop coefficients and the
ratio of the T to T terms in the relaxation rate. Unfor-
tunately, even the leading T behavior has not yet been
seen experimentally, and so it does not seem worthwhile
to evaluate the two-loop coefficients numerically.

Nonetheless, let us give here some details of the calcu-
lation of R' '(x), to show how the logarithmic diver-
gences cancel when one forms the rotationally invariant
quantity. We separate R' '(x) into contributions from
the transverse and longitudinal parts of the correlation
function, that is,

C' ~= dx R' '(x)La (A21)

R' '(x)=R' ' (x)+R' '(x) (A22)

using the Dyson-Maleev formalism, ' ' we have ex-
The explicit expressions for each part, obtained within
the Dyson-Maleev formalism, are

2xR'+' (x) = f du f dv n (xu)n (xv)(2')
Q +U

5( ~x —u —
v~

—u —v)[1+n (xu +xv)]
2QU

+ 5(~x —u —
v~

—u +v)[1+n (xu —xv)]
QV

(A23)

2 3

R,', '(x)= — f du fdvn( ux)[1+ (xnu)]5(ix —
u~

—u)—
(2~) V

x —ui+v
[n (xv) n( x~x

——v )]
ix —ui —v

+ [n(xv)+n(x x —v~)+1]fx —uf —v

ix —u +v,
(A24)

Here u and v are two-dimensional vectors, and x is an arbitrary fixed unit vector. (The integrals are independent of the
choice of x.) Both integrals are logarithmically divergent. To isolate the singular terms in the integral of R' ', let us
first define

(A26)

I+ (5)=f dx RI+' (x), (A25)

I„(5)= f dx R,',"(x),
where the functions R' ' are obtained from the functions R' ' by removing the logarithmic divergences via the intro-
duction of a cutoff 5 ((1 in the relevant lower limits of integration. It turns out that the integral I+ (5) can then be
done (almost) exactly. We obtain

I+ (5)= ln —+2(K, —2K~ )+0(5),4m 1 (A27)

with

oo 00 xye X+
dx dy

o o (e —1)(e~—1)(e + —1)
(A28)
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2 x
K~= —f dx ln(1 —e')=1.51 .

o (
"—I)z

The integral I„(5) can be written as

I„(5)= — ln ——2[K3+K~+3g(3)]+0 (5) .4m 1

(A29)

(A30)

Here g is the Riemann g function, and K& and K4 are given by the following integrals (in which the auxiliary vector r is
defined as ux —u):

K3= f du f dv n(—u)[1+n(u)]
(2~) Ivl & ]

/v —r[+u
/v

—r/ —u
n (u) —n (/v —r/)+ ——1

U

+ /v —r/ —u

/v —r/+u /v —r/
(A31)

K~=
2 fduf dv n(—u)[1+n(u)]

(2~) IUI) 1 U

/v —rf+u /v
—r —u

Iv —rl —u /v
—rf+ u

[n(u) n(/v —r/)—]+ [n(u)+n(/v —rf)]

(A32)

Note that n (x)—x ' ——
—,'+x/12+0(x ) for small x, and hence the above integrals are finite and of order unity.

Combining these results, we obtain

f dx R ' '(x) = lim ln —+2(Ki —2K&) — ln ——2[K&+K4+3/(3)]+0 (5)(q) . 4m 1 4~ 1

o s-o 3 6 3 6

=2[K, —2K~ —K3 —K4 —3g(3)] .

The coefficient CP,I is then obtained from Eq. (A21).

(A33)
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