PHYSICAL REVIEW B

VOLUME 43, NUMBER 4

1 FEBRUARY 1991

Frank-Read source-activated flux shear in type-II superconductors

Alfred Kahan
Solid State Sciences Directorate, Rome Air Development Center, Hanscom AFB, Bedford, Massachusetts 01731
(Received 18 July 1990)

An expression is derived for the flux-pinning force density F, as a function of magnetic induction
B and pinning defect center density p, based on a model of flux-line-lattice shear activated by
Frank-Read source dislocations. F,(b) peak positions shift with increasing p to larger b, where
b =B /B, is the reduced induction and B, is the upper critical field. For a given B there exists an
optimum defect center density, poy, for which F, becomes a maximum. The potential F, enhance-
ment is a function of the initial defect concentration p;. At a constant B a larger F, increase is ob-
tained for smaller p;, and at a constant p, the increase is larger for larger B. Quantitative agreement
for neutron-irradiated Nb;Sn is obtained by fitting F,(b) data with three parameters p;, a pinning
defect center generating linear rate constant a, and the third consisting of a function of the
Ginzburg-Landau « and B,,. The major characteristic of F,(b) for Nb;Sn, which is F, peaking at or
near b =0.2, is also true for the copper-oxide-based high-T, superconductors, and the proposed

model also applies to these materials.

INTRODUCTION

In previous publications’? we discussed volume flux-
pinning force density scaling laws for type-II supercon-
ductors derived from flux-line-lattice (FLL) shear mecha-
nisms. The pinning force density is F,=J B, where J,
and B are the critical current and the magnetic flux den-
sities, respectively. A functional form for F, was pro-
posed by Fietz and Webb.? In their formulation, F, is a
product of separable variables consisting of the upper
critical field B,,, reduced magnetic induction b =B /B,,,
and a parameter related to material microstructure, the
effective grain size D. Subsequent scaling laws proposed
by Kramer,* Evetts and Plummer,’> and Dew—Hughes,6
introduce an additional parameter, the Ginzburg-Landau
k, and the variables are mathematically nonseparable.

In the Fietz-Webb formulation F, « b7(1—5b)% that is,
F,=0at b=0 and at b=1, is continuous and positive be-
tween 0 <b <1, and peaks at b, =p/(p +¢q). The two
technologically prominent type-II superconductors,
Nb;Sn and Nb-Ti alloys, differ significantly in their mi-
crostructure and b, indicating different mechanisms
for flux pinning. Optimized  bronze-processed
multifilamentary Nb;Sn has an equiaxed, or columnar,
grain structure, p=0.5, g=2, and b ., ~0.2, whereas for
Nb-Ti alloys the microstructure is elongated grains,
p=q=1, and b, ~0.5. The shearing mechanism in
Nb;Sn is attributed to pin avoidance, and in Nb-Ti alloys
to pin breaking. Hampshire and Jones’ attempt to derive
scaling laws applicable to both Nb-Ti and Nb;Sn based
on the same mechanism. Hampshire, Ikeda, and Chiang
discuss scaling laws for La, gsSrq ;sCu0,.® The F, of
high-T, copper-oxide-based superconductors is similar to
Nb;Sn, having b, ~0.2.

Material processing or irradiation can alter the micro-
structure and change J,. Effects owing to processing are
usually discussed in terms of D, whereas irradiation
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effects are couched in terms of the pinning defect density
p, defined by p=1/D?2. For Nb,Sn, West and Rawlings,’
and Hascieck, Goringe, and Nourbakhsh'®!! find a max-
imum in J, as a function of D. J, as a function of the
neutron dose ¢ decreases at low magnetic fields, increases
at higher fields, and at the higher fields it reaches a max-
imum and then decreases.!>!* At a constant B, the J,
enhancement with dose is large for an initially low-J, ma-

" terial, and is small for an initially high-J,. sample. At the

higher fields it takes a larger dose to reach the maximum
J.. Another observation is that, with increasing dose,
b peax shifts to larger b.'41

Based on these observations, an appropriate F, scaling
law has to predict that, at a constant B, there exists an
optimum grain size Dy, or optimum pinning defect
center density p,, for which J.(D) becomes a maximum.
Irradiation introduces damage and increases p. Irradiat-
ing up to p,y, will increase J., but irradiating to larger
doses will decrease it. The scaling law should also predict
that J, enhancement or decrease is a function of the ini-
tial pinning defect center concentration p;, and that for
the same ¢ there is a larger J. increase for low-J, materi-
al. In Ref. 1 we showed that, for Nb;Sn, qualitative
agreement for processing changes and irradiation effects
is obtained with the model proposed by Dew-Hughes,®
which is a FLL shear mechanism activated by Frank-
Read source dislocations.

In this paper we investigate further the FLL shear for-
malism applicable to Nb;Sn and to the high-7, supercon-
ductors. The F,(b) scaling laws proposed by Dew-
Hughes, by Kramer, and by Evetts and Plummer, all con-
tain a singularity which results in negative or infinite J,
at a finite b. For the Dew-Hughes model, the one we find
most applicable to Nb;Sn-type superconductors, we
modify the Frank-Read source strength and eliminate the
singularity. The modified model retains the main feature
of the Dew-Hughes formalism, namely, the existence of
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D,,.. We show, that, for Nb;Sn, the calculated b, as a
function of D span the experimentally observed range
0.17-0.28, and F, is a maximum at 5=0.2. For neutron
irradiated Nb;Sn, we find very good quantitative agree-
ment between calculated and experimental F,(B).

FLUX-PINNING SCALING LAWS

Equations (1)-(3) list F,=J B for formalisms derived
by Kramer,*
1 D*?
F =
pRramer 12w ao(D —a,)

~Ces » (1)

Evetts and Plummer’ (EP),

F 1 1

L S S 2
PEP v(D—aO)C“’ )

and Dew-Hughes® (DH),

1 In(D/ay)
FPDH:E—_D—CGG > (3)

respectively. F, (N m~?) is the volume-pinning force
density, J, (A m ™ 2) is the critical current density, B (T) is

the magnetic induction, D (m) is the effective grain size,

KRAMER
LABUSCH

EVETTS-PLUMMER
LABUSCH
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Ces (Nm™?) is the shear modulus, and a, (m) is the
fluxon spacing. For a triangular lattice,

ag=(3)""*¢o/B)'"?, @)

where ¢, is the flux quantum. The three formulations
have the same form, but differ in numerical coefficients
and mathematical function relating D and a, to F,. Ap-
proximate expressions for Cgg are given by Labusch, !

Cosrabusch =3.6 X 10%(B,, k)X (1—b)* , (5)
and by Brandt,”
Co6randt =1 X 10%(B,, /K)*b (1—0.58b +0.29b2)(1—b)? ,
(6)

where k is the Ginzburg-Landau parameter. These for-
mulations give six possible scaling laws for F,: Kramer-
Labusch, Kramer-Brandt, EP-Labusch, EP-Brandt, DH-
Labusch, and DH-Brandt. In the defining equations, «
and B,, occur as the factor B){? /k* and D as DBY%. Tt is
then convenient to plot and discuss these equations in
terms of these combined parameters.

Figures 1 and 2 show F,(b), scaled by «’B}J? for
selected D*=DBJ/? for Kramer-Labusch, EP-Labusch,

DEW-HUGHES
LABUSCH
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FIG. 1. Pinning force density F,, scaled by x*/B>? as a function of reduced magnetic induction b=B/B,, for selected
D*=DB,{?, for flux-shear models of Kramer, Eq. (1); Evetts and Plummer, Eq. (2); and Dew-Hughes, Eq. (3). F, was calculated us-
ing the shear modulus expression of Labusch, Eq. (5). « is the Ginzburg-Landau parameter, D is the grain size in nm, and B,, is the
upper critical field.
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DH-Labusch, and for Kramer-Brandt, EP-Brandt, DH-
Brandt, respectively. F, at D =a, is infinite for Kramer
and EP, and is zero at a finite b for DH. In these figures,
for clarity, we omit the branches for D <a,. EP-Labusch
has no peak for any D*, and for Kramer and EP-Brandt,
F, peaks only for large D*. For the same D*, b, for
Kramer and DH is larger with the Brandt than with the
Labusch combination. For large grain sizes, D >>aq,
Kramer-Labusch becomes independent of D and reduces
to F, «b 172(1—b)*. For Kramer and EP, F, at a given b
is inversely proportional to grain size, F,~1/D, whereas
for DH, FP is an optimum at

D, =eay=2.72a, .

For DH-Labusch, D3,=297 nm T'/? and F, peaks at
b=0.2. For DH-Brandt, D},=210 nmT'? and F,
peaks b=0.4. Data showing F, peaking as a function of
D is consistent only with DH.

Figure 3 shows curves of b, as a function of D* for
the various formulations. For Kramer-Labusch, the
lower b, limit is 0.086 and the upper limit asymptoti-
cally approaches 0.2, showing insensitivity to D. For
Kramer-Brandt, the lower limit is 0.21 and the upper
limit asymptotically approaches 0.4. EP-Labusch does
not predict any b,.,,. For EP-Brandt, the lower limit is
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0.16 and the upper limit asymptotically approaches 0.30.
For DH-Labusch, b, varies smoothly over a wide D*
range. For DH-Brandt, b, also varies smoothly over a
wide range but the lower limit is 0.3. Consequently, only
EP-Brandt and DH-Labusch have continuous & .,
values which span the 5=0.2 region applicable to Nb;Sn.
Curves labeled FR-Labusch and FR-Brandt will be dis-
cussed in the next section.

For Nb;Sn, optimizing the fabrication process pro-
duces a finer grain structure and a larger B,,, increases
F,, and shifts b, to larger values. Figure 3 shows that
bpeak based on Kramer and EP increases, and based on
DH decreases, with increasing D*. Kramer and EP are
then incompatible with experimental data. Based on
these considerations, we choose DH-Labusch as the Fp(b)
scaling law which most closely describes superconductors

With by ~0.2.

FRANK-READ FORMALISM

In the previous section we showed that, for Nb;Sn-type
superconductors, DH-Labusch is in closest agreement
with experimental F,(b). Dew-Hughes derived the ex-
pression for F, by assuming that the FLL shear is ac-

tivated by dislocations generated by a Frank-Read (FR)
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FIG. 2. Pinning force density F,, scaled by k*/B%?, as a function of reduced magnetic induction b=B/B,, for selected
D*=DB/{? for flux-shear models of Kramer, Eq. (1); Evetts and Plummer, Eq. (2); and Dew-Hughes, Eq. (3). F, was calculated us-
ing the shear modulus expression of Brandt, Eq. (6). « is the Ginzburg-Landau parameter, D is the grain size in nm, and B,, is the

upper critical field.
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FIG. 3. F,(b) peak position b, as a function of D*=DB/{* for flux-shear models of Kramer (KR), Evetts and Plummer (EP),
and Dew-Hughes (DH), using shear modulus expressions of Labusch (LB) and Brandt (BR). Curves labeled FR are defined by Eq. (8).
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FIG. 4. Pinning force density F,, scaled by x*/B>/?, as a function of reduced magnetic induction b for selected D* =DB/}/? for the
Frank-Read flux-shear model, Eq. (9). The dashed curve, Eq. (14), is the optimum F, at a given b. « is the Ginzburg-Landau parame-
ter, D is the grain size in nm, and B,, is the upper critical field.
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source.® The critical stress 7 is
7=(Gb*/27wA)/In(A/b*) , (7)

where G is an appropriate modulus, b* is the displace-
ment Burgers vector, and A is the source length. Dew-
Hughes also assumed that A is equal to the crystal grain
size D, b* is equal to the fluxon spacing a, and G is the
shear modulus Cg¢. The volume-pinning force density
F,=7/b* is then the expression given in Eq. (3).

The principal difficulty with the DH model is that it al-
lows F,, and consequently J,, to become negative for
D <a,. Dew-Hughes discusses this problem and suggests
that, in these circumstances, one applies an effective grain
size, a multiple of the microstructural grain size. The
Dew-Hughes suggestion shifts the zero crossing to small-
er b, but it does not eliminate the difficulty.

We propose a model which retains the basic features of
DH, but at the same time insures that F,(b) is positive for
all b. We suggest for the Frank-Read source length
A=D +a,. Substituting into Eq. (7),

C¢s In(1+D/ag)

= *:
F,=1/b 2ma, (1+D/ay) ®)

For Cg6 = CegLabusch>
In(1+D /ay)
F =1.17X10"(B%2 /i®)b /(1 — P 700
p T LATXA0TBS /)b =0 =y

9)
where
D/ay=(DB'?)/k =(D*b'?)/k =[(B/p)'"*1/k , (10)

and k=48.9X107° mT'/2. We designate the F, expres-
sion of Eq. (9) as FR-Labusch. A corresponding F, ex-
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pression using Cggp ang; is designated as FR-Brandt. In
the FR-Labusch formulation, the critical current density
becomes

(1—p)? In(1+D /a,)

Te=Ie0 (D Jag) (14D /ag) ()
where

J.0=2.4X10'8(B_,/k)*D . (12)

Figure 4 shows FR-Labusch, scaled by «?/B2/?, for

selected D*. F), is positive at all b, and its highest max-
imum is at 5=0.2 for D*=188 nm T'/2. For Nb,Sn,
B.,~20-25 T and k~25, and this D * value corresponds
to D ~40 nm, and to a maximum Fp ~6X10° N/m? at
B~5 T. Figure 4 also indicates that F, at a constant b
increases with D*, reaches a maximum, and then de-
creases. For each b there exists an optimum D, Dopt, and
a corresponding optimum F,, F, ... This is shown as the
dashed curve.

Figure 5 shows FR-Labusch normalized to its peak
value for three D * values. The solid circles represent the
normalized Fietz-Webb scaling law,

Fy/Fppea=3.5b"2(1—b)*,

peaking at b=0.2. The FR-Labusch curve peaking at
b=0.2 closely agrees with the Fietz-Webb scaling law.
Similar to DH, the b, shift to larger b with decreasing
D* or, equivalently, with increasing p. Figure 3, bpeax as
a function of D*, includes curves for the FR-Labusch
and FR-Brandt combinations corresponding to Cyg; pusch
and Cogepranar> Tespectively. For FR-Labusch, the b,
range is more limited than for DH-Labusch, but it still
spans the range of interest to Nb;Sn. FR-Labusch and

DH-Labusch b, values are close for D* > 500 nm T'/?,
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FIG. 5. F, normalized to its peak value as a function of reduced magnetic induction b for selected D * = DB/{? for the Frank-Read
flux-shear model, Eq. (9). The curve for D* =188 nm T'/? peaks at 5=0.2. The solid circles represent the normalized Fietz-Webb
F, < b'/%(1—b)? scaling law. D is the grain size in nm, and B,, is the upper critical field.
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FIG. 6. F, normalized to its optimum value, Eq. (15), as a function of pinning defect center density p for selected magnetic fields

B. F,.,, Eq. (14), is the optimum-pinning force at a given B.
but at b, =0.2 their ratio is Dfg /Dy = 355 ~ 3. DH- OPTIMUM DEFECT DENSITY

Brandt and FR-Brandt b, lower limits approach 0.3,

Differentiating Eq. (9) with respect to D gives the op-
and neither of these are applicable to superconductors for & P 8 P

timum grain size D, or optimum-pinning defect density

which F, peaks near 5=0.2. Consequently, in our dis- Popt (M~ 2)
cussion of the proposed FR model, we imply FR- opt ’
Labusch, as defined by Eq. (9). D,y =(e —1)ag=1.72a,=84X10"°/B'*,  (13a)

Fo/Fpi

1 I N ENii 1 Ll il I e I 1 Lo
10" 10'2 10'3 10'4 10'® 10'®

p/B (m 27"

FIG. 7. F, normalized to its initial value F,;, Eq. (16), as a function of pinning defect center density p and initial pinning defect
center density p;. p and p, are parametrized by magnetic field B. F,/F, indicates the potential enhancement which can be obtained
for a given p; at a field B.
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or
Popt=1.42X10"B . (13b)
The corresponding optimum-pinning force density is
F,opi=Cge/2meay . (14)
The dashed curve in Fig. 4 is a plot of F,,,. F, normal-
ized to its optimum value is
F eln(1+D/ay)
b= (15)
Fopt (1+D/ay)

This normalization assumes that the factor B2 /«k? is
unaffected by the processing that changes the density of
pinning centers.

Figure 6 shows F,/F,,, as a function of p for
magnetic-field values 0.1, 1, and 10 T. p, is a linear
function of B, Eq. (13b), and the curves peak at
1.42X 10", 1,42 X 10", and 1.42X10'> m ™2, respectively.
As p increases, F,, increases for p <p,, peaks at p=pg,
and decreases for p>p,,. The enhancement increases
with increasing B. For example, for p increasing from
5% 10" to 5X 10" m~2, at 0.1 T, Fp decreases continu-
ously; at 1 T, F, increases, peaks, and then decreases;
and, at 10 T, F, increases continuously. Figure 6 also in-
dicates that, for a given B, the F, enhancement which
can be obtained with increasing p, and whether one ob-
serves an F, increase or decrease, depends on the initial
defect density p;, the density before material processing,
for example, neutron irradiating. This is further illustrat-
ed in Fig. 7, where we plot the ratio of F, to the initial
pinning force density F,, as a function of p/B for several
p;/B. It shows that, at a given B, one obtains a larger
enhancement for a smaller p;. For example, at B of 1 T,
the maximum increase for p;=10'"' m~2% is 5.8 and for
p;=10" m~? it is only 1.4. At a constant p;, the F, in-
crease is larger for larger B. For example, for p; =10'!
m~ 2, the potential enhancement for B=0.1 T is 2.6 and
for 1 Titis5.8.

DISCUSSION

Predictions for Fp based on FR-Labusch, Eq. (9), are in
qualitative agreement with observed experimental
features of Nb;Sn as a function of processing and irradia-
tion. For example, Brown et al.'>!? report J,(B) mea-
surements on several neutron-irradiated samples with
different initial J, values J;. They found that the frac-
tional ratio J,/J, decreased with neutron dose ¢ for
small magnetic fields, but increased with higher fields. At
the higher fields J,. /J; reached a maximum with ¢, and
then decreased with additional ¢. The dose to reach the
J./J,; maximum increased with increasing B. They also
showed that J./J, is a function of J_, with a low-J
sample substantially more enhanced by the same dose.
All of these observations are in qualitative agreement
both with DH-Labusch and FR-Labusch.

FR-Labusch contains two adjustable parameters, D or
p» and k, which can be determined by data fitting F,(B).
The issues, difficulties, and results of such a fitting pro-
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cess are the same as those of DH-Labusch and were dis-
cussed in detail in Ref. 2. In Ref. 2 we also showed that
very small changes in B,,, variation within experimental
accuracies, substantially affect D and « values. Accurate
B, values are difficult to measure, and therefore we sug-
gested that B, should be treated as the third adjustable
parameter. One obtains similar B,, and « values from
F,(B) data sets fitted with either DH-Labusch or FR-
Labusch, but derived D values are in ratio of ~ 2,

In fitting a series of F,(B) curves as a function of ¢, one
would follow the same procedure: least-squares fit each
set of experimental data with p, «, and B,,, and then find
a relationship for p(¢), x(¢), and B,,(¢$). We intended to
perform such an analysis, but we have difficulties finding
such data sets. However, we do find data sets for
J.(¢)/J,; measured at several B.'>13 From Eq. (9),

J /Jy=F,/F,,=R(A;/A)NIn4)/(In4,), (16)

where

R=(B.,/B,;)"(k; /K)*, (17a)
A;=1+(1/k)B /p)'?, (17b)
and
A=1+(1/k)B/p)'/?. (17¢)
1.4 T T T T T
1.
1.
,_\L'a
LI.Q

0.9 I 1 1 1
1 2 3 4

1
5x 1022

DOSE (neutrons/m?)

FIG. 8. F, normalized to their initial values as a function of
radiation dose and magnetic field for neutron irradiated Nb;Sn.
Experimental points of Brown et al, Refs. 12 and 13. The
curves, Eqgs. (16)—(18), are calculated with parameter values
R=1.0,p,=4.5X10"m 2 and a=1.8X10"8 1.
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We assume that p(¢) saturates exponentially,

p()=p;,+(p,—p;)[1—exp(—a'd)] . (18a)
For a'¢ << 1, this is approximated by
p=p;,+ap—Ps*+. ... (18b)

p, is the saturated defect density, and a, @', and B are
pinning defect generating rate constants. For R=1, the
data fitting procedure reduces to a three, or possibly even
a two, adjustable parameter fit: p,, p,, and a’; p;, &, and
B; or just p; and a. We attempted such a curve fit to the
Brown et al.'>!3 intermediate-J,; sample data, the sample
with the most extensive data points. We find that p is a
linear function of ¢, and the data set can be fitted with
p;i=4.5X10" m~? and a=1.8X10"% n ™!, The defect
density after the maximum dose ¢ =4 X 10?2 n/m?, has in-
creased to p=7.7X 10" m~2% Figure 8 shows the com-
parison between F,(¢)/F,; and the data points. We con-
sider the results encouraging for a fit by only two param-
eters. Discrepancies in Fig. 8 are greatest at low doses.

One source of the discrepancy may be attributed to ra-
diation effects on B, and «. In fitting the data set we as-
sumed that R, Eq. (17a), equals unity. This may not be
the case. For Nb,Sn, Snead and Parker!® report a peak,
B_,($)/B,,; =1.05 for $=1.5X10*2 n/m?, and then a de-
crease to 0.70 for ¢=23.1X10? n/m>. Okada et al.'® re-
port a similar peak and a decrease to 0.82 for
#=1.5X10* n/m? Colucci and Weinstock'* show an
increase to 1.14 for ¢=1.8X10*2 n/m% We can find no
data regarding «(¢). In Eq. (17a), B.,/B_,; is raised to
the power of 2, and «; /k is squared. For Nb;Sn, B ,=«.
If k(¢)/k; has the same dose dependence as B_,(¢)/B,,;,
then the effective power dependence is reduced from 3 to
1. However, if k(¢) and B_,(¢) dependencies are inverse-
ly proportional, then the effective power dependence is
enchanced to %, and the effects can be considerable. The
basic uncertainty in this fitting is due to the fact that the
largest B for which measurements were performed was
3.32 T; that is, fields for which b <0.2. It is not possible
to determine accurate or even approximate B, values
from J.(B) limited to b <b,,. Since B, is undeter-
mined, k too becomes undetermined and J,(B) cannot be
fitted with unique parameter values.

In lieu of experimentally determined R (@), we refitted
the data with R as an adjustable parameter. Figure 9
shows the comparison between F,/F,,, calculated with
parameter values R=0.76, p,=1.2X 10" m~2, and
a=1.5X10"% n ™1, and the Brown et al. data points.
The fit is considerably improved, both in curve shape and
in magnitude. For this limited ¢-range, R(¢$)=const
seems to be a good approximation.

To the best of our knowledge the results shown in Fig.
9 are the first reasonable comparisons between calculated
and experimental F,(¢,B). They indicate that the pro-
posed model should be considered a viable formalism for
Nb;Sn-type superconductors.
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FIG. 9. F, normalized to their initial values as a function of
radiation dose and magnetic field B for neutron irradiated
Nb3Sn. Experimental points of Brown et al., Refs. 12 and 13.
The curves, Egs. (16)—(18), are calculated with parameter values
R=0.76,p,=1.2X 10°m 2, anda=1.5X10"8n "1

CONCLUSIONS

We have derived an expression for the flux-pinning
force density Fp as a function of magnetic induction B,
based on a mechanism of flux-line-lattice shear activated
by Frank-Read source dislocations. We assume that the
source length is given by D +a,, where D is an effective
microstructural grain size and a, the fluxon spacing. The
formalism predicts that F,(b), where b=B /B, and B,,
is the upper critical field, is continuous and positive be-
tween 0 <b <1, and peaks at some b value. The F, peak
position b, shifts with increasing pinning defect densi-
ty p to larger b, p=]/D2, and F,(b) achieves its max-
imum value at b, =0.2. The results are in agreement
with data for Nb;Sn and for the copper-oxide-based
high-T superconductors. The calculated b, as a func-
tion of D span the b range observed for these supercon-
ductors. For b, =0.2, predicted field dependences are
in close agreement with the Fietz-Webb scaling law
F,~b'*(1—b).

For a given B there exists an optimum D, or defect
density p,p, at which F, is optimum. For a given p incre-
ment, Fp enhancement increases with increasing B. The
potential F, enhancement which can be obtained, and
whether one observes any F, increase at all, is a function
of the initial defect concentration p;. At a constant B, a
larger increase is obtained for smaller p;, and at a con-
stant p;, the increase is larger for larger B.

F,(B) predictions of the proposed model are in qualita-
tive agreement with major experimental features. F,(B)
contains three adjustable parameters, D or p, B,,, and the
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Ginzburg-Landau «, which can be determined from
least-squares fitting a specific data set. For neutron-
irradiated Nb;Sn very good quantitative agreement is ob-
tained for F,(#) with three adjustable parameters p;, pin-
ning defect generating linear rate constant «, and a con-
stant involving ratios of k and B,,.
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