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Large bipolarons in two and three dimensions
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Feynman path-integral techniques are used to study the large bipolaron system. A new trial ac-
tion is introduced, which takes into account a nonzero average distance between the electrons.
With this trial action, variational expressions are derived for the free energy for arbitrary electron-
phonon interactions and spatial dimensions. For large interelectronic repulsions (twice) the Feyn-
man upper bound for a single polaron is reobtained. Therefore it is possible to discuss the single-

polaron —bipolaron transition within the same physical picture for both bipolarons and single pola-
rons. Numerical results are presented for the case of LO-phonon interaction and a Coulombic
repulsion between the electrons. For this system a scaling relation between the free energies in two
(2D) and three dimensions (3D) is obtained. Bipolaron formation is only possible above a critical
value for the coupling constant a„which is lower in two than in three dimensions (in 2D: a, =2.9
and in 3D: o;, =6.8). This indicates more favorable conditions for bipolaron formation in two di-

mensions, which might be of relevance for the bipolaron model of high-T, superconductivity. The
single-polaron —bipolaron transition behaves much like a first-order phase transition.

I. INTRODUCTION

Bipolaron formation has been put forward as a possible
pairing mechanism for superconductivity. ' Bipolarons
are a generalization of the polaron concept to the case
where two electrons (instead of one) interact with the sur-
rounding lattice of the solid and with each other. In the
literature, one distinguishes between the so-called small
and large bipolarons, depending on whether the single
polarons would have a localized state (small polaron) or
an extended state (large polaron). Recently, Emin pro-
posed Bose-Einstein condensation of large bipolarons into
a superAuid as a possible mechanism for superconductivi-
ty in the new high-temperature superconductors.

In this paper we will study the large bipolaron. Early
studies, within the Hamiltonian formalism, indicated
quite large regions in which bipolaron formation would
be possible. The ground-state energy for single-polaron
formation, however, was taken within the proposed mod-
els and poorly compared to existing path-integral stud-
ies. ' Adamowski introduced a singlet ground state and
performed a numerical minimization of the ground-state
energy. He found a very narrow region where bipolaron
formation is possible. His formulation is restricted to the
zero-temperature case and it does not give a value for the
effective mass of the bipolaron. Another drawback of
this operator formulation is that it does not permit us to
study the single-polaron —bipolaron transition since the
estimations of the single-polaron energies are poor com-
pared to path-integral calculations. Adamowski resolved
this by comparing his bipolaron ground-state energy with
path-integral results for the (single) polaron ground-state
energy. Recently Bassani et al. extended the work of
Adamowski and introduced a translational invariant trial

wave function. They found that large bipolarons can be
mobile and that bipolaron formation is easier in two di-
mensions than in three dimensions. Mitra gives a simple
criterion on eo/e for bipolaron formation. Hiramoto
and Toyozawa' have treated the problem with path in-
tegrals. Their system includes a Coulombic repulsion be-
tween the electrons together with an interaction between
the electrons and two types of phonons (longitudinal opti-
cal and acoustical). Their results apply to a three-
dimensional (3D) system.

In this paper we will apply the path-integral method
which allows for an exact elimination of the phonon
coordinates. The electrons are treated as distinguishable
particles and their spin degrees of freedom are neglected.
The electron-lattice interaction is included in the form
proposed by Frohlich. " It is well known that, even in
the single-polaron case, this problem cannot be solved ex-
actly. Our approach, therefore, relies on the path-
integral technique in conjunction with the Feynman-
Jensen inequality, which will provide us with an upper
bound to the exact ground state. This upper bound will
be derived for the case of a general electron-phonon in-
teraction and for an arbitrary electron-electron interac-
tion. In general, we And an attraction between the elec-
trons as a result of the electron-phonon interaction. The
competition between this mechanism and the (repulsive)
electron-electron interaction determines whether or not
bipolarons can exist. For large repulsive forces between
the electrons, we reobtain Feynman's expression for the
ground-state energy of two single polarons.

Although our treatment of the problem is valid for ar-
bitrary temperature, we limit our numerical results to the
important case of zero temperature. Only the interaction
with the longitudinal-optical (LO) phonons is considered
and the interaction between the electrons is taken as
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purely Coulombic. The proposed trial action is a general-
ization of Hiramoto and Toyozawa's. Furthermore, our
trial action is translational invariant which ensures con-
servation of the total linear momentum. Hiromato and
Toyozawa's results are, analytically, obtained as a limit-
ing case. Our numerical minimization also leads to these
limits. We also find a scaling relation between the 3D and
2D results. Two relevant parameters determine the bipo-
laron formation: (a) the electron-phonon coupling con-
stant a, which measures the attractive part, and (b) the
strength U of the Coulomb repulsion. Since both param-
eters are related to the static and high-frequency dielec-
tric constants of the crystal (ep and e, respectively), only

the part U )&2a of the (a, U) space has physical
significance. We find (a) that the nonphysical region is
entirely bipolaronic, and (b) that below a critical valuea„the bipolaron-single-polaron transition is continuous
and occurs at U =&2a. For a )a„bipolaron formation
is discontinuous, analogous to a first-order phase transi-
tion, and occurs in the physical region of the (a, U)
space. Thus, for a) a„bipolarons start to exist in physi-
cal space and the transition becomes discontinuous in the
derivative of the energy.

II. THE BIPOLARON SYSTEM

The bipolaron system consists of two electrons in in-
teraction with a phonon field and is described by the fol-
lowing Hamiltonian:

2
Pj ikr. + g

—ikr.+ g (Vkake '+ V)*,a),e ')
2m k

+ y )rtcoka), ak+ U(ri —r2),
k

where we neglected the spin degrees of freedom of the
electrons. r (p. ) is the position (momentum) operator of
the jth electron (j= 1,2), m is the electron band mass
U(r) is the repulsive potential between the electrons, ak
(ak ) is the creation (annihilation) operator for a phonon
with wave vector k and frequency cok, Vk is the electron-
phonon interaction coefficient, and the crystal volume
will be denoted by V. The general formalism will be con-
structed without any reference to the specific k depen-
dence of (teak and V), or form of U(r). Furthermore, the
number of spatial dimensions will be taken as general and
denoted by d.

All thermodynamic quantities are known if we can cal-
culate the partition sum Z =Tr(e ~ ), where /3=1/ki) T
is the inverse temperature. Within the framework of
Feynman path integrals, the phonon degrees of freedom
can be eliminated exactly Z ZphZblp where

Z „=Q [2sinh(A'cpkP/2)]
k

is the partition sum of the free-phonon system. The bipo-
laron partition sum Zb; is a path integral in only the
electron coordinates

Zb; = g fdx J,'(
)

„'2)r(t) e
j=1,2

Formally, the electrons undergo interactions nonlocal in
time, governed by the action

S[r,(t), r2(t)]= —f dt [
) mr)(t) + —,'mrz(t) + U[r, (t) —rz(t)]]+ g g ~

V ~kf dt f ds G (t s)e'—
0 j I =1,2 k 0 0

with the phonon Green's function

Gn(u) =cosh[irtQ(/3/2 —
~u~ )]/2 sinh(irtAP/2) .

ppr. (p)=x. S, (r)(t), r2(t)]
XJ jJ t (p) x rj t e

i

In Eq. (3) there is a competition between the direct in-
terelectronic repulsion and a retarded attraction, which
stems from the elimination of the phonon coordinates.

The resulting path integral of Eq. (2) cannot be solved
analytically. Therefore, the Feynman variational princi-
ple is used. This gives an upper bound to the free energy
Fb; = —ln(Zb; )/)(3 in terms of an arbitrary trial action
S,

Fb; ~Ft ——(S—S, ),1

—PF,where F, (Z, =e ') is the free energy (partition func-
tion) corresponding to the trial action S„and ( . . )

S,denotes an average with weight e ' defined as

III. THE MODEL SYSTEM
AND THE CORRESPONDING TRIAL ACTION

We propose a four-particle model to simulate the bipo-
laron system. The trial action S, will be obtained after
the elimination of extra oscillator variables from S . In
analogy with the Feynman model for a free polaron,
each electron interacts quadratically with a fictitious par-
ticle of mass M and oscillator strength ~. Furthermore,
we also allow for a quadratic interaction, with an oscilla-
tor strength ~', between each electron and the oscillator
of the other electron. The two electrons Auctuate around
a mean distance a from each other. The Coulomb repul-
sion between the electrons is approximated by a quadra-
tic repulsion with strength K. Thus, the model is deter-
mined by the parameters M, ~, ~', K, and the vector a.

The Hamiltonian describing this model is
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2 p2
H = g + +—(r~ —RJ) +—[(r,—Rz —a) +(R&—rz —a) ]——(r, —rz —a)z,

12 2m

which is translational invariant and quadratic. The latter implies that it can be solved exactly. The center-of-mass
motion is free and after a normal-mode analysis we find three eigenfrequencies which are associated with the internal
degrees of freedom

Mm

1 M+m(, 2K
2 Mm m—

'2 1/2

Mm m Mm

These eigenfrequencies satisfy the following inequalities: 0& ~ Qz+0& and Qz ~ v~ 03~0, where v= [(a+a')/M]' is

the frequency of the free oscillator (analogous to the Feynman parameter w in the single-polaron problem). The parti-—/3H
tion sum Z =Tr(e ) of this model system can easily be derived and we found

2m (0, /v) 3 fiII,P
Z =V Q 2sinh

2~AP . , 2

The total mass of the model is given by 2(M +m) =2m (6&/v ). Note that the eigenfrequencies and the partition sum

Z do not depend on the average separation a between the electrons.
The action S corresponding to the model Hamiltonian H is

S [R,(t), Rz(t), r, (t), rz(t)]= f dt g r (t) + R (t) + —[r (t) —R (t)]
0

1 2 2 2 2

I

+—
I [r,(t) —R,(t) —a]'+ [R,(t)—r, (t) —a]'] ——[r,(t) —r,(t) —a]'

In analogy with the elimination of the phonon variables, the oscillator coordinates R can be eliminated to construct
the trial action St in the following way:

ppR. (P) =X. ] S [R&(t),R&(t), r&(t), r&(t) j S, [r&(t), r&(t) j

j=1,2

(10)

with Z„,=[2sinh(Avt3/2)] "denoting the partition sum of the free oscillators. Such a construction leads to the trial
action

S, [r&(t),rz(t)]= —f dt [ —,'mr&(t) + —,'mrz(t) —
—,'K [r&(t) —rz(t) —a] ]

p

z+ lz—f dt f ds G„(t—s) g [r, (t) —r (s)] + [r,(t) —rz(s) —a]
0 0 4MV . 12 Mv

g =1,2

where the electrons now exhibit a quadratic attractive
self-interaction. The electrons are bound together at an
average distance ~a~ if the retarded interaction is larger
than the direct quadratic repulsion, which is governed by
the constant K.

In Eq. (4) we need the partition sum Z, of the trial ac-
tion which is found to be equal to

A central quantity needed in the evaluation of (S ), in

Eq. (4) is the correlation function

ik [~ i&) —rii~il .
g

e J ft

which is the Fourier transform of the position correlation
function of electron j at time t and electron I at time s

j=1,2

OSC

A'0 13
X Q 2sinh

j=l 2

—d

d/2
2m (Il, /v)

[2 sinh(fiv/3/2) ]+ "
2~6 f3

(12)

ik. [r&(t) —r&(s)j, , ik [r2(t) —r&(s)j, —k D&&(~t —s~)

ik-[r&(t) —r2(s) j i ~ ik. [r2(t) —r&(s) j i +

'We found the following expressions for the D functions:
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2 2v' u uD„(u)= fi —1 ——+ E( Q„P,u)
2m Q' 2 P

Q2 2

+ E(Q ~P, u)
02 —A3

r'„=( [r,(t) —r, (t) j')
=a +2dD, 2(0)

dW
S +

2 2coth
mQ2 Q —Q

p

v 03+ E(Q3,p, u)
02 —0,3

2 2v' u uD12(u)= fi 1 ———+ —E(Q„P,u)
2m Q 2 p Q

Q~ —v+ F(Qi, P, u)
n,' —n2,

v —Q3+
2 F(Q3pu)

Q2 —A3

where we defined the auxiliary functions

E(Q,P, u)

(14)

+
2 2coth

mQ3Q, —Q

AQ3
p

IV. AN UPPER BOUND TO THE FREE ENERGY

The Feynman variational principle is used to derive an
upper bound to the exact free energy Fb;„ofthe bipola-
ron:

Fb; ~F, ——(S —S, ) .
1

Note also that the average electron separation
(r&(t) —r2(t) ) =a, which can be nonzero in contrast to
the model used in Ref. 10, which has ( r&(t) —r2(t) ) =0.

1 . iriQu .
h

iriQ(p —u)=—sinh sinh
Q 2 2

F(Q, /3, u)

fiQP
2

(15)

In the previous section, the trial action S„Eq.(11), and
the corresponding free energy F, were introduced. Since
S —S, involves no derivatives of r (t), the average
( S —S, ) can be entirely expressed in terms of

ik [r . (t) —r((s)]
)(e

1 A'Qu
h

A'Q(P —u )=—cosh cosh
2 2

fiQP
2

The mean-square separation r, 2 between the electrons
is given by

Eq. (13), after making the suitable Fourier transforma-
tions.

After a tedious calculation, we obtain the following ex-
pression:

d/2
2m(Q(/v )

2vrfi P

r

F. 2dl .
h

A'vp
ln 2 sinh

2

iriQJ p 1ln 2 sinh ——ln V
P . , 2 P

Q, —v A'Q, iriQ, p 2 Qi —v A'Q2 A'Q2p v —Q3 fiQ3
coth — +

2 2
coth +

2 coth2 Q2( 2 2 A'Q (/3 Q22 —Q23 2 2 Q22 —Q32 2

—k D2f d—u g i V~ G (u)(e " +e'"'e " )+ g U e'"'e
p k

k
(17)

where the Fourier transform for the direct electron-
electron repulsion is introduced U(r) = gk Uke'"'.

1a=
%COLO

2 ]
1/2

2m coLo

V. CALCULATIONS FOR LO PHONONS
AND A COULOMB REPULSION

4m'
Vk — l %COLO

2m co

1/2 1/2

with

In this section we will limit ourselves to the specific
case with only longitudinal optical phonons in three di-
mensions. The phonon frequencies are taken as disper-
sionless cok=coLo, and the interaction coefficients are

the dimensionless Frohlich coupling constant which de
pends on the static (eo) and high-frequency (e ) dielec-
tric constants. The interelectronic repulsion is taken to
be an unscreened Coulomb potential U(r)= U jr, whereU) 0 is a measure for the strength of the repulsion. If no
screening is taken into account, U is directly related to
the dielectric constant e: U =e /e . In fact, a classi-
cal approximation to the LO-phonon interaction will re-
place U =e /e by U =e /eo and is unable to give bipo-

2 2

larons. Here we will solve the problem more exactly and
incorporate quantum mechanical corrections.

The exact action S of the bipolaron system, Eq. (3),
takes now the form
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G (t —s) G„(t—s)
5[r,(t), ri(t) j= —f dt g —rJ(t) —u f ds + f dt V'2~ fo, , 2 o ~r, (t) —r, (s)~ o o ~r, (t) —r (s)~

~ r, (t) —r, (t)
~

(18)

where we use units k~ =A=I =~„o=1for convenience. We see that the attractive and the repulsive part have the
same 1/r dependence as a function of the intere1ectronic distance.

The expression for the free energy, Eq. (17), now reduces to

3 3

F ~ —g ln 2sinhbip —
p j=1

A, —v 0, ,
2 Q2) 2

——ln 2 sinh
6 . vp

2

Q,p
coth

2

n,'—v' n2+
2 2

coth
p&, n', —n', 2

Ag v —Qi Qi+ coth
Q —0

2 3/2
2(Oi/v )——ln V

P 2irP

A,p
2

—aV2/n f du Gi(u)
/3 1

QD„(u)
1 a

x
QD, i(u) 2+D, i(u) QirD, i(0) 2+D ii(0)

x (19)

where the function y(x) is defined as

y(x)= — dy e j' = erf(x),
X 0 2x

which has the following limiting behavior:

y(x =0)=1

(20)

(21)

VI. A SCALING RELATION BETWEEN THE FREE
ENERGIES OF 2D AND 3D BIPOLARONS

Because of the specific nature of the electron-phonon
interaction introduced in the previous section, it was
found' that, within the Feynman approximation, the 2D
free energy of a single polaron can be obtained from the
3D result by scaling the electron-phonon coupling con-
stant. In this section we will prove a similar scaling rela-
tion for the bipolaron system. The electron-phonon in-
teraction coefficients in 2D are

An inspection of Eq. (19) reveals that, in the limit of
infinite separation ~a~ ~ ~, all terms representing the at-
traction as well as the repulsion between the electrons
vanish. In this case, two independent single polarons are
obtained. Hence, only an upper bound to (twice) the
single-polaron ground-state energy will be found. The
same limit is studied if the function D,z(u) becomes
infinitely large, we will comment on this in Sec. VII.

2~+
Vg — 1 AcoLo

j. /2 1/2

where 2 is the crystal area. The repulsion between the
electrons, however, remains of the 3D Coulombic type
U(r)=U/r. Substitution of this expression in Eq. (17)
leads to the following upper bound to the free energy:

2 '
Fb,„~—g ln 2sinh

j= i

0)—v

——ln 2 sinh
4 . vp

2
1——ln

2(Q, /v )

2irP

Q,p
coth

2
2

pQ,

A2i —vi Q~ f) iP v —Qi Qi QpP+
2

coth + coth
022023 2 2 n2 n3 2 2

n 1 1 a—a&it/2 f du Gi(u) +
QDii(u) QDi~(u) +8Dii(u)

(22)
V D, (0) +8D, (0)

where the function g2&(x) is defined as

y2o(x)=e "Io(x ), (23) and

y2o(x =0)=1

(24)

with Io(x) the modified Bessel function of the first kind
and zeroth order. The function g2~ has the following
limiting behavior:

y~o(x ~+ co )~0 .

An inspection of Eq. (19) reveals that, in the limit of
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infinite separation al ~~, all terms which describe the
interaction between the electrons approach zero and,
consequently, a model system of noninteracting electrons
is described in this limit.

In the important case, where a=0, a scaling relation
can be derived for our results of the free energy between
different dimensions. Denoting the upper bounds to the
exact free energy by F2D (F3D ) in two (respectively,
three) dimensions, one notices the following relationship:

3~ 377
FzD(a, U, p)= —', F3D a, U, p4 ' 4

(25)

From now on we will discard the trivial volume- (area)
dependent term.

This means that the (upper bound to the exact) free en-

ergy in two dimensions can be calculated from the (upper
bound to the exact) free energy in three dimensions sim-

ply by scaling the coupling constant a as well as the
repulsion strength U with a factor 3~/4. Since the calcu-
lation of this upper bound requires the numerical
minimalization of a four-parameter expression, Eq. (16),
which includes a numerical integration, this scaling rela-
tion is found to be quite useful in practice.

VII. NUMERICAL RESULTS AND DISCUSSION

In this section numerical results are presented for the
case of zero temperature, where the free energy equals
the ground-state energy. A bipolaron is formed when our
estimation for the bipolaron ground-state energy is lower
than twice the ground-state energy for a single polaron.

The lowest free energies for single polarons are ob-
tained within the general path-integral formalism by
Adamowski et al. ' They used an iterative procedure,
starting from the Feynman expression. These estima-
tions were calcUlated for zero temperature and intro-
duced small corrections (~ 1%) to the original estima-
tions.

In this paper our main concern is to give a consistent
description of the single polaron as well as the bipolaron
within the same physical picture. Since it is possible to
obtain the Feynman expression for the single-polaron free
energy within our formalism, we will use this expression
as our estimate for the single-polaron free energy. This
procedure has the advantage that it is also applicable to
nonzero temperatures. Therefore, we will first show how
the Feynman expression for the single-polaron free ener-
gy can be obtained from Eq. (19). Then we discuss the es-
timate for the bipolaron free energy and the single-
polaron —bipolaron transition.

Single polarons will occur if the repulsion U is large
enough to inhibit bipolaron formation. If the limit
U —+ ~ is taken, the upper bounds in Eqs. (19) and (22)
will remain finite only if either D&2(u =0)—+ ~ or the
function y approaches zero. From Eq. (21), we find y=0
if its argument is infinite. This means lal ~~ or
Di~(u =0)=0. The latter possibility is ruled out because
of the inequality Q2 v ~ 0,3. Let us now consider the
case D,z(u =0)~ ~, which is the only possibility when
a=0. From Eq. (14) and in view of the inequalities for

and v, we find that 0,3 must be zero. This also follows
from our physical model. If the bipolar on model
represents two single polarons, there is translational in-
variance not only for the center of mass of the whole bi-
polaron system, but for each polaron separately. Conse-
quently, the lowest bipolaron eigenfrequency (f13) must
be zero. Note that, in both cases, the mean-square sepa-
ration r &2 becomes infinity.

Numerically we found for large values of U that (i)
lal~~, (ii) Bi~02, and (iii) 03~0. Comparing with
the Feynman expression we note Aj=A2=v and v=m,
where U and m are the Feynman variation parameters for
the single-polaron free energy. Rewriting Eq. (19) with
these values, one finds (twice) the Feynman upper bound
to the free energy. This result verifies the correctness of
our numerical procedures since it can also be imposed by
putting the force constants K and ~' equal to zero in our
model Hamiltonian. Note that, in this case, we have
Q3 0 and, hence, the parameter a is of no relevance.
Numerically, however, the minimum upper bound to the
free energy was obtained much faster if a was included as
a variation parameter.

In units A =I =coLo =kg = 1, the coupling constant ~
and the repulsion U are given by

e 1 1

V 2 EE'0'
and

2
U=

(26)

Because eo is a positive quantity, we must demand
U ~ &2a in order to have a physically meaningful model.

For small values of the coupling constant a, no bipola-
ron formation was found for U & Y2a. We also mini-
mized the upper bound in the hypothetical region
U~V'2a. Bipolaron formation was found to occur for
the whole region 0 U &2o, . Thus, U =&2+ is the

-35

C:~ -~5

Repulsion U
FIG. 1. The upper bound to the ground-state energy (3D) is

plotted as a function of the repulsion U for a relatively weak
coupling a=3. Bipolaron formation is only possible in the non-
physical region U ~ &2o. (shaded area).
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C:
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2 4 -8.6
9.6 9.8 10 10.2 10.4

Repulsion U Repulsion U

FIG. 2. The inverse mean-square distance 1/r», as a func-
tion of the repulsion U for a=3. The mean-square separation
r» is infinite throughout the entire physical space U~&2o. ,
where single polarons are more stable than bipolarons.

FIG. 4. The ground-state energy as a function of the repul-
sion U for a typical strong-coupling case: a=7. Bipolaron for-
mation is possible in the physical region (nonshaded area) below
a critical value U, .

critical value below which bipolarons can exist. As a typ-
ical value we will discuss a=3. In Fig. 1, half the
ground-state energy in units A'coL& is plotted as a function
of the repulsion U (while the coupling constant is kept
fixed at a=3). The shaded area represents the nonphysi-
cal region U ~ &2a. In this region we find bipolaron for-
mation since the energy is lower than the Feynman upper
bound. In the physical region, however, the energy is
equal to the Feynman upper bound and hence, no bipola-
ron is formed. Figure 2 shows, for the same values of U
and 0. as in Fig. 1, the inverse of the mean-square separa-
tion I/riz in u»ts of QmcoLo/A. As e~pe~t~d riz ap-
proaches infinity in the single-polaron region. When a bi-
polaron is formed, r, z has a finite value. We did not plot
the separation lal because its value was found to be zero
when bipolaron formation occurs. In the single-polaron

region, we have 03=0 and, hence, the parameter a is of
no relevance. We plotted (half) the total mass m +M of
the model system in Fig. 3. Note how all three quanti-
ties, E, r, z, and I +M, are smooth functions of U, even
at the critical value U =&2a.

The latter is no longer true in the case of strong cou-
pling. We will focus on +=7 as a typical example. We
find that bipolarons occur throughout the nonphysical re-
gion U ~ V2a and in the physical region below a certain
value U, . Two different local minima are found in the
four-dimensional parameter space. One of them corre-
sponds to the single-polaron case and is characterized by
03=0. The other minimum corresponds to the bipolaron

l

l

l

l

I

0 9.6 9.8 10 10.2 10.4

Repulsion U

FIG. 3. The model bipolaron mass as a function of the repul-
sion U at fixed coupling constant o.'=3. In the nonphysical re-
gion U ~ &2u (shaded area), the mass is enhanced because of bi-
polaron formation.

Repulsion U

FIG. 5. The inverse mean-square distance 1/r» as a function
of the repulsion U for the strong-coupling value a=7. The
mean-square separation r» remains finite for U ~ U, and jumps
discontinuously to infinity at U, where bipolaron formation is
no longer energetically favorable.
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state. Again it is characterized by a=O. In order to min-
imize the energy, only the lowest of the two minima has
to be kept. This global minimum was found to jump
from one local minimum to the other at a certain value
U, . As a consequence, the variation parameters exhibit
abrupt changes. Because the different local minima
represent physically different situations (single-
polaron —bipolaron), a possible occurrence of discontinu-
ous changes in certain physical quantities is to be expect-
ed. In order to compare this situation to the smooth be-
havior in the weak-coupling regime, we plot in Figs. 4—6
the same quantities as in Figs. 1—3. Throughout these
three figures, dashed and dash-dotted curves are used to
represent the quantities corresponding to the different lo-
cal minima which represent metastable states. A solid
curve is drawn for the global minimum. Whereas the en-
ergy (Fig. 4) itself is a continuous function of the repul-
sion U, its first derivative will be discontinuous. The
mean-square separation r, z (Fig. 5) exhibits a sudden
change from its finite value (in the bipolaron region) to
infinity when entering the single-polaron region. Figure 6
shows an increase for the mass by almost a factor 3 for
this choice of 0..

Finally, we present the phase diagram for bipolaron
formation in Fig. 7. As in Figs. 1—6, the shaded area
represents the nonphysical part U ~ V2a of the (a, U)
space. Below the solid curve, bipolaron formation will
occur in three dimensions. The dashed curve separates
the region of single polarons from the region of bipola-
rons in two dimensions. The solid circles indicate where
the phase separation starts to deviate from the line
U=v'2a. These points are given by a, =6.8 (3D) and
a, =2.9 (2D). The 2D curve was calculated from the 3D
curve by application of the scaling law, presented in Sec.
VI. In the neighborhood of a„both curves are linear
U = 1.63'+ C, where the constant C depends on the di-
mension; in 3D, C= 1.49 and in 2D, C=0.63, For larger
values of a, U deviates slightly from this linear behavior.
It is found that the bipolaron region is much larger in
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FIG. 7. The phase diagram for bipolaron formation in two
{dashed curve) and three dimensions (solid curve) is presented.
Bipolarons are formed below the curves. The nonphysical part
U ~ &2o. of the (a, U) space is shaded.

two dimensions than in three. Perhaps it is even more
important that, in two dimensions, bipolaron formation
might occur at lower values of the coupling constant cz.

A comparison with the work of Adamowski for a 3D
bipolaron shows that his onset of bipolaron formation
(a, =7.3) is close to our estimate a, =6.8 in 3D. For
higher values of the coupling constant cx, he finds a slight-
ly larger stability region for bipolaron formation, e.g. , at
e =9 he obtained U, = 13.48 where our result is

U, =13.21. Bassani et al. found n, =6 in 3D and a, =2
in 2D, but his bipolaron energies are larger than ours.
Because the results of Ref. 8 and ours are upper bounds
to the exact energy, the present result is closest to the ex-
act result.

VIII. CONCLUSION

C4

C

20

9.6 9.8 10 10.2 104

Repulsion U

FICx. 6. The model bipolaron mass as a function of the repul-
sion U at a fixed coupling constant +=7.

We have studied the bipolaron system and single-
polaron —bipolaron transition for an arbitrary number of
spacial dimensions. An upper bound to the free energy of
a bipolaron in the case of a general electron-phonon cou-
pling in different dimensions, Eq. (19), was obtained using
the path-integral formalism. This upper bound was de-
rived using a new trial action, Eq. (8), in which the elec-
trons are separated spatially by a vector a.

For the numerical work, we restricted ourselves to an
interaction with LO phonons and a Coulomb repulsion
between the electrons at zero temperature. The physical
parameters are the electron-phonon coupling constant o.
and the interelectron repulsion strength U. The region of
physically realizable materials had to satisfy U ~&2a.
In the case of large repulsions, (twice) the Feynman result
for the single-polaron ground-state energy was obtained.
Therefore, bipolarons and single polarons, as well as their
transition, could be studied within the same physical
model. For this choice of interaction, a scaling relation
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was derived. This permits us to deduce 2D results from
our 3D analysis simply by scaling the coupling constant o.
and the repulsion U.

Our numerical results showed a difterent behavior at
weak coupling as compared to strong coupling. Below a
critical value a„nobipolarons exist for U~ /2a. The
single-polaron —bpiolaron is a continuous transition and
occurs at U =&2a. Only when a ~ a, do bipolarons ex-
ist in the physical region. The single-polaron —bipolaron
transition, however, behaves like a first-order phase tran-
sition. This leads to a discontinuous behavior of the
mean-square separation r &2 between the electrons and of
the total mass of the model system. Our estimations are
a, =6.8 in 3D and u, =2.9 in 2D. Bipolaron formation is
found to be more favorable in two dimensions and might
be an important mechanism in the high-temperature su-
perconductors.

In the present paper we showed that the interaction of
the electrons with LO-phonons is already able to stabilize
the bipolaron state. From Ref. 10 we know that the in-
tegration of electrons with acoustical phonons will en-
large the bipolaron region in the phase diagram of Fig. 7.

But it is known' that strong acoustical phonon interac-
tion strongly reduces the polaron mobility and it is ex-
pected that this will also be the case for the bipolaron.
Therefore, a strong acoustical phonon interaction will
tend to localize the bipolaron, which is unfavorable for a
possible superconducting state.

Note added. While revising our manuscript, it was
brought to our attention that a trial action similar to
Hiramoto and Toyozawa's' and ours, Eq. (11), has been
introduced by Kochetov et al. ' They obtained analyti-
cal results in the strong-coupling region which were
found to agree with our numerical results for large values
of a.
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