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Electrodynamics of moving superconductors and superconductors under the influence
of external forces
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We carry out a systematic and phenomenological approach to investigate the electrodynamics of
moving superconductors and of superconductors under the inhuence of external forces. In applying
the approach to various situations, we predict the presence of detectable electromagnetic fields in
the interior. We argue that the detection, particularly of the induced electric fields in a variety of
situations, will not only test the approach that we develop in the paper but also validate the princi-
ple for a gravitational-wave antenna.

I. INTRODUCTION

A theoretical derivation of the London moment' by
Becker, Sauter, and Hailer was an early attempt at for-
mulating the electrodynamics of a moving superconduc-
tor. Although the results of this effort have proved to be
of great experimental value in that the effect could be ap-
plied to precise determinations of the ratio h /I „
Cooper-pair mass, and absolute rotation, and to the
readout system of the Stanford gyroscope experiment
which is designed to detect the effect of vector gravi-
tomagnetic fields, the theory remains incomplete and is
applicable under certain limited conditions. Recently,
adopting London's method, we have studied the elec-
tromagnetic properties of vibrating sup erconducting
cylinders driven by a gravitational wave and by a
mechanical exciter. What is needed now is a more gen-
eral and systematic treatment, based on the same phe-
nomenological approach, but which will provide a
comprehensive description of the electrodynamics of
moving superconductors and of superconductors under
the inAuence of external fields. This new approach will
also provide a basis for further theoretical development
and practical application.

Based on the assumption that, in the interior of a su-
perconductor, the current density is directly proportional
to the velocity of the superconductor, Anandan pro-
posed the covariant equation

—[A'B„P+(2e/c ) A„]= (2/c)gU„,
where U„ is the four-velocity of the superconductor, the

II. COVARIANT EQUATIONS FOR MOVING
SUPERCONDUCTOR

In the GL theory, the current Aowing in superconduc-
tor characterized by order parameter tt(r) in the presence
of a magnetic field is given by

„0*PA
2lm I (2)

where m * and e are, respectively, the mass and charge
of a Cooper pair g=

~ P e
' . In this paper we only consid-

er the very simplest situations in which the perturbing
fields and currents are so weak that

function g is determined by the requirement that the
equation must be in agreement with the Josephson equa-
tion. He demonstrated that the Josephson equation, the
London moment, the magnetic-Aux quantization for a
closed curve in the interior, and the expression of the
electric field in the interior can be obtained from Eq. (I).
However, there was no physical explanation for the as-
sumption. As will be shown, our results differ from this
assumption.

In this paper we begin with the Ginzburg-Landau
theory (GL) (Ref. 9) and, then, derive a set of covariant
equations which can be used to describe the electromag-
netic properties of both a moving superconductor and a
superconductor under the inAuence of external forces.
We shall demonstrate that when subjected to certain
kinds of motion some new affects arise in a superconduc-
tor which we predict should be experimentally detectable.
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=n =const, (3) Equations (7), (9), and (10) with the Maxwell equations

where n, is the number density of Cooper pairs, i.e., n
does not vary spatially and the nonlinear effects in fields
are not strong enough to change n. For these situations,
Eq. (2) reduces to the London equation

net 2ne

or

BF„
=PPp ~

FPv, k, +FvA. ,P+ FAP, v —0

where

BA„
Bx

(12)

Bv, e E,
Bt m,

VXv, =— B,

form a complete set of covariant equations which de-
scribe the electrodynamics of an arbitrarily moving su-

perconductor and of a superconductor under the
inAuence of nonelectromagnetic external forces.

In the limit of low velocity, f3=0, Eqs. (7) and (9) yield

where v„e( &0), and m, are, respectively, the velocity,
charge, and mass of a superelectron.

The London equations (5) and (6) can be combined into
a single covariant expression'

Bpp Bp =0 (p, v, =1,2, 3,4)ax. ax p

with x4 =it and

pp =mup+eAp

(9)

f, —:KQ(1 B, ) . —

where u„ is the four-velocity of superelectrons,
u=v, /(1 —P, )', and P, =(v, /c ) .

When there is an external nonelectromagnetic force f,
acting on superelectrons, a natural procedure is to re-
place Eq. (8) by

p„=mu„+ed —fE„dr,
where dr = dt (/ ( I —p, ), K„ is the Minkowski force, and

Bve E+ f, ,
Bt m, m,

QXVe = ' B+ ' fvxf, dt,
meme

m +—f
e Bt e

V~B = B+ V Xv; ——f V X f,dt1 me

A,
2 e ' e

Equations (7), (10), and (11) yield

1 me 8 V;
V J= J+ VXV'XV,. +

Joe Bt

1 Bf,fVxVxf, dt+
|Moe ai

and Eqs. (7) and (9)—(12) yield

(13)

(14)

(15)

(16)

(17)

&„=J,„+J;„=2ne(u„—U„) . (10)

In deriving the London moment, London' assumed
that the London equations, Eqs. (5) and (6), apply for a
moving superconductor as well as for a static one. The
London equations, however, are the equations of motion
for superelectrons in a superconductor and, thus, can only
describe the electrodynamics of superconductors at rest,
i.e., where there is no motion of the ions. The London
equations are not adequate for investigating the electro-
dynamics of moving superconductors. Thus London in-
troduced the concept that the net current should be the
sum of the supercurrent and the current due to the
motion of the ions, and gave the equations of motion for
ions in a rotating superconducting sphere. For an arbi-
trarily moving superconductor following London's
method, we have to introduce the equation of motion of
the ions. At this juncture, however, it is not necessary to
introduce any specific equation of motion, since it suf5ces
to maintain generality and to simply work with the four-
velocity of ions, U„, where U=v, /Q(1 —p, ),
pf = (v, /c ), and v, is the velocity of ions.

The net four-current density is

where

me

2pone 2

1/2

is the London penetration depth, the terms involving the
second derivatives of J, E, and B with respect to time
have been ignored, since for co&(10' these terms are
negligibly small, where co is the frequency of J, E, and B.
Equations (15)—(17) show that the motion of ions and the
forces acting on the superelectrons determine the elec-
tromagnetic currents and fields in the interior of a mov-

ing superconductor. The forces acting on the ions are
also important. These will appear in the explicit expres-
sion for v; which will be case dependent.

III. EXAMPLES

Solving Eqs. (15)—(17) with the equations for both ions
and external forces acting on superelectrons, one can de-
scribe the electrodynamics of a moving superconductor
or a superconductor under the inAuence of arbitrary
external forces. The solutions of Eqs. (15)—(17) have the
following form:
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~screen +Jinterior

screen +Einterior
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In this paper we only consider some simple cases

V'J,„,=V'E,„,=V'B,„,=V X f, =0,

(18)

(19)

(20)

(21)

m, L
V= a, (26)

v;=coXr, VXv,-=2~, VXVXv;=0, (27)

where L is the length of the bar. For L, =1 m, a =10
m/s, we have V=5 X 10» V, which is measurable.

(C) The London moment, e.g. , a uniformly rotating su-
perconductor sphere or cylinder: f, =0,

and we restrict our interest to the electromagnetic prop-
erties in the interior.

The solutions for the interior parts of the fields are, re-
spectively, and

(3vi
=co X (co Xr),

at
(28)

Bf,
J;„,=lnt

me Bv)

e gt

m c)

ppe

f,
e

me
VXVXv, ,

ppe

8 Vl. =r0 X [ro X ( co X r ) ] .
at2

(23) Equations (22) —(24) yield

(29)

&int=—
m,

VXV, .
e

(24)

me
J;„,=,

~

co X I ro X ( ro X r )],
pp~ e

(30)

The self-consistency of Eqs. (22) —(24) can be checked
by substituting them into one of Maxwell equations

Vxa,„,=&p,„,+am, „,xar .

me
E;„,

~ ~

r0X(roXr),
e

2me
int

(31)

(32)

Therefore, for the simple cases, we do not need to solve
Eqs. (15)—(17) with equations of motion for ions and of
forces acting on superelectrons. The electromagnetic
properties in the interior for these cases can be readily
found by substituting v; and f, into Eqs. (22) —(24).

Comparing Eqs. (22) —(24) with the results of Ref. 8 we
find that Eqs. (23) and (24) are similar to the Anandan re-
sults. Equation (22), however, indicates that, in the inte-
rior, the current is not proportional to the four-velocity
of a moving superconductor.

We now consider some simple cases.
(A) A uniformly moving superconductor: f, =0 and

v, =const. Equations (22) —(24) give us

Equations (32) and (31) show that there exist not only
the London moment but an induced radial electric field.
London only considered the curl of the velocity of ions,
Eq. (27), so he only obtained the London moment. The
first and second time derivatives of the velocity of ions,
Eqs. (28) and (29), give rise to an electric field and current
in the interior, respectively. The electric field is neces-
sary to balance the centrifugal force on superelectrons.
On the axis the E field vanishes. At the equator the E
field reachs the maximum value. The potential difference
between the equator and axis is measurable. For co=10,
r =0. 1 m, we have

E=SX10 V/m .

int 0~ int ~ int

me
(25)

There will be an electric field in the interior which will
drive superelectrons to move with ions. The voltage be-
tween two ends is

i.e., there are no currents, electric and magnetic fields in
the interior. This fact implies that the electrodynamics in
the interior of an uniformly moving superconductor is
the same as that of a superconductor at rest, i.e., detec-
tion of the electromagnetic fields or currents in a super-
conductor cannot be used to distinguish between inertial
reference frames. Newton's first law is valid for super-
conductivity.

(B) A superconductor bar uniformly accelerating along
the axis: f, =0, V X v; =0,

(3vi c) v
=const:—a and =0 .

at at2

Then we have, from Eqs. (22) —(24),

Actually a radial electric potential gradient has been ob-
served' to exist across a rotating conductor.

Equation (31) agrees with the result of Rystephanick. "
He pointed out, based on a proposed principle that there
must be zero net force on a moving superelectron, that
the London moment results from the Coriolis force on a
charged particle in a rotating frame and that there exists
an induced electric field directed outward from the axis
of rotation. He also argued that the origin of the electric
field is the separation of charges resulting from the rota-
tion, leading to a build up of negative charge on the sur-
face of the superconductor.

Here we give a different argument, namely, that the E
field is induced by the change of the vector potential 3 as
shown below. It is convenient to write the current in the
form of

ne 2 —nev, . (33)
me

Then substituting Eq. (33) into one of Maxwell's equa-
tions we obtain
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v'~ ="'"'
me

meA+ v;
e

and

where V' A =0 has been used. Solving Eq. (34) gives

2;„,= —(m, /e )v,

(34)

(35)

V=(Xocov, m, /e)cos(cot)exp[ t—/(2~0)] . (40)

V=10 V,

If we choose a high Q( =coco) bar, the vibration and in-
duced E field will decay very slowly with time. For a
niobium bar with L =0.4 m, Q =10, and Xo-10 m,
the voltage is

m, 8 U;

J;„,= p,e gt2
(36)

E
BU;

B;„t=0 .
C}t

(37)

Now we need the equation of motion for the ions. In
this case we consider a superconductor bar which is
mechanically excited and then disconnected from the
driving force. The superconductor bar will then vibrate
freely. From the theory of elasticity we obtain the equa-
tion for the vibration of a mass element in a solid
cylinder. We assume that this equation can also describe
the vibrations of bulk ions in a superconductor bar.
When excitation of the superconductor bar commences,
the ions will vibrate first without the superelectrons fol-
lowing suit. Then the ion motion creates an electric field
which will cause superelectrons to vibrate. The different
vibrations of ions and superelectrons create a current
which in turn induces an electric field which reacts on
both ions and superelectrons.

For simplicity we will restrict our attention to the case
of a thin superconductor bar in which we need only con-
sider longitudinal vibrations propagating along the bar
axis, i.e., the z axis. The displacement of the bulk ions x;
along the z direction satisfies the following equation:

m,E = — = ri) X(coXr)
t e

which is just Eq. (31).
Equation (30) shows there is also a current in the inte-

rior but negligibly small, for co = 10 and r =0. 1 m,
Jint 10 A/m

(D) A free vibrating superconductor bar: f, =0,
V'XV, =0,

Bv. 8V;
&0 and %0 .

{3t at2

Equations (22) —(24) yield

J,„,=Q, B;„,=0, E;„,= —(m, /e)g . (41)

There is an electric field in the interior to prevent a drift
of superelectrons due to the gravitational field g. The
same result for conductor has been obtained and verified
experimentally. ' The comparison between Eqs. (25) and
(41) shows that there is no distribution between a super-
conductor at rest in a Newtonian gravitational field g and
one uniformly accelerating with a= —g, i.e., the weak
equivalence principle is valid for superconductivity.

(F) A vibrating superconductor bar under the influence
of gravitational waves (GW): f, =m, aow, Bf, /Bt&0,
Bu, /dt%0, 8 v;/Bt WO, and V Xu; =0, aow is the gravi-
tational driving acceleration that results from projecting
the tidal gravitational force due to a GW onto the super-
conductor bar. Actually the superconductor bar is a GW
antenna. For details, see Ref. 7. It is well known that
GW's will penetrate a superconductor and exert a force
on the ions and superelectrons not only on the surface
but in the interior also.

Equations (22) —(24) become

Bf,
J;„,=

LMoe i3t

m, Bv;
int

vi—m,' at2

—aw

(42)

(43)

which is measurable. This effect, to our knowledge, has
not been tested experimentally.

Note that for this case the E;„, given by Eq. (39) does
not satisfy the conditions given by Eq. (21). It can be
shown, however, that Eq. (39) is approximately correct
by substituting it into Eq. (16) and ignoring small terms.

Next we consider two difFerent cases in which external
forces exist, e.g. , gravitational forces which will penetrate
a superconductor.

(E) A superconductor at rest in a Newtonian gravita-
tional field g: f, =m, g, Bf, /Bt =0, and u; =0.

Equations (22) —(24) become

+ U
2

9t ' Qz2

eE
7

mi
(38) In a superconductor antenna, ions vibrate as forced

harmonic oscillators and satisfy the following equation:

where U, is the speed of sound in the superconductor bar,
E is the induced electric field. Solving Eqs. (37) and (38)
one obtains for the fundamental frequency co,

d +i 1 dxi e+ +COOX; =So,w E
Zo dt mi

(44)

me . 7T —t /(27.
O

j

E;„,= — Xoco sin —z cos(cot )e (39)

where Xo is the amplitude, so=(1+m, /m, )ro. The in-

duced electric field in the interior vibrates as a standing
wave. The voltage between the center and one end is

Solving Eqs. (43) and (44) we obtain

m, COO l CO /'To

( 1+d)co coo+leo/'ro
(45)

which is exactly the result of Ref. 7. Based on this effect
a new GW antenna has been proposed.
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The eII'ects (D) and (F) are, in principle, similar in the
sense that there is an induced electric field in the interior
of a vibrating superconductor. Thus detecting the in-
duced electric field of case (D) will validate case (F), i.e.,
the principle of a new G%' antenna.

In summary, the electrodynamics of an arbitrarily
moving superconductor is determined by the motion of
not only superelectrons but also the ions. The induced
electric fields in a uniformly accelerating superconductor
rod, in a rotating superconducting sphere, and in a freely
vibrating superconductor bar are detectable. We argue
that it is important to detect these predicted induced
electric fields, because it will test not only the generalized

London equations derived in this paper but will in addi-
tion further validate a principle for a new GW antenna.

Note added in proof It. has been verified experimental-
ly that there is an induced electric field in the interior of a
vibrating conductor bar. ' This effect is very similar to
case (D).
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