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The superconducting critical temperature, T„ofdifferent configurations of layers is studied un-
der the de Gennes —Werthamer model. Certain inconsistencies are seen to develop with the use of
this approach, calling into question previous results obtained. Preliminary results on Nb/Zr layered
structures are also presented.

INTRODUCTION

The study of superconducting metallic multilayers has
provided information on the dependence of the transition
temperature on the period, A, of the multilayer. ' Typi-
cally, the equations of de Gennes and Werthamer are
used to understand the behavior of the results. The bi-
layer system, or "single-period" multilayer, has been
studied in great detail. To extend these studies to many-
period systems, one typically assumes that the infinite
multilayer is a good approximation, which is equivalent
to a bilayer with one-half the original thicknesses. It has
been noted that a finite multilayer can be made equivalent
to an infinite multilayer if the initial and final layers of
the finite multilayer are one-half the thickness of the orig-
inal layers.

In this paper, the de Gennes —Werthamer equations
used in studies of the transition temperature for multilay-
er systems are solved for the M-period multilayer, where
M =2 and 3, and for the symmetric systems (NS)MN and
(SN)MS, where M is the number of repetitions of NS or
SN. Here, S and N refer to layers with the higher and
lower transition temperature, respectively. The behavior
of these systems is examined as M increases from one.

PROXIMITY-EFFECT EQUATIONS

For a system of multiple layers in the dirty limit with
different transition temperatures, the de
Gennes —Werthamer theory ' gives the proximity-effect
transition temperature for the system (T, ) as a so1ution of
the following set of simultaneous equations for the gap
function in each layer i:

free path in layer i. Using the
vol=(vrkzle) (py) ', Eq. (2) becomes
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mkk~

6eT, p;g;

relation
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where p, and y, are the low-temperature resistivity and
electronic-specific-heat coeKcient for layer i, respectively.

The gap function must also satisfy certain boundary
conditions. For the de Gennes —Werthamer equations, at
a metal-vacuum or metal-insulator interface the gap func-
tion obeys

dA;

boundary

=0.

At a metal-metal interface in the dirty limit, de Gennes
has pointed out that the true boundary condition on the
gap function is continuity of both 6; /X; V; and
(D; /V; )(d 6; /dn ), where N;, V, , and D; are the density
of states, pairing potential, and diffusion constant for the
layer i. Since we are only interested in the transition tem-
perature, we can use Werthamer's combined version of
the above boundary conditions:

Ng; db, ; 1 db, ;

continuous

The only information lost in using this boundary condi-
tion is the magnitude of the gap function. For the case
considered here, there are layers of two distinct materials,
S and X, such that the proximity T, obeys T, ~ T, ~ T, .
In this case, the gap function has the following form for
the two layers:
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h, (r),

T:
b, , (x) ~e ' +a;e ', for S,

I&,.x —k, x
b, , (x)~e ' +b, e ', for N .

AvI; l;

6+k T,
(2)

where vt; and l, are the Fermi velocity and elastic mean

where y(z) =g(1/2+z/2) —P(1/2), P(x) is the digamma
function, T, is the T, of layer i in isolation, 5; is the gap
function in layer i, and g,. is given by

' 1/2

Substituting these expressions into Eq. (1) gives the two
fundamental equations for the decay lengths, q and k:

Tc

TN
C

Notice that every S and X layer has the same value of q
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or k, which is one of the principal features of this ap-
proach. This point will be discussed later. Use of the
above equations with those in Eqs. (4) —(6) allows one to
evaluate T, for the system.

For numerical computation in the example cases, the
simplifying assumptions made in Werthamer's work for
the g function are used,

y(z)~in[1+(ir z/4)], for z ~0

—+(~ /4)ln(1+z), for z «0 .
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In addition the normal-state parameters for the two lay-
ers are assumed the same, with only T, ' varying, and
are set equal to T, and 0, respectively. This gives for

ks, x I
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For the calculations, distances will be expressed in terms
of go, which is the "coherence" length for the 5 layers.
The expressions for q and k, after substituting Eq. (8) into
Eq. (7), become

q =
I 1 —(T, /T, )]'= 2
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FIG. l. (a) Schematic of an M-period multilayer (NS)M com-

posed of layer S with thickness d&, and layer N with thickness
d&. (b) Schematic of a (SN)MS system and (c) schematic of a
(.VS)~X system.

SOLUTIONS FOR M PERIODS (M = 1, 2, AND 3)

In this section, the system considered is shown in Fig.
1(a), an M-period multilayer, with layer thicknesses ds
and d&, with A=ds+d&. The system has a vacuum-
metal interface at each end. The layer thicknesses are
fixed, and only M varies. For the case of M=1, a bi-
layer, the solution obtained by substituting Eq. (6) into
Eqs. (4) and (5) gives the well-known result

—tan(q ds)= tanh(kd~), for M= 1 .q

ps px

As M increases, one might expect that the system will be-
gin to resemble an infinite multilayer. For an infinite
periodic multilayer, it is known that the solution is the
same as that for a regular bilayer with one-half the layer
thicknesses, since the "vacuum-metal" boundary condi-
tion is met at the midpoint of the layers. For this case,
the equation relating q and k is

This progression can be studied starting from the
M =1 point by applying the above equations to systems
with more than one period. For simplicity, the
definitions q*=q/ps and k*=k/pz are used. For the
M =2 case, there are two exterior boundary conditions,
and three interface boundary conditions. There are four
unknown coefficients for the a's and b's from Eq. (6), and
five equations. This leaves one equation relating q and k,

j.0

0.8

o oI—
0.6

q tan
ps

for an infinite multilayer . (12)

0.4

Therefore, as M increases, the solutions for T, (M) should
progress from the bilayer value down to the infinite mul-
tilayer value as shown in Fig. 2. The results of Fig. 2 are
calculated using Eqs. (10)—(12), assuming ps =p& and
ds —d~.

Flax. 2. Normalized T, vs d/go for the case of a bilayer and
infinite multilayer. The lines are guides to the eye.



43 BOUNDARY-CONDITION EFFECTS ON THE. . . 2785

q
*

[q *tan(q ds ) —k "tanh(k dz ) ][k *—
q *tan(q ds )tanh(k dz ) ]

=k*[k*tanh(k d~) —q*tan(q ds)][q*+k "tanh(kd~)tan(q ds)] . (13)

Obviously, the bilayer solution, Eq. (11), is a trivial solu-
tion to the above, giving 0=0. Removing this solution
from Eq. (13) gives

q*[q*tan(q ds)tanh(k d~) —k*]
=k *

[q *+k *tanh( k dz )tan(qds ) ] . (14)

This equation can be solved as Eqs. (11) and (12) were.
The results show that no solution exists for equal thick-
ness systems with d/go(1. 70, and for d/go) 3.0, the
solutions have the problem that q*ds )~/2, i.e., the gap
function is oscillatory, which is unphysical. In between
these two limits, the calculated T, 's are below those for
the infinite multilayer, which is also unphysical. The
only other solution to the M =2 equation was removed
earlier, the bilayer solution, which is a trivial solution. In
Fig. 3 the spatial dependence of the order parameter,
A(x)/V(x), is schematically shown for the M =1 and
M =2 cases when Eq. (11) is satisfied.

The same calculation has been carried out for the
M =3 system, and the exact same solution occurs. I will
not list the full expression relating q and k here. The
point is that for M ) 1, the solution of the de
Gennes —Werthamer equations, assumed valid for the
M =1 case, lead to the M =1 solution plus a set of un-
physical solutions. A similar result was seen in the work
by Menon and Arnold. Now the question arises as to

I

whether the M =1 solution can be valid for M) 1? The
initial response, upon looking at the gap function, is no,
since that picture of the gap function does not appear to
make any physical sense. Namely, as one increases the
size of the system, the resulting boundary conditions
would give an exponentially increasing average of the or-
der parameter. This would seem to violate the idea (from
thermodynamics) that the order parameter should de-
pend linearly on the system size, not exponentially, and
(from Ciinzburg-Landau theory) that the order parameter
must remain small near the transition temperature. (The
true behavior may depend upon a solution of the problem
using the nonlinear terms in the proximity-e6'ect equa-
tions. ) Also, if Eq. (11) is the true solution for all M, it
would imply that the boundary conditions on the prob-
lem have a dramatic eAect for the case of large M. It
would seem at this point that there is some type of incon-
sistency. This problem can be looked at in another light,
however, in the hopes of seeing what the true behavior
for M ) 1 will be.

SOLUTIONS FOR THE SYMMETRIC SYSTEMS:
XS. . . NANO'. . . S

For the (NS)M case, there is no obvious point of sym-
metry, which exists for the two cases of N(SN)M and
S(NS)M systems, as shown in Figs. 1(b) and 1(c). The
problem can be simplified considerably, and studied with
the same analysis as was done earlier. What one finds
rather quickly is that there is a simple relation between q
and k for any value of M. First consider the S (NS)M sys-
tem. The solution for the M =1 case, is simply

tanh
kd~

=tan(q ds), P, =O, (15)

where the need for P, will be explained later. The solu-
tion for the M =2 case now involves solving the bound-
ary conditions at two interfaces, and the solution is

p2= tan(q ds),
(16)

tan
S

2

tanh(k d~) —
P2

1 —P2tanh( k d~ )

S N S N

Continuing in this vein, one finds that for general I, the
solution can be arrived at by solving the following: For
M even,

q* «n(q ds) PM-
1+pM, tan(q ds)

(17a)

FICx. 3. Schematics of the order parameter A(x)/V(x), for
(a) a bilayer and (b) a 2-period multilayer. Here, X(x) is as-
sumed constant throughout.

tan

For M odd,

S

2

tanh( k d~ )
—P~

1 —PMtanh(k d&)
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tanh

k* tanh(k dh) pM —I

q* 1 —PM, tanh(k de )

kd~
2

tan(q d~) —
PM

1+pMtan(q ds)

(17b)

The solutions for the N(SN)M system are derived in
the exact same manner, and are quite similar. The gen-
eral solution is (with a, =0, as before) for M even,

+M even

I , tanh

CKM I+taIlh(k dTv)

q* aM —Itanh(k dIv)+1

tan(q ds ) —aM

1+aMtan(q ds)

(18a)

and for M odd,

q* IXM I taI1(q ds )
+M odd 1+aM itan(q ds)

(18b)

tank*
q ds

2

aM+tanh(k dz)
aMtanh(k d~)+1

With the above set of equations, the progression of the
proximity-efFect T, as M increases can be studied for both
the (NS)MN and (SN)MS systems. Again, the same
simplifications are made as before, and the case of
dz =d~ =d is considered. Figure 4 shows the results of
the calculations for both sets of systems with M = 1, 2, 3,
and 4, and compares them to the results for the bilayer
and the infinite multilayer for A=2d varying from 0 to
10$TT. What one immediately sees, is that instead of these
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FIG. 4. Normalized T, vs A/$0 for the case of (SN)MS and
(NS)MN systems with equal thickness layers for M=1 —4 com-
pared to the bilayer (BL) and infinite multilayer (Inf} results.
The solid symbols and x refer to the (SN)MS system, and the
open symbols and + refer to the (NS)MN system; with M = 1, 2,
3, an 4 represented by circles, squares, triangles, and crosses, re-
spectively.

two systems approaching the same value of T, as M in-
creases, they each tend towards a different limit. The
(NS)MN system tends towards the infinite multilayer re-
sult, while the (SN)MS system tends towards the bilayer
result. Figure 5 shows this more clearly by looking at the
two cases for fixed values of d as M varies.

The conclusion from these results is that the existence
of a center of symmetry does not remove the inconsisten-
cy from these equations. For values of M used in multi-
layer systems, the calculations show that the transition
temperatures of the two systems do not tend together,
leaving the behavior of T, as a function of the number of
periods for a multilayer unresolved.

The use of a single value of q or k for all the S or X lay-
ers in these systems, known as the principal root approxi-
mation, would seem to be a major cause of these incon-
sistencies. From Fig. 3(b), one would expect that the cur-
vature in the order parameter would be difFerent for the
two S or two X layers, since one of the layers has to meet
an external boundary condition. However, the usual de
Gennes —Werthamer approach cannot incorporate this,
especially since the transition temperature determines the
curvature in the layers, and that is assumed the same
throughout. The same problem arises in the symmetric
systems, (SN)MS and (NS)MN, for M) 1. Perhaps a
variational approach similar to that in Ref. 4 may indi-
cate the behavior of multiple layer systems.
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FIG. 5. Normalized T, for the (SN)~S and (NS)MN systems
vs the number of periods for (a) dz =dtv =

go and (b)
dg =1~=2go. The arrows indicate the calculated values for the
bilayer (BL) and infinite multilayer (Inf) case.
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TABLE I. T, as a function of number of periods: A=1200
A; d» =dz„' T, (SNbilayer) =8.74 K; and T, (infinite multilay-
er) =8.22 K. Nb Zl

TABLE II. Parameters used in bilayer fit to Nb/Zr.

Number of periods T, (K) measured

8.75
8.77
8.81

T, (K)
y (ergs/cm' K')
p (pO cm)

9.2
7200

3.2

0.8
1856

25

PRELIMINARY EXPERIMENTAL RESULTS

To study the above calculations, three multilayers of
Nb/Zr were made and measured. The fabrication of the
samples is identical to that in earlier work. ' Nb/Zr was
used for two reasons: first, it lies well in the dirty limit,
and there are no problems with clean effects, and second,
the predicted difference between the bilayer T, and the
infinite multilayer T, is large. The three samples had
d ~b d z and A = 1200 A, and were made with 1, 2, and
3 periods. A 550-A-thick film of Nb deposited under
identical conditions had at T, of 8.89 K and a residual
resistivity ratio of 9.45. The results for these samples are
given in Table I along with the calculated T, 's from the
bilayer and infinite multilayer models. For this case, the
full equations for y(z) were used, and the parameters
used to calculate the T, 's were taken from transport mea-
surements made on these and similar samples and from
specific-heat measurements (Refs. 8 and 9) and are listed
in Table II. Notice we have used the full T, of niobium
for the calculations, instead of the T, of the thin Nb film,
for comparison to the earlier work. Good agreement
with the bilayer value for T, is seen. Notice that as M in-
creases, T, actually goes up, not down. The latter rise is
very slight, and may be due to sample variation. What is
completely clear is that there is no decrease towards the
typical infinite multilayer result, and that experimentally,
it seems that the T, for the M ) 1 case may be the same

as the M = 1 case, even if the picture of the order param-
eter is unphysical.

CONCLUSIONS

In this paper, the standard de Gennes —Werthamer ap-
proach to calculate the transition temperature of multiple
layer systems, of either the type (NS)~, (SN)~S, or
(NS)~N has been carried out. For the (NS)~ systems, it
is found that the solution is the same for all values of M
as it is for M =1, leading to an unphysical picture of the
order parameter. The (SN)~S and (NS)~N do not have
this problem, but as M increases, the two systems do not
approach each other, and instead the (SN)~S system ap-
proaches the standard bilayer result, while the (NS)~N
system approaches the "traditional" infinite multilayer
result. The use of the principal root approximation is
seen as a possible cause of the difhculty. Experimentally,
the progression of T, was observed in Nb/Zr structures
of the type (NS)~ with M =1, 2, and 3. T, was found to
remain nearly constant, agreeing with the calculated re-
sults. Obviously, more experimental and theoretical
work remain to be done on this problem.
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