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Thermodynamic considerations and the phase diagram of superconducting Upt3
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In this paper we study the thermodynamics of bicritical and polycritical points, where at least
two or three second-order phase-transition lines intersect, respectively. The results are applied to
the superconductivity phase diagram of UPt3.

I. INTRODUCTION

It has long been suspected that UPt3 is an unconven-
tional superconductor. Various experiments have ex-
plored different regions of the magnetic-
field —temperature (H T) plane-and suggest a variety of
different phases. Specific-heat measurements in zero
field have indicated two distinct phase transitions. Ul-
trasonic attenuation and torsional oscillator experi-
ments have shown various peaks, often identified with
phase transitions involving the sup erconducting order
parameter(s). H, measurement for Hlc (Refs. 4 and 5)
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shows a kink at (T,H ) =(0.37 K, 0.5 T), identified as a
bicritical or poly critical point where several phase-
transition lines meet. Recently, the specific-heat jumps
along three of these lines have been measured. This
kink seems to be absent for H~~c. H, curves, ' however,
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seem to have kinks for HJ.c but not H~~c. Recently, neu-
tron scattering experiments further indicated the seem-
ingly different effect of superconductivity on the antifer-
romagnetic order parameter in different regions of the
H- T plane.

None of the above experiments have been able to
detect all of the phase transitions on the entire H-T plane.
Moreover, the ultrasonic attenuation and torsional oscil-
lator damping peaks tend to become somewhat ambigu-
ous when the "transition lines" meet. Thus, often phase
diagrams are constructed via extrapolations based on col-
lections of data from two or more experiments. Theoreti-
cal efforts are then hindered by the lack of a precisely
determined phase diagram. There is, however, a con-
sensus that the relevant superconducting order parameter
is a vectorial one: iI=(il&, i)z) (where iI transforms like a
vector in the a-b plane under the symmetry group ele-
ments of the crystal). Ginszburg-Landau (GL) free ener-
gies have been written for this order parameter, following
symmetry requirements, and also for the antiferromag-
netic order parameter m which exists below —5 K.
(Details of the models differ as to the assumptions on the
behavior of m. ) The phase diagram is then determined by
minimizing this free energy. It is, however, a nontrivial
task to solve the resulting nonlinear differential equa-
tions, and one is often left to resort to educated guesses

about the solution and the corresponding phase diagram.
The task of reconciling theoretical expectations about the
phase diagram is made enormously difficult by this
ephemeral character of the available information. In
fact, so far phase diagrams involving three' ' or four '

transition lines meeting at one or more points have been
proposed.

In this paper, we point out a different approach that is
enormously helpful in settling some of these questions,
namely, analyzing thermodynamical constraints on a
phase diagram. We shall find that some phase diagrams
proposed thus far are either forbidden outright or at least
quantitatively in error. We also discuss the implications
on those which are thermodynamically possible. Our
work parallels an earlier approach by Leggett' to study
the phase diagram of superfluid He. The assumptions
needed are simply the continuity of the free energy and
its derivatives (for second-order phase transitions) which
lead to consistency requirements about the slopes of the
phase boundaries and changes in thermodynamical vari-
ables across them. Thus the arguments are model in-
dependent and lead to general requirements irrespective
of the details of the Ginzburg-Landau free energy.

The outline of this paper is as follows: In Sec. II, we
analyze a point where three transition lines meet. We an-
alyze the constraints if two of these lines are second or-
der. In Sec. III we consider a polycritical (tetracritical)
point. We provide the constraints on the slopes and
specific-heat jumps if there are at least three second-order
transition lines. The implications on the superconduc-
tivity phase diagram of UPt3 are discussed. In Sec. IV we
summarize our results.

II. THERMODYNAMICAI. CONSIDERATIONS

A. Bicritical points

In this subsection we shall study some thermodynami-
cal aspects of phase diagrams involving three transition
lines meeting at a point. Recently, Blount, Varma, and
Appeli' constructed a phase diagram as shown in Fig. 1

based on their analysis of a GL theory.
We would like to point out that Fig. 1 is thermo-

dynamically forbidden. In particular, we shall show the
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FICs. 2. This phase diagram is thermodynamically forbidden,
irrespective of the nature of the line BN, if NA and AB are
second order.

FIT&. 1. The phase diagram proposed by Blount, Varma, and
Aeppli (Ref. 14). Second-order lines are represented by full
lines (as in all figures). The order of the line between T, and'3
T, is not specified (these lines will be represented by dashed-
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dotted lines).

Stability of A (B) over N(A) at lower temperatures
(for H (H*) demands the positivity of the specific-heat
jumps and, hence,

Aa~~) 0, AuB„&0 . (2.5)

(2.1a)

Bb

aT
as
BH

(2.1b)

Bb

aH
(2.1c)

following (see Fig. 2)
Theorem. Suppose the phase N has a second-order in-

stability, into the phase A, as we lower the temperature
at fixed field, and which in turn has a second-order insta-
bility towards the phase B at a still lower temperature.
Then it is impossible that AN and BA meet at a finite an-
gle so that there is a phase-transition line (irrespective of
its order) between N and B, i.e., Fig. 2 is impossible.

The method used in the proof of this statement is close-
ly parallel to that of a related theorem of Leggett. ' '
Consider the behavior of the free energy G(T, H) near
the point P. Since 1V~ A, A ~B are both second order,
the first derivatives of G are continuous around P (i.e.,
the same in all phases near P). Denote the second deriva-
tives of G at P by

( ~&aN )' («aN )(~)—'aN ) (2.7)

The left-hand side of (2.7) can be rewritten entirely in
terms of AaB& Aaz& p&, and p2. To do this we notice
that A~» =A~» +A~» and similarly with a replaced
by P or y. Equations (2.3) and (2.4) then allow us to elim-
inate bpAN, Ay„N, bpzA, and Ay~A in favor of «AN,
b eB~, p „and p2. We get

2
~+BA ~ AN+

p2 p&

(~+BA +«AN)
~O'B~ +

p2

These inequalities still hold as one approaches P, except
under the special circumstances where the specific-heat
jumps vanish. Let (dT, dH) be the di6'erences in coordi-
nates of a point from P. For a line separating N and B to
be possible as in Fig. 1, it must be possible to have
GB =Gz on this line; thus

«sN(dT) 2bpsNdT dH—+by~N(dH) =0 . (2.6)

This has a solution only if

«wx &~ &x- (2.2)

in each of the three phases, where b—=BG/BH. Define
the differences

which can be simplified to

1—(«aA )(«AN )
p& p2

(2.8)

dH

AN

dH ~B A

~&aA

~~AN

~7 AN

~I BA

~7 BA

(2.3)

(2.4)

respectively.

The slopes of NA, AB are determined by the condition
of continuity of G and S, i.e.,

Equations (2.7) and (2.8) are consistent only if p, =p2,
[recall (2.5)], in which case there is simply no phase A.
Hence, Fig. 1 is impossible, irrespective of the order of
transition of the line BN; i.e., the intersection T, in Fig.

3

2 is forbidden. The above argument can be trivially gen-
eralized to the case where there is more than one inter-
vening phase A &, A z. .., so long as all transitions
N~ A, ~ A2 . ~B (in order of decreasing tempera-
ture) are second order. It can also be generalized to the
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B. Polycritical points

B

FIG. 3. An example of a bicritical point which is allowed.
Line AB is first order (represented by dashed lines) and must lie
within the dotted lines (which are the extrapolations of AN and
BN).

point T, , which is, therefore, also forbidden. As a trivial
4

corollary, three second-order transition lines cannot meet
at a point unless some other line(s) emerges from it.

In fact, the only bicritical point that is possible is the
one where X has second-order instabilities into the A or
B phase, and a first-order transition line between them
(see Fig. 3). Even in this case further restrictions apply:
Following the reasoning in Ref. 15, but specializing to
p, ,p2 & 0 instead, where

dH dH
P2=dT AN dT

(this is more relevant to our case of superconductivity
phase diagram) one can show that the phase diagram is
impossible unless lp2l ) lp, l. Furthermore, the slope of
the first-order transition line satisfies'

dH ~&AN

dT AN 613AN

dH ~~BN

d T iiN ApsN

~~AN

~7 AN

~PBN

~XBN

(2.12)

(2.13)

dHP3=
CA

~+CA

~f CA

~@CA

~XCA
(2.14)

The specific-heat jumps are positive; thus

~& AN ~~BN ~&cA + 0 (2.15)

The line CB is determine by the condition of equality
of G, i.e.,

Since the specific-heat experiment for Hlc suggests
that the two second-order transition lines emerging from
the two H =0 transitions meet at (H*, T*), and we have
shown that we cannot have only one phase-transition line
emerging from this point, we now turn to the simplest
possibilities, i.e., four phase-transition lines meeting at
(H*, T") (Figs. 4 and 5). Notice that experiments suggest
that the lines AX, CA, and BX are probably second or-
der. [No latent heat, hystersis, nor jumps in frequen-
cies at these transitions have ever been reported. ] Thus
the remaining unanswered question is whether CB is first
or second order [provided, of course, it is not the case
that yet some other phase-transition line(s) meets at
(H*, T*)].

We shall first consider the case where CB is first order
(Fig. 4). The thermodynamics can be studied by a simple
extension of the paper by Leggett. ' Again using similar
definitions as in Sec. II A, we have, at P = (H*, T" ),

dHP3= dT AB

where
1/2

AaAN

(2.9)

(2.10)

b,acti(dT) 2b,f3CIidT dH +b,—ye&(dH)~=0 . (2.16)

There are two roots to this quadratic equation. How-
ever, the latent heat of a first-order phase transition can-
not be negative, i.e., S, & ( ) )Sz if C(8) is the lower
temperature phase [p~ & () )0]. One can easily verify
that in either case the condition can be written as, with

x =lpiI&lp21&1. (2.1 1)

It can be easily verified that none of the three phases can
occupy more than 180 of the phase diagram.

In Tokuyasu, Hess, and Sauls' a tentative phase dia-
gram for UPt3 (Hllc) was constructed based on experi-
mental data. It should be noted that many features of
their phase diagram are possible only if some suitable
lines there are first-order phase-transition lines. These
authors would like to explain some of the phase transi-
tions by vortex transitions. If that is the case, then the
thermodynamical results here have important implica-
tions on the nature of the vortex transitions.

We do not believe that the GL theory of Ref. 14 itself
can violate thermodynamics. The problem simply lies on
the incorrect guess of the solution. It is, however, out of
the scope of the present paper to discuss this question.

C

FIG. 4. An example of a polycritical point which is allowed.
Here CB is first order.
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H
dHp4=

c
~&ca+ [(~&ca )' (—~c ca )(~l'ca) l'"

~rCB

FIG. 5. An example of a polycritical point which is allowed.
Here CB is second order.

(2.17)

The right-hand side of (2.17) can be rewritten entirely
in terms of pl, p2, p3, and specific-heat jump ratios
(b.a' s). To do this we use, in (2.17),

«CB =Aa C„+Au ~N
—AaBN

and similar relations with a replaced by P or y. We then
~13CQ ~~gN ~13gN ~l CA ~Y AN and ~3 i'd%

in favor of Ao'c~, ha&N, haBN, and p, ,p2, p3 with the
help of (2.12)—(2.14) [cf. the derivation of (2.8)]. We
confine our case to p, &0, which has been established ex-
perimentally. With

' 1/2

the help of (2.16),

dH
~YCB )~I cBdT CB

and thus we obtain

«BN

cr3=
~~BN

' 1/2

(2.18a)

(2.18b)

P4 =P 1

Pl 2 2 Plr3+rl-
P3

' '
P2

'2
Plr 1—

1

P2

Pl+r3'
P3

2 2
2P1 2 Pl

P3 P2

2
Pl

r lr3 1
P3

2 1/2

(2.19)

«CB
p4=

~p
~Pcs
~3 CB

(2.20)

that is, the expression inside the square root in (2.19) has
to be zero. This can be viewed as a condition on the
slope p3. Assuming that p„pz (0 and pz~ ) ~p, ~, so that
we have an "up-kink" at P =(H*, T"), we find

which determines the slope of CB in terms of the other
slopes and specific-heat jumps.

If, further more, CB is a second-order transition (Fig.
5), p„has to satisfy

r4 =—

1/2
&CB

( 2+ 2 1)1/2 (2.23)

p 1 pl r3+r 1 r4
1 — = 1—

p3 pz (1—r, )r3
(2.24)

2+ r 1 r3 —r lr4

(1—r, )r4
(2.25)

Thus

Equation (2.20) [or (2.19)] then determines p~. With the
help of (2.24), we find

P2 P2—1= —1
p4 Pl

P2

P3

P2 —1 r 1

Pl

r r +(r +r —1)'
(2.21)

(1—r, )r3

This is possible only if r 1+r3 —1)0, or, since
~+CB ~~BN(r 1 +r3

P2

p4

P1

P3

rlr=+
Pl

(2.26)

AacB )0 (2.22)

and thus C must be a lower temperature phase than B.
From the figure it is then obvious that it requires p4 &0.
[Recall the remark below Eq. (2.8).]

The relation (2.21) can be rewritten as, with the short-
hand

Recall that we assumed p„pz (0 and ~pz ~
) ~p, ~.

From Fig. 5, it is clear that, for either sign ofp3, we must
have l-p, /p3)0. Since we have seen that p4(0, from
the figure it is obvious that ~pz~ ) ~p4~ and, hence,
pz/p4 —1)0. Thus the lower sign of Eq. (2.26) and,
hence, also of (2.24) and (2.25) must be chosen. Notice
that
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(r3 —r, r4)(r3+r, r4)=(1 —r, )(r&+r3)

and therefore, (r3 —r&r&)/(I —r&) is always positive
definite, and thus the inequalities listed above are always
satisfied irrespective of whether r, ~ 1. Any two of the
three relations (2.24) —(2.26) will then be the two (in-
dependent) conditions relating the slopes and the
specific-heat jumps [in addition to the conditions (2.22)
and p4(0]. Notice that all conditions for the existence
of Fig. 5 have been included. Thus, Fig. 5 is thermo-
dynamically possible, though it is clear that, if we use a
Cxinzburg-Landau theory, particular conditions have to
be met. '

In the remainder of this section we would like to apply
the above relations to the phase diagram of Upt3 for
Hic. A phase diagram involving four transition lines
meeting at a point has been constructed by Hasselbach
et al. ' (see Fig. 6). As noted, AX, BN, and CA are all
second-order transitions lines, and the specific-heat jumps
along them have been measured. The corresponding
quantity, however, was not measured on CB. [In fact
they saw no specific-heat jumps, nor latent heat, any-
where else in the (H, T) plane they have investigated; we
shall come back to this point later. ] They, in fact, comp-
leted their phase diagram near (H', T*) by taking a
"transition line" measured by ultrasonic attenuation (the
position of which is represented by the dotted line in Fig.
6). Thus, it is open whether this transition is first or
second order. We shall discuss both of these two possibil-
ities below.

The specific-heat jumps for H &H' reported in Ref. 6
have rather large nonmonotonic variations as a function
of field, perhaps due to difficulties in resolving the contri-
butions from the two transitions. Thus, it is difficult to
obtain reliable extrapolated values for r, and r3. (In fact,
it seems that the data of Ref. 6 lie in a thermodynamical-
ly forbidden region; see Fig. 7.) Therefore, we assume
that the slopes AX, CA, BN are correctly given in Ref. 6
(i.e., p, /p3 =0.533, p, ./p2 =0.625; also notice the
difference in nomenclature for B and C phases) and we

0.86
13

0.85-

determine the specific-heat jumps that will account for
the phase diagram. If we assume that CB is first order,
then Eq. (2.19) gives its slope as a function of the ratios of
the specific-heat jumps r „r3. The case where CB is
second order corresponds to the special case where the
expression (E) under the square root vanishes. In Fig. 7
we plot the contours of the ratio ~p4/~p, as well as the
locus (dashed line) where E vanishes, for a particular por-
tion of the (r&, r3) plane. Above the dash-dotted line the
phase diagram as in Figs. 4 or 5 will be forbidden.

If we choose the line CB as in Ref. 6, then the value
~p&~/~p& ~

=0.15. As is clear from the figure, we need a
value of r, and r3 smaller than 0.7 and 0.82 (specific-heat
jump ratio = 0.49 and 0.67) to explain the observed
slope. These values of r, and r3 are much smaller than
the ones reported in Ref. 6 [where they are close to 1, no-
tice that the 2 (1) there is the upper (lower) temperature
transition, and thus corresponds to 1 (3) here].

Thus, the assumption that a line CB of slope as low as
~p& / p& ~

—0. 15 connects to the point (H*, T*) is incom-
patible with the measured specific heat. Notice that the
ultrasonic attenuation experiment seems to indicate a
line which is almost Hat only at low temperatures, but
with increasing ~p4~ as temperature increases. Thus, we
have seen that this increase in ~p4 ~

is necessary for com-
patibility with the assumption that the three other
second-order transition lines are meeting at a point.
Since Ref. 6 was unable to detect the line CB, the latent
heat or specific-heat jump along CB must be small; it
must be weakly first- or second-order transition with a
small specific-heat jump. In the former case no sudden
sharp changes in specific heat is reported either. Thus

0.84-

H HIc

0.83-

0.5 0.82-

C

0.81-

0.3 0.4 0.5
0.65 0.7 0.75 0.8

FIG. 6. A probable phase diagram of UPt3 for Hlc. The na-
ture of the dotted line is uncertain. It may or may not join the
dash-dotted line.

FIG. 7. The ratio of ~p4~ /~p, ~
for Figs. 4 and 5 as a function

of the specific-heat jumps ratios r, and r3, when the other slopes
have values as in the text.
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ac =a~. One thus must lie near the dash-dotted line, as
well as near r, +r3 =1 in Fig. 7. In the latter case one
must lie on the dash-dotted line, and r, +r& ~ I. Refer-
ence 6 seems to indicate r, , r3 that are too large to be ac-
ceptable. Anyway, more careful measurement of ~p4~ as
one approaches H, , and the value of the specific-heat'2'
jumps near the "kink" of the H, curve is highly desir-

able to determine whether one really has four transition
lines meeting at a point as in Fig. 4 or 5. This informa-
tion will be useful in distinguishing between candidates of
Ginzburg-Landau theories.

We would like to end this section by remarking that
since our results are entirely based on thermodynamics,
they are completely general and thus applicable to a
variety of other systems. We shall, however, defer these
discussions to a later publication.

III. CONCLUSIONS

Zc

FICx. 8. Another possible phase diagram for H in a general
direction in the a-b plane. There is no real phase transition be-
tween A and 8. Possible extra transition lines within the C
phase are not indicated.

We summarize as follows. We have considered the im-
plications of general thermodynamics on bicritical and
polycritical points, and applied the relations to the phase
diagram of UPt3. Assuming that, for Hlc, the two H=O
transitions remain second order and meet at a point at
finite H, as suggested by the specific-heat measurement,
we find that at least two other phase-transition lines must
emerge from that point. Assuming that one of these lines
is also second order, we have considered the thermo-
dynamic implications on the slopes and specific-heat
jumps near the intersection point.

Given the extrapolation of experimental data needed to
deduce the phase diagram, and also the potential quanti-
tative difficulty in the measured specific heat mentioned
above, one cannot exclude the possibility that, for Hlc,
the suggestion that the lines A2V and CA meet is actually
in error. In that case the phase diagram may simply be
as in Fig. 8, where there is only a smooth crossover from
the low-H —high-T phase to the high-H —low-T phase. '

The specific-heat experiment, in particular the extrapo-
lated values of the ratios of the specific-heat jumps at the

hypothetical intersection point of the phase-transition
lines, will be crucial in distinguishing the above two pos-
sibilities.

Note added in proof. Very recently two experiments
have been reported [G. Bruls et al. , Phys. Rev. Lett. 65,
2294 (1990); S. Adenwalla et al. , ibid 65, 22.98 (1990)]
showing that a polycritical point as in Fig. 6 is indeed in-
volved for all orientations of the magnetic field.
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