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Electron-energy-loss spectroscopy of layered systems
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A feature of electron-energy-loss spectroscopy (EELS) in layered materials is predicted. Contrary
to the usual isotropic case, EELS becomes temperature dependent. This result, obtained by using
thermodynamic Careen's functions, arises from the unusual structure of the layer plasmon bands.

This paper is concerned with electron- and positron-
energy-loss spectroscopy (EELS) of layered materials.
This well-established experimental technique is very use-
ful in the study of both single-particle and collective exci-
tations such as plasmons in solids (see, for example, Ref.
1). At present, EELS of layered crystals is of particular
interest because the high-T, oxides have a layered struc-
ture. In addition to this very topical class of compounds,
the approach developed in this paper is applicable to all
other types of layered structures such as artificial super-
lattices, layered materials (graphite), etc.

Recently a semiclassical treatment for a charged parti-
cle passing outside a layered material has been given.
This paper treats the special case of the energetic particle
moving outside the layered material parallel to the layers.
The treatment is applicable only at T =0 K.

The presence of the layered structure leads to strong
modifications of the plasmon spectrum. ' Our goal is to
develop a theoretical approach which takes into account
the inhuence of the anisotropic plasmon band on EELS.
It will be shown that the unusual structure of the layer
plasmon band leads to an experimental loss feature with a
characteristic temperature dependence.

Consider the passage of a charged particle through a
layered material. The Hamiltonian describing the in-
teraction between the particle and the excitations of the
medium has the form

H = g Vk' ak a~ qaka~ .
k, k'
pq

Here p is the initial momentum of the particle, q the
momentum transfer, k and k' are the initial and final mo-
menta of the material carriers, and

2

2

(2)

is the matrix element of the Coulomb interaction between
the passing particle and the material carriers. The pass-
ing particle, whose wave function is taken as a plane
wave, is assumed to be fast (e /hv «1) and its interac-

tion with the layered material can be treated in the'Born
approximation (no multiple scattering).

The energy lost by the particle per unit time is equal to

—:(2tr) ' f (e~ —E ) Wqd'q,

where 8' is the total probability of the transition
p~q —q. In order to evaluate 8', we are adapting the
method of Larkin developed for the description of losses
in the usual isotropic case to the case of a layered system.
A particular advantage of this formulation is that it al-
lows the study of temperature-dependent features.

With the use of the Golden rule and the Hamiltonian
[Eq. (1)] we arrive at the following expression for the to-
tal probability 8

W—:2' g e " ~R, (q)~ o(E E„co), — —
m, n

(4)

where co=a.
p E'p —q

and

R „(q)=(m x v"„+q~ ~at+ a„n)+R„
k

Here m, n are eigenstates of the crystal (see, e.g. , Refs. 6
and 7); we have separated the term R„describing Um-
klapp processes. Equation (4) contains statistical averag-
ing, P=(k&T) '. The matrix element Vk't' ~ is given by
Eq. (2). The wave function teak(r) corresponds to the car-
rier state of the layered material. This function can be
written in the form

yk(r) =e "&y„(z) .

Here k =(tr, k, ) is the wave vector of the carrier, and

ik I
y„(z)= g u (z —l)e

I

The anisotropy of the layered material has been taken
into account by writing the function yk in the tight-

z

binding approximation by assuming u (z —l) is localized
in the lth layer. With the use of Eqs. (2), (6), and (7) we
obtain
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2

f dz e ' y„* (z)y„(z) .
(x+q ) z z

where

e
«q p 2&(qz)

K +qz

f(q, )= f dz~u(z) e

(10)

Here q =
~p

—p'~, q, =p, —p,', g =1/c describes the con-
tribution from Umklapp processes.

As a result we arrive at the following expression for the
total probability IV [see Eqs. (4), (5), and (9)]:

Substituting (8) into (5) and neglecting the overlap of car-
rier functions located on different layers (this approxima-
tion is not essential as smail overlap contributions can be
included as shown in Ref. 5), we find

r~k' p' = rz' k, p
' a, q ~k k, +q +2mg

carriers in the material. In contrast to the isotropic
three-dimensional (3D) case it should be noted that
V, WI, . The matrix element I can be easily eval-

~ z ~ z z

uated with the use of Eqs. (6) and (7), but we do not need
its explicit form for our present purposes.

Let us evaluate the integral (16). We start with a trans-
formation of variables P, q, ~cu, Q&&(lr, q, ) (0 is the layer
plasmon frequency). From the conservation of energy,
we find

co=E~—
Ei q=u~~q~~cosP+u, q,

—
q~~

/2m* —q, /2m* .

(16a)

The term Im(II ' I) ' —is proportional to the imaginary
part of the dielectric function of the layered system. The
dominant contribution to the integral arises from the
poles of the function (II ' I) '. —These poles corre-
spond to the layer plasmon eigenvalues, which have been
shown to have the following form in these materials (see
Appendix): '

IV =2~~V„~ N (E —E ),
where V is given by Eqs. (10), (11), and

P(A —pN —E )(m)= pe m xa„+ aq n)
m, n k

X5(E„E —cu)+—P" .

(12)

(13)

2F0 )(K, q, ) =uFlr 1+
rgK

where

sinh(lrc)F /c, q cosh(a. c)—cosq, c

1

4F
rgK

1/2

(17)

The function @ (cu) has been introduced in Ref. 6. This
function can be expressed in terms of the thermodynamic
Green function:

and the effective Bohr radius rz is given by

rz =A cM /m 'e (18)

G(r&, r&, rz, rz)=Tre~' " 'T[n(r&, r&)n(rz, r2)] .

(14)

Here 8' is the carrier number operator and ~ is an imagi-
nary time. According to Ref. 6 the function @ (co) can be
written in the form

As was discussed in our earlier papers the plasmon den-
sity of states is sharply peaked at q, =0,~/c. c is the in-
terlayer distance. As a result, the derivative V'q, /V'0,

@q(co)=~ 'ImG(q, cu)(1 —e ~
) (15)

The function G(q, cu) is directly related to the function in-
troduced in Ref. 6. Namely,

G (q, 2rrinT) =G„(q),
where G„(q) is the Fourier component of the G function.

The thermodynamic Green function G„(q) can be eval-
uated with the use of a diagrammatic technique (see Refs.
6 and 7). This evaluation can be carried out in the
random-phase approximation (RPA) and as a result, we
obtain (cf. Ref. 6)

4 5
I I I I I I I I I I I I I
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(1 —e ~")

Xlm[II '(q, co) I„q ]d q . (16)—
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Here cu=E —F, d q =q~~dq~~dP dq„and the matrix
element V„ is defined by Eq. (10). II(q, co) is the polar-

ization operator for the layered material and I is the
~ z

matrix element of the Coulomb interaction between two

FIG. 1. The function F, (x): the curves 1,2,3 correspond to
0 0

values of a =5.17 A EM and 4.5 (s =2.5UF), a =4.34 A and
0

EM =5.5 (s =2.3U„), and a =3.1 A and EM =8 (s =2UF), respec-
tively. For the values of the parameters for La-Sr-Cu-O, the
linear dependence extends up to energies of order 0.5 eV.
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may be approximated by a sum of two 5 functions. This
implies that one may replace, with reasonable accuracy,
the plasmon band in the reciprocal q, space by just two
branches: the upper (U) branch, which is similar to the

I

usual 3D dispersion, and a lower branch (L) which does
not have a gap at K=0.

The dependence A, (l~, q, ) can be rewritten in the form
(we focus on the L branch):

IIpl = UFKG(KC)
'2

G ( ) 1 + 2F(Kgb)
IBK

limF(lr, ~)=~c .
~~0

1

1+ 4F(a., m)

7"BK

1/2
sinh(irc)F~,~=

cosh(~c)+ 1 (19)

We used the relation p~=(2cn)'~ h (see, e.g. , Ref. 9). In
the region of small i~, G (0)= (1+ a )'; therefore
II &= vzw( 1+a)', a =2c /rs.

Let us estimate the value of the slope (group velocity of
the L branch) proportional to the first derivative of 0

&pl
for small Ir. It is apparent from Eq. (19) that it is con-
stant for small Ir: 0 &=src; s =(I+a)'~ uF. For La-Sr-
Cu-O we have c =6.5 A, m*=4m, (see Ref. 9). There is
some uncertainty about the value of cM, which has a
value between 4.5 and 8 (Bozovic, unpublished). As a re-
sult the slope is equal to (3—4)uz. The function G(x),
calculated for La-Sr-Cu-O, is presented in Fig. 1.

Note that the value of vz in La-Sr-Cu-O is small
(uF —-8 X 10 cm '); see (9). Therefore, the slope of the L
branch is also relatively small compared to the Fermi ve-
locity of conventional metals.

As a result, we arrive at the following expression for
the energy loss per unit time y:

Jdq4~ v()c

sing
(20)

Here q, =sr/c, q, =0 (see Refs. 5), %;= [1—exp( —PQ;) '], and sing can be evaluated from Eqs.
(17)—(19).

The function A, (a, q, ) is defined by Eqs. (17)—(19).
One can see directly from Eq. (20) that the total loss y

consists of two parts: y =y U+ y L. In this paper, we
focus on the temperature dependence of y. This depen-
dence arises from the factor N, which is related to the
thermal occupation X (N= N + 1) of the L plasmon
branch. For the U plasmon branch, only the zero-point
motion contributes as the thermal occupation of this
branch is very small (e.g. , for the high-T, oxides AU =1
eV) and consequently y U does not depend on tempera-
ture. This is quite analogous to the ordinary case of
temperature-independent EELS in the usual isotropic 30
case (cf. Refs. 1 and 6). The inequality cu &))k&T leads
to temperature-independent EELS.

Now consider the term yl . The presence of the lower
branch leads to an entirely different result. By a change
of variables

q~~
to co(q~~), we obtain

1 1 dc' (dq~~/dcdL )4~' v~IC

X V q, ALII . X,2 2 1

sm
(21)

where V &, is defined by Eq. (10). The derivative

(dq~~/den~) can be calculated from the dispersion relation
[Eq. (17)] and it allows us to evaluate the integral (21). It
can be seen directly from Eq. (21) that the presence of the
factor X leads to the temperature dependence of yl .

It is convenient to introduce the dimensionless variable
x =PAL and we obtain

yL =AT f(T),
where A =(4~ uFu~~c) ', and

f(T)= J dxx (1—e ") 'F(x, T), (23)

where F = V z, 11(sing)

The factor I' can be expressed in terms of x with the
use of Eq. (17). One should also note that F contains the
direct dependence on

v~~
and v„ the components of the

velocity of the charged particle parallel and perpendicu-
lar to the layers.

Consider the most important case, namely
q~~

&&~/c.
This case corresponds to the plasmon frequency
coL «cu, @=coU=(4~ne /m*)' . Then with good accu-
racy one may neglect the dependence of Vq &, on q~~,

and put coL -sq~~, s =v~. Assuming also that v~I ))v~
(then sing= 1) (cf. Refs. 1 and 6), we obtain that
f (T)—co and

(22')

This dependence is valid for T«co. For example, for
La-Sr-Cu-0 this range extends to T= 10 K.

The subsequent increase in T leads to a deviation from
the simple dependence y —T; namely, in the region
T —co, there is a maximum of yL(T) due to the factor

q~~
in V &, . However, this situation corresponds to

4(((, 77 C

temperatures which seem experimentally inaccessible.
Hence, the total losses are described by the sum

y=yU+yL (T), where yL, =R*(uF Iv~~)(uF/c)(T/co) or

I =I U[1+a(c/a) (T/co) ],
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where c is the interlayer distance and a the intralayer lat-
tice constant, Q=vzm/c, a=1; in La-Sr-Cu-0 c =6.5 A,
a =3.8 A, vz-—8X10 cmsec '; yz is a typical value for
temperature-independent EELS (see, e.g. , Ref. 10) (cf.
Ref. 1), R *=m *e /sMA' . The temperature indepen-
dence of y U allows a clear separation from yi .

The appearance of a temperature-dependent term in
the expression for the energy loss is a novel effect in
EELS. This feature is a direct consequence of the struc-
ture in the layer plasmon bands typical of these layered
materials.

Finally, we want to make two comments. First, the
same treatment we have developed in this paper is valid
for positron-energy-loss spectroscopy (PELS). In that
case there is no need to take the exchange effect into ac-
count (for EELS this can be done by the same method as
in Ref. 6).

Secondly, the passing particle can interact not only
with the electronic subsystem of the material, but also
with the phonon subsystem. In the temperature region
T & OD, it will also lead to a temperature-dependent loss
feature (for T )OD the temperature dependence of the
EELS is due to plasmons only). However, this effect is
small. Indeed, the matrix elements describing the in-
teraction of the fast passing particle with phonons con-
tains a nuclear displacement; in other words, it is propor-
tional to a small, nonadiabatic parameter Ira/L « 1 (see,
e.g. , Ref. 11), where a is the amplitude of the vibration
and L the lattice parameter. Therefore, the major contri-
bution to EELS is due to the particle-layer plasmon in-
teraction.

The presence of overlapping energy bands with
sufficiently different masses leads to the appearance of the
additional plasmon branch, which also does not have an
energy gap at q —+0 (see, e.g. , Refs. 12 and 13). This
branch exists even in the usual 3D systems. This branch
can be treated in exactly the same fashion as the L
branch and would lead to a further temperature-
dependent term yD in EELS. However, a large value of
the group velocity leads to a relatively small value of yD.
Nevertheless, the branch in the usual 3D systems with
suitable overlapping bands may be detected by the use of
temperature-dependent EELS (PLS). Another interesting
class of materials with an "acoustic" plasmon branch' '
is found in the quasi-1D organic charge transfer conduc-
tors. ' These questions will be discussed in detail else-
where.

In this paper we have given a theoretical treatment of
electron-loss spectroscopy in layered conductors. The
main result of this study is the prediction of a novel
temperature-dependent feature of EELS. This tempera-
ture dependence is caused by the unusual structure of the
plasmon band. This structure, and, in particular, the ex-
istence of the low energy plasmon branch, can be
identified by EELS. We suggest that experiments
designed to search for temperature-dependent loss
features by EELS or PELS would be very interesting and

important for the confirmation of the results presented
here.
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APPENDIX

In this appendix we derive the layer plasmon disper-
sion relations [Eq. (17)] and discuss their relationship to
both the hydrodynamic [Ref. 5(b)] and many-body (RPA)
derivations [Refs. 5(d) —(g)].

The collective electronic modes of the layered electron
gas (LEG) are solutions (within RPA) of the set of equa-
tions

1+u (I~, q, )vr (I~, cu) =—0, (Al)

where the interaction

u(ir, q, )=2vre /lrs~F(K, q );
sinh(lrc)F I~, q, cosh(i~c ) —cos( q, c )

arises from the layered structure and vr (v, ro) is the polar-
izability of a single layer ' given by

m'
~ (~,co)= 1—

7T

2 —1/2

(A2)

Equation (A 1) can be solved algebraically and the explicit
solutions have the form

0 (a, q, )=uFI~ 1+ 2F
PgK 4F

PgK

1/2

(A3)

Here the function F [the layer form factor in the termi-
nology of Ref. 5(b)] appears in both the numerator and
denominator of the second term [r~ is the effective Bohr
radius for the carrier defined in Eq. (18) of the text]. We
note that in the hydrodynamic approximation, the
correction to the compressibility term proportional to
(UFK) appears only as an additive term. It is a conse-
quence of the RPA approximation, which sums a particu-
lar subset of polarization diagrams and gives the (to our
knowledge) new result [Eq. (A3)].

We note that it is common in the literature to expand
Eq. (A2), making the high frequency approximation
co))vFK and find

1/2
2UFKF

(A4)
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