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The coefficients of the second viscosity in thin liquid-helium films are evaluated explicitly as a
function of temperature ( T) via interactions between elementary' excitations that include the anoma-
lous excitation spectrum. For T ~ 0.3 K the coefficients behave like those of the bulk liquid helium,
while for T~0.3 K the temperature variations of four coefficients of the second viscosity show a
T ' dependence, which is due to the three-phonon processes (3PP) originating from the anomalous
excitation spectrum of two-dimensional liquid helium at low momenta and low temperatures. The
T ' dependence also appears in the first viscosity of bulk and thin liquid helium, which is based on
the 3PP.

I. INTRODUCTION

Recently, the temperature variations of various sound
propagations have been an important subject in the stud-
ies of liquid He, ' He, He- He mixtures, and solutions
of He in liquid He, because their properties are closely
related to the excitation spectrum of liquid He and He,
which can determine the transport coefTicients ' through
the kinetic equations. It is well known that at low tem-
peratures and low pressures the thermal properties of
superAuid helium are not determined mainly by the ro-
tons but rather by the low-momentum acoustic phonons.
These phonons do not possess the normal dispersion rela-
tion, but instead exhibit an anomalous excitation spec-
trurn. In fact, these two cases are quite different in mi-
croscopic processes. The former contributes to four-
phonon processes (4PP) while the latter is governed by
three-phonon processes (3PP).

Recently, Andreev and Khalatnikov have evaluated
the temperature variation of first sound, and Singh and
Prakash have used the retarded single-particle Green's
function for a weakly interacting Bose gas to obtain the
Arst sound by using the wrong normal dispersion relation.
However, in a recent paper we have developed the
Landau-type elementary excitation spectrum, which is
anomalous phononlike at low momenta and rotonlike at
high momenta in two- and three-dimensional liquid heli-
urn. Starting with this elementary excitation, we have
successfully derived and explained not only the various
sounds and sound attenuations, ' but also thermal con-
ductivity" and viscosity' in partly one-, two-, and
three-dimensional liquid He.

Regarding the evaluation of first and second sound, '

we have used a new approach, which takes into account a
collision term in the Boltzmann equation, and have ob-
tained first and second sound simultaneously. We report-
ed that the second sound in thin helium Alms is approxi-
mately 2 ' times the first-sound velocity in the low-
temperature and low-frequency limit. At low frequencies
such that e,~ && 1, where co, is the sound frequency and w

is the characteristic time, we can make use of a hydro-
dynamical approach to sound propagation. However, for
the opposite case of m, ~))1. it is better to use the kinet-
ic equations. In this collisionless region the first and
second sound obtained in superAuid hydrodynamic equa-
tions are involved in the attenuation coeKcients, which
contain the four coefficients of second viscosity, i.e., gi,

g3 and g4. These four coefficients play a very itnpor-
tant role in the investigation of sound attenuation in bulk
liquid helium. In the bulk case, the attenuation of second
sound depends on all four viscosity coeKcients together.
However, the term which generally contains the thermal
conductivity strongly affects the attenuation.

Recently, we have adopted the Landau and Khalatni-
kov theory to derive the thermal conductivity" and
viscosity' for three ranges of temperature, T~0.3 K,
0.3~ T~0.8 K, and T~0.8 K, in which the scattering
depends on the nature of interactions between elementary
excitations. For T 0.3 K it is important to note that
the 3PP do not affect the thermal conductivity but the
cause the viscosity to have a T ' dependence, which was
not proven by Landau and Khalatnikov's results. The
4PP and phonon-roton scattering govern the whole
mechanism in the range of temperature 0.3 ~ T ~0.8 K,
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and for T + 0. 8 K the 5PP and the phonon-roton scatter-
ing contribute mostly to the transport coefficients.

The main purpose of the present paper is to evaluate
the four coefficients g, , g2, g3, and g4 of the second viscos-
ity as a function of temperature by solving the superAuid
hydrodynamics for the above temperature ranges
through the theory of the kinetic phenomena developed
by Khalatnikov, ' and especially for T ~0.3 K we will in-
vestigate the temperature variation of the four viscosity
coefficients. Throughout this paper we will use the two-
dimensional elementary excitation spectrum obtained by
the microscopic ring-diagram approximation,

We consider first the 3PP

(p2+p (2.1)

n = [exp(o. '+pc ) ikI3 T —1] (2.2)

The difference between Eq. (2.2) and the equilibrium dis-
tribution function no can be expanded in a power series
to give

Since the total number of phonons traveling in a given
direction is changed by the small-angle 3PP, the distribu-
tion function, which depends on the chemical potential
a', can be written as

E(p)=cop(1+yp —5p + ),
(P P0 )3—

E(P)=b, +
~Po

(1.2)

5n = n n—0 = —n0( n0+ 1)a' . (2.3)

The collision integral J3PP(n) and the kinetic coefficient
I 3pp are related to each other through

where p and P are phonon and roton momenta, respec-
tively, co is the sound velocity at absolute-zero tempera-
ture, y and 5 are positive constants which can be deter-
mined by the potential parameters, and b, , Po, and po are
the roton parameters. Here, we have adopted a soft po-
tential with a Lennard-Jones-type tail which helps to
make a smooth connection between the attractive part
and a soft repulsive core,

1 dp
J3pp(n )

2
+ 3pp

B (2~Pi)
(2.4)

7Tco
J3pp(n)= — (u + 1 )

2APo

and the collision integral J3PP(n) obtained in the second
quantization method" is given by

P(r)= .
&o

r ~a
12 6

r&a .
(1.3)

X j pip25n(np np )5(Ef E—
,)—pP10 P20 (2~/)3

(2.5)

In this paper we define the liquid-helium film as two-
dimensional —less than three atomic layers, namely one
statistical layer of 3.6 A —and neglect substrate eA'ects.
In Sec. II, to obtain the temperature variation of the
viscosity coefficients in various processes, we will investi-
gate the absorption and emission processes between ele-
mentary excitations through the collision integral equa-
tions, and we will solve the superAuid hydrodynamic
equations to obtain four coefficients of the second viscosi-
ty in Sec. III. Finally, in Sec. IV we will give the results
and discussion together with the thermodynamic proper-
ties in terms of a table and graphs.

where u is Gruneisen's constant, and n represents the
&IO

equilibrium distribution function for the phonons with
momentum p;. Performing the integration for Eq. (2.5)
over momentum space, we obtain

2!3!$(2)g(3)(u+ 1)
J3pp n P dP 3

a'
8~% po

(2.6)

Comparing Eqs. (2.4) and (2.6), we can easily obtain the
kinetic coefficient I 3pp for the 3PP as

2!3!g(2)g(3)(u + 1)
16~'po~'co

II. ABSORPTION AND EMISSION
OF PHONONS AND ROTONS

To describe the interactions between elementary exci-
tations which cause liquid helium to make a transition
from one state to another, we can consider generally
three collision processes: (a) emission or absorption of
phonons, (b) transformation of phonons into rotons and
vice versa, and (c) emission or absorption of rotons. In
addition, we have the 3PP, 4PP, and 5PP. In the case of
(c) the energy of one roton would have to be at least 2b, ,
such that it can decay into two rotons each with energy
of about A. However, this kind of three-roton process is
highly improbable, so that we may neglect it. Therefore,
from now on, we only take into account the 3PP and 5PP
and transformations of phonons into rotons and vice ver-
sa.

I gpp=QT 7 (2.8)

Here, a is constant which can be determined experimen-
tally by the attenuation coefficient of ultrasonic waves.

Now we consider the transformations of phonons into

As for the 4PP case, the direction of momenta of the
colliding particles is not changed in the 5PP case. The
calculation of the transition matrix elements by second-
order perturbation theory is very complicated, and some
terms contain vanishing denominators under the condi-
tion @=0 in Eq. (1.1) and collinear scattering. The 5PP
has maximum probability in small-angle scattering and
leads to equilibrium for the phonons in the direction of
motion. Instead of these tedious calculations using
second-order perturbation theory, we make use of the ki-
netic coefficient given by Landau and Khalatnikov' to
obtain the I 5pp as"



CHUL-WON JUN, CHUNG- IN UM, AND THOMAS F. GEORGE

rotons and vice versa. %'hen energetic phonons with en-
ergy on the order of 6 col lide with rotons
( p, +P2~~P3 +P4 ), where p and P represent the phonon
and roton momenta, respectively, the transformation can
occur. Therefore, a phonon has at least a very large ener-
gy 5, and the interactions between phonons and rotons
are very similar to that of the scattering between rotons.
Adopting Landau and Khalatnikov's assumption, ' we
may take the interactions between a roton and phonon to
be a 5-function potential,

V = V05(r) —r2) (2.9)

where n; and N; are the distribution functions with mo-
menta p; and P;, respectively. du is the di6'erential de-
cay rate for the transformation of phonons and ro tons
with momenta p, and P2 into two rotons with momenta
P 3 and P4 and is given by

2~ 2
dP 3 dP4

VIF I 5(E, +E2 E3 E4 )— —
( 2)rA' )

(2.1 1)

where
I VIF I

is the transition matrix element, and E, and
E are the phonon and roton energies, respectively.
Combining Eq. (2.10) with (2.1 1 ), we get

N, = —f f f [n, N, (N, +1)(N, +1)
—(n, + 1 )(N2 + 1 )N3N4 ]

X
I VIF I 5(E, +E~ E3 E4)——

d P,d P2d P3d P4
X

( 2)re )
(2.12)

Now we construct the symmetrized pairwise plane wave
over incoming and outgoing phonons and rotons as

(i IR)(p) r) +P& r2) (i IA)(p& r2+P& r) )

2
(2.13)

1 (ilk)ip3 r& +P4 r&) . (i lA')(P3 r&+P4 r& )
P3, P4 =,— ev' 2

+e

where Vp is an interaction constant, and r, and r2 are the
position vectors of the phonons and rotons, respectively.

The rate of change per unit time in the roton number
due to the transformation of rotons into phonons is given
by

N, = — n ( N2 N3 + 1 N4 + 1

d P &d P2
(n, +1)(N2+1)N3N4]des

(2 iraqi)

(2.10)

(2.16)

As mentioned earlier, from the fact that the roton
momentum P is almost the same as that of the roton pa-
rameter Pp, the expansion of the roton distribution func-
tion N as a function of chemical potential yields Eq.
(2.12) as

N,
)M,

—P',g 16~' ~l Vo
I'

x f fN30N40d P3d P4

1

( 2 )rh' )

(2.17)

where p, and p h are the roton and phonon chemical po-
tentials, respectively, and performing the integration over
momentum space we arrive at

p„—p h 4AI Vo I N„

k T 3
B A C p

where N, is the number density of roton given by

(2. 1 8)

N,

1 /2
/kB T Pp —Q/k 7B

2~
(2. 19)

The rate of change per unit time in the roton number can
be expressed in terms of the kinetic coefficient I h „as

N=~ph r(Pr Pph)- (2.20)

Comparing Eqs. (2.20) and (2.18), we can deduce the ki-
netic coefficient I h, for the transformation of rotons
into phonons and vice versa as

4SI V, I'N„'r 'k T
(2.2 1)

Since Vp is not known experimentally, we can simp ly
rewrite Eq. (2.21) as

—2A /k~ T
I h „=be (2.22)

where b is a constant which contains several parameters
of the elementary excitation and can be determined ex-
perimental ly by the ultrasonic attenuation.

5(P3+ P4 —p, —P~ )

( i /fi)(P3+P4 —
p)

—P2).r)

( 2M )

and performing the integration over momentum space,
we get

and combining Eq. (2. 1 3) with (2.1 1), we can obtain the
transition matrix elements as

III. COEFFICIENTS OF TWO-D IMENS IONAL
SECOND VISCOSITY

/2 ( i /A)( P3 +P4 —P 1
—P2 ) r

VrF =2 Vp Q e (2. 14)
When liquid He is in its equilibrium state, the distri-

bution functions for phonons and rotons are expressed by

Here, d 0 represents the area element. Making use of the
5-function identity together with Eq. (2.14), we obtain

n pph exp
E —p (v, —v„)

kB T
(3.I)
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no, = exp
E„—p.(v„—v, )

k~T
(3.2)

However, due to the presence of the energy dissipation,
nonequilibrium effects appear in energy and momentum
conservations, superfluid flow, energy flux, and especially
entropy which is not conserved but increases (entropy in-
creases in order to determine the unknown dissipation
coefficients). Taking into account all of these conditions,
we can accumulate all these effects within the following
two hydrodynamic equations which concern

Bj +VP+v, (V j)+(j—pv, )(V v„)
Bt

+(j V)v, +(v„V)(j—pv, )

BN„
V j-

ap

BN„
pV'vn

p
aNph"Vj-

Bp

BNph V.v„.
Bp

aN„aN„
V v„+ SVp v„

ap
Nr=—

aN,„aN„„SV.U„+ "
Vp v„

Bp
Nph

=

(3.9)

(3.10)

BN„ aN,

Bp
" ' BS

V.(j—pv„)+ N„— S—BN„
p V.v„

Bp

Combining Eqs. (3.9) and (3.10) with Eqs. (3.5) and (3.6),
we can express N„and Nph in terms of p and 5 by

=V[/, V (j—pv )+$2V v„], (3.3)

(3.4)
Bv Us

+V p'+ =V[(,V (J—pv„)+$4V v„] .
Bt 2

aNph V(j—pv )+ N

(3.1 1)7 rrl r +7 ph-rPph

aN h aN, „Bs' 8' p'"
p

Here, j and p are the momentum and mass density, P is
the pressure, p is the chemical potential of the liquid heli-
um, and g„g2, g3, and g4 are the coefficients of second
viscosity. The coefficients g, and g4 are equal according
to the Onsager's reciprocity principle.

It is obvious that the coefficients of the second viscosity
depend on the variations of the temperature and thermo-
dynamic functions, and thus the number of phonons and
rotons are changed by the various processes that we have
mentioned earlier. Let N h and Nr be the number of pho-
nons and rotons per unit area, respectively, and p h and

p„be their chemical potentials. When the system devi-
ates slightly from its equilibrium state, N, and N & are
changed in time and try to return to their values in the
equilibrium state. We assume that the nonequilibrium
distribution function n deviates very slightly from equi-
librium, i.e., small deviations of the density and entropy
can be determined by the time derivative of the phonon
and roton numbers, N„h and N„, in the expansion of the
chemical potential. Since the phonons and rotons take
part in normal motion with velocity vn, neglecting the
quadratic effects and taking only linear terms in p h and

p„, we can obtain the following equations:

='V ph-rPr 'V ppPph- (3.12)

The kinetic coefficients y„„,y~h „,and yz~ (Refs. 15 and
16) may be replaced as I 3Rp I 5pp I ~h „and I 3PP, which
are the kinetic coefficients of the three-roton process
(3RP), 5PP, phonon-roton interaction, and 3PP, respec-
tively, as follows:

Y r-ph V ph-r ~ph-r

~pp ~3PP+ ~5PP+ ~ph-r ~

(3.13)

1 BN
p„h= r +r a

V (J pv„)
3PP 5PP P

aN aN
N — 5 — p Vv„aS ap

Since I 3RP is very small compared to the other kinetic
coefficients, ' we may neglect it. Substituting Eq. (3.13)
into Eqs. (3.11) and (3.12) and solving for p h and p„, we
obtain

Nr +Nr V v 7 rrpr +7 ph-rpph ~

Nph +Nph V n mph-r XppPph

(3.5)

(3.6)
1 BN

r +r3PP 5PP P

(3.14)

The kinetic coefficients on the right-hand sides of Eqs.
(3.5) and (3.6) are symmetric in the indices r and ph.

Since the rate of change per unit time in the density p
and entropy S can be expressed by the continuity equa-
tions

BN BNS— p V v
BS Bp

aN„+ V(j—pv )
Iph —,

p+V j=Q

S+VS-v =0

(3.7)

(3.8)

aN„ S—
as

BN,
p V.vn

Bp

(3.15)

substitution of Eqs. (3.7) and (3.8) into (3.5) and (3.6)
yields

where N =N, +N h.
In Eqs. (3.3) and (3.4) the pressure P and chemical po-
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tential p can be expressed in terms of the chemical poten-
tials p h and p„as

ap ap7'P= —V p„+ p hap amph
(3.16)

Bp BpPr+ a Pph
Pr Pph

aN„
N, —

Iph, ap

N —aN S—aN

BN„BN„
ap

(3.26)

g((T) =— 1 BP BP BN

r„,+r„, a~„+ a~,„ap
gP BN„

I ph „ap„ap (3.17)

~( 1 BP dP
I 3pp+ I 5pp apr ap h

gp BN„BN„+ N„+ S—
pI h„Bp„" BS Bp

r

aNs aN
BS Bp

(3.18)

gs(T) =— I Bp, + Bp BN
l stv+f ste ~P. ~P h dP

BN„

I ph„ap ap
T

(3.19)

Solving Eqs. (3.14)—(3.16) together with Eqs. (3.3) and
(3.4) for the coefficients g„g2, gz, and g4 of the second
viscosity, we obtain

PPh= I-
3PP

aNp V.(j—pv„)
ap

r

BNph BNph
Nph S p V

ap

(3.27)

Here g& and g~ are shown to be equal as expected from
Onsager's reciprocity symmetry relation for the kinetic
coefficients.

As we have recently proven, near T =0 K the 3PP are
the main inhuence on the first viscosity coeScient in
two-dimensional (Ref. 11) and three-dimensional (Ref. 12)
liquid helium, which was not shown by Landau and
Khalatnikov, and in ultrasonic sound attenuation' the
3PP also influence the coefficients of second viscosity
near T =0 K. Therefore, to investigate the contribution
of the 3PP to the coefFicients of the second viscosity, we
should consider the 3PP effects separately from other
processes. To do this, we only keep the terms for the 3PP
in Eqs. (3.3)—(3.12) and then obtain

1 Bp + Bp
I 3pp+ I 5pp pr apph

aN aNS p
The pressure P and chemical potential p in Eqs. (3.3) and
(3.4) and Eq. (3.6), which depend only on the phonon
chemical potential, can be written as

aN, aN„
(3.20) ap ap

Bp h ap h

(3.28)

Making use of the thermodynamic identities

dED TdS +JMdp N dp Nphdpph

P = —Eo+ST+pp,

(3.21)

(3.22)

Therefore, with the use of the thermodynamic identities
Eqs. (3.21) and (3.22), we can obtain the contributions
from the 3PP to the coefficients of the second viscosity in
Eqs. (3.23)—(3.26), together with Eqs. (3.27) and (3.28),
near T =0 K as

we can transform Eqs. (3.17)—(3.20) into the following
forms:

( )
1 BN

N ~N S dN
I 3pp+ I 5pp ap aS ap

aN,„aN„„gl(T)= —
r O' Nph- O' S— 8" p

(3.29)

aN, aN„aN„
(3.23)

02(T)= ~
1

3PP

amph
N 4

— S—ax h

ap
'

2

(3.30)

gp(T) =
~3PP+ ~5PP

N —aN aN
BS Bp

2 aNph
gs( T)=

3PP P

2

(3.31)

aN, aN,
(3.24)

aNh aNh
g4( T)=- N h

— S—
I 3pp ap aS

aN h

ap
'

~(~T) 1 BN + 1 raN
'

3PP 5PP aP ~phr aP
(3.25)

(3.32)

Here g& and g4 are equal and thus satisfy Qnsager's re-
ciprocity symmetric principle.
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TABLE I. Theoretical Parameters.

n(A )

2.79 X 10-'
6/k~ (K)

4.12

q, (A ')

1.02 0.75m H,

Co (m/s)

164.4

IV. RESULTS AND DISCUSSION

In the previous sections we have derived the kinetic
coefficients for two temperature regions, and making use
of these coefficients we have obtained the four coefficients
of the second viscosity. For T(0.3 K the contributions
of the 3PP to the coefficients are most important, and for
T ~ 0.3 K we may neglect the contribution from the 3PP.
Therefore, dropping the I 3pp terms in Eqs. (3.23)—(3.26),
these coefficients of the two-dimensional (2D) second
viscosity are reduced to those of the bulk case, ' except
for differences between 2D and 3D thermodynamic
dimensionality. Therefore, we will not write the
coefficients here repeatedly for T ~ 0.3 K.

To analyze concretely the four coefficients of the 2D
second viscosity for T(0.3 K, we use the following two-
dimensional thermodynamic functions:

Here 8, =[1+(3mna /16)( —', a U—o)]/2co, n is the num-
ber density of 2D liquid helium, and the other parameters
are given in Eq. (1.3). To see the temperature variation of
the coefficients numerically, we adopt the parameters
which are deduced from the specific data of Bretz et al. '

To explain the various experimental data, ' we have
made use of these parameters successfully, which are list-
ed in Table I. With this choice, we have obtained the
sound velocity co=164.4 m/s at absolute-zero tempera-
ture. However, from the analysis of the sound attenua-
tion, ' we obtained co =84.06 m/s, which is very close to
the experimental value of 76+2 m/s given by Wusburn,
Rutledge, and Mochel, ' and the parameters u, a, and b
in Eqs. (2.7), (2.8), and (2.22) are assumed to be 1.8,
1 X 10, ' and 4X 10, ' as used by previous workers for
the bulk case. With the use of the above parameters and
those in Table I, the numerical expressions for the kinetic
coefficients are given by

2m CO

(4.1)

I „,=1.24x10"T',

I-„,=1.0x 10"T',

(4 4)

(4.5)

Poa a 0 3 b,kT kr
2 k~T

r =4x10"e-'""
ph-r (4.6)

X „(T)=&( '
2~ %co

(4.2)

(4.3)

Through Eqs. (4.4) —(4.6) we see that the powers of the
temperatures in the kinetic coefficients vary according to
the interactions between elementary excitations.

Substituting Eqs. (1.4)—(4.4) into Eqs. (3.29)—(3.32), we
obtain the temperature variation of the four coefficients
of the 2D second viscosity as follows:

g, (T)=4.32Xlo 'T —' 1— 2[—,'+4 12/T)+3 59X10 T e '
] +3.6

( —'+ 4. 12/T + 16.97/T ) +7. 19X 10 T i e
(4.7)

2[(—,'+4. 12/T)+3. 59X10 T e '
]$2(T)=2 23X10 '3T ' 1— +3.6

( —,'+4. 12/T+16. 97/T )+7.19X10 T i e ' i (4.8)

g3( T)=8. 39 X 10 T (4.9)
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3

-9

i

O. i 0.2

tog,

log

log,

When T drops to less than 0.3 K, the second (fractional)
term inside the large parentheses in Eqs. (4.7) and (4.8)
approaches unity, and these equations are reduced to the
following two equations, respectively:

01(T)=1.555X10 T (4.1 1)

gp( T) =2.890 X 10 '2T (4.12)

A11 four coefficients have a T ' dependence, which is the
same as that of the coefficient of the first viscosity. Here,
we note that there are generally 13 independent dissipa-
tive coefficients, ' but we only consider the above five
coefficients. Moreover, we will not discuss the pressure
and frequency variations of the coefficients of the second
viscosity.

We have already shown that the 2D thermal conduc-
tivity and first viscosity of thin liquid-helium films" are
all positive. We can easily confirm that the four
coefficients of the second viscosity are all positive. Figure
1 illustrates the temperature dependence of the magni-
tudes of the four coefficients of the second viscosity and
the coefficient of the first viscosity (bearing in mind that
their dimensions are different). For T=0.05 K we find
that g, & g2g3, where g, —10 and gzg3

—10 . Howev-
er, as the temperature increases to about 0.1 K, the equal-
ity then holds, i.e., gi =$2/3. Comparing order of magni-
tude for the four coefficients, we can write g3) g, ) g2,
and all four coefficients have larger values than that of
the coefficient of the first viscosity.

In conclusion, the coefficients of the second viscosity in
two-dimensional thin helium films behave like those of
bulk liquid helium for T ~0.3 K, while for T &0.3 K, the
four coefficients of the second viscosity exhibit a T
dependence like that of the first viscosity, which is due to
the 3PP originating from the anomalous excitation spec-
trum of two-dimensional liquid helium at low momenta
and low temperatures.

FIG. 1. Temperature variation of the coefficients g„g2 $3,
and g4 of the second viscosity and the coefficient i) of the first

viscosity in thin helium film. The curves represent only the
magnitude of these coefficients, where the units of g, ( = g4), gi
( =il ), and g, are cm /s, g/s, and cm /g s, respectively.
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