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In this paper we present a careful reexamination of anyons on a cylinder (or annulus), starting
from the braid-group analysis. Proper attention is paid to the topological features arising from the
existence of noncontractible loops. The rule for putting anyons on a square lattice has to be
modified when the periodic boundary condition is imposed on one direction. In contrast to the an-

nulus, one extra restriction is needed for the cylinder geometry to recover its symmetry between the
two edges. We have performed some finite-system calculations. The consistency of our results has
been checked by the agreement from two sets of seemingly different rules and also by that with free
fermions. We have also calculated the spectral flow of the excited states with varying statistics or
flux and have seen a lot of level crossings, which seem to be a general feature of anyon systems. The
mean-field treatment is found to be good until level crossing occurs, and to be better if one starts
with the hard-core boson rather than the fermion.

I. INTRODUCTION

In two-dimensional systems there may exist
(quasi)particles other than bosons or fermions. Such par-
ticles, called anyons, obey fractional statistics. ' A cal-
culation of the second virial coefficient shows that anyon
interpolates between bosons and fermions. It is believed
that the quasiparticles in the fractional quantized Hall
effect are actually anyons. ' Recently Laughlin pro-
posed that anyons play an essential role in the high-T, su-
perconductivity. After this interesting proposal, several
groups have studied the free anyon system. ' Many of
these recent studies are based on the mean-field approxi-
mation, in which the statistical Aux tubes associated with
the particles are replaced by a uniform magnetic field.
The mean-field theory with random-phase approximation
(RPA) fluctuation predicts that the ground state of the
anyon system is a superAuid and becomes superconduct-
ing if the anyons are charged.

Theoretically the nature of the ground state of the
free-anyon system is a fundamental problem, apart from
its relation to the high-T, superconductivity. One of the
key points is to understand the validity of the mean-field
approximation. Studies to put anyons on the lattice are
also performed by several authors. ' ' A pioneering
computer study on a small anyon system has been done
by Canright, Girvin, and Brass. ' ' They calculated the
ground state of anyons on a small lattice in a cylinder
geometry by exact diagonalization, and claimed that the
mean-field treatment is good. They also argued, from the
ground-state energy versus central-Aux diagram, that
there exists a paired state in some parameter range for
the interparticle interaction.

We notice that a cylinder, though noncompact, is still
topologically nontrivial and differs from a board or a

plane in that there are noncontractible loops on it. From
the path-integral formulation of fractional statistics, it is
clear that this topological nontriviality would affect the
properties of anyons through the braid group on the
cylinder. And it is natural to expect that a careful reex-
amination based on the braid group would resolve or
clarify some puzzling features in the previous results,
such as the asymmetry of the ground-state energy in the
magnetic Aux threading through the hole of the cylinder
(see Refs. 15—17).

In this paper we present an examination of anyons on a
cylinder (or annulus), based on the braid-group analysis.
We find that besides the usual local exchanges, there are
additional generators in the braid group for a cylinder or
an annulus, which correspond to moving anyons around
noncontractible loops. This leads to one more parameter
N, in addition to the usual statistics parameter 0, for the
(one-dimensional) braid-group representations. In order
to separate the effects of 0 from those of N, attention has
to be paid to properly identifying the latter with the
threading magnetic Aux through the cylinder or annulus.
This results in an unexpected necessity for modifying the
usual rules for putting anyons on a square lattice when
one imposes the periodic boundary condition in one
direction, and we have been able to give two sets of seem-
ingly different rules that both satisfy the braid-group re-
quirements. Also this identification brings the following
fact to light that the cylinder geometry has an extra sym-
metry that the annulus geometry does not have, namely,
under the 180 rotation in the three-dimensiona1 space
that brings either edge into the other. This symmetry re-
quires one extra, also unexpected, restriction for anyons
on a cylinder; i.e., exp[2i(X —1)OJ =1, where X is the
total number of anyons.

To check our analysis we have performed some finite-
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system calculations. The consistency of our results has
been checked by the agreement of the results from our
two different sets of rules. Although they both satisfy the
braid-group requirements, the equivalence between them
otherwise is not obvious at all. There are some
differences between our results and previous ones. ' '
For example, the fermion point in Fig. 1(a) of Ref. 17
does not agree with the exact analytic result, but our re-
sult does. Actually, one may worry that some of the pre-
vious results were based on the usual rules for putting
anyons on a board, which did not incorporate the neces-
sary modification for the cylinder or annulus that we
mentioned above. In our opinion, some of the previous
results correspond to systems with a certain nonzero cen-
tral Aux through the hole, which depends on both the
particle number and the statistics. A detailed compar-
ison will be given later.

We have also calculated the excited states and their
spectral How with either 0 or N varying, and have seen a
lot of level crossings, the existence of which seems to be a
general feature of anyon systems, but the significance of
the spectral Aow and level crossing is not well understood
yet. In particular, from our results the validity of the
mean-field treatments seems to be related to level cross-
ings. Whether starting with the fermion or the hard-core
boson, the mean-field approximation looks good until the
first or second level crossing occurs. Afterward the
mean-field approximation is not so good. For the
cylinder geometry, there are many level crossings near
the fermion point but few near the hard-core boson point;
and the mean-field theory seems to be much better from
the latter than from the former. For comparison we also
studied the mean-field approximation on the board
geometry. We found it is better than on the cylinder be-
cause of less level crossings.

II. BRAID GROUP ON A CYLINDER

To define anyons on a cylinder (or annulus, if one tem-
porarily ignores the differences in their geometry), we
start with the braid-group analysis, which underlies the
path-integral formulation of fractional statistics. Ac-
cording to the latter, the braid group is the fundamental
group (or the first homotopy group) of the many-anyon
configuration space, and it plays the same basic role for
anyons as the permutation group for usual bosons and
fermions. In particular, the scalar anyon wave function
forms a one-dimensional representation of the braid
group for the surface on which they are defined. So the
rules describing anyons should be able to reproduce the
correct phase factor for every noncontractible loop in the
many-anyon configuration space in agreement with the
braid-group representation. I.et us first consider the con-
tinuum case in this section, then putting anyons on a lat-
tice in the next section.

Cg = (SX . . XS D—) /Sg, (2.1)

o.;, i=1, . . . , X —1, (2.2)

where o; represent an interchange of ith and (i+1)th
particle counterclockwise without other anyons enclosed
in the exchange loop. (Note that the plane, cylinder, and
annulus is all orientable and we can assign one normal
direction to the surface. ) These generators are known to
satisfy the following relations

a;o J. =o Jo, (i' 1),
o.;o., +&o.; =o.;+&o.;o.;+& .

(2.3)

(2.4)

The braid group of the cylinder is more complicated,
since the first homotopy group of the cylinder is nontrivi-
al: Namely, there are noncontractible loops even for a
single particle on the cylinder, and this must affect the
first homotopy group for the many-particle configuration
space. More concretely, for a cylindrical system, there is
another type of generator p, which represents moving
the jth particle (e.g. , jth from the left or inner edge of the
cylinder or annulus) around the hole once in the positive
direction, with j —1 particles between it and the left or
inner edge (see Figs. 1 and 2), similar to those on a
torus. It is easy to see that these generators p .

(j= 1,2, . . . , N) satisfy

P;P, =P,P;

cr;p =p o; (i', i+1&j),
PJ+ i JPJ J

(2.5)

(2.6)

(2.7)

where (2.5) and (2.6) are clear and (2.7) can be understood
from Fig. 1. We emphasize that the existence of the addi-
tional braid-group generators p is a consequence of the
existence of noncontractible loops on the cylinder.

p, = exp (i 2m&)

PJ x JPJ

O~j —~ j+1

where because of the hard-core nature of anyons, one has
to subtract the subset D = [(r„.. . , r~)~r; =r

J i' I

representing configurations with at least two of the parti-
cles sitting at the same site and S& is the permutation
group of X particles which represents indistinguishability
among them.

When S is a plane or board, the braid group is generat-
ed by the local exchange operators:

A. Generators

Recall that the braid group, BJv(S), for X anyons on a
surface S is the first homotopy group of the ¹ nyon
configuration space:

p„-

P,. = exp j i ( 2~+ 2 8 0-I) ) )

FIG. 1. The cylinder with generators for the braid group on
it. + is a central Aux which is through the hole of the cylinder.
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, P l' for putting anyons on a lattice, where one needs to prop-
erly entangle the two parameters. Also we emphasize
that (2.10) or (2.11) is a natural and physical definition of
the Aux @ through the hole since, by our definition, p,
represents moving an anyon around the inner edge of the
annulus or the left edge of the cylinder without enclosing
other anyons.

C. Symmetry and restriction

FIG. 2. Two different methods to deform a cylinder into an-
nuli. The two annuli A and B are different as an annulus. They
should be the same, however, if we consider the system as a
cylinder.

B. Representations

Now let us examine the one-dimensional unitary repre-
sentations of the braid group. For o. we get the repre-
sentation cr =e' (for all j) as usual and we can interpret
8 as the anyon statistics. Then (2.6) implies that the rep-
resentation for p. satisfies

The above consideration immediate1y leads to the fo1-
lowing consideration: Unlike the annular case, the two
edges of a cylinder are symmetric; one should be able to
identify the phase for the generator p& at the right edge
with the central fiux 4 as well. Using (2.11) with j=N
one immediately obtains the constraint

exp[i28(N —1)]=1 . (2.12)

With N given, the allowed values of 0 are restricted to be

8= (m=0, . . . , 2N —3).
N —1

(2.13)

rotate

If 8/n is fixed to be fractional, then the total number N
of the anyons cannot be arbitrary.

Putting it in another way, let us rotate the cylinder in
Fig. 3(A) in three dimensions by 180' as shown in Fig.
3(B). This symmetry operation exchanges the two edges

p +,=p exp[i28] .

Using (2.8) repeatedly we obtain

p =p, exp[i28(j —1)] .

(2.8)

(2.9)

We note that because of (2.8), dift'erent p. are represented
by different phases; though at first glance it is somewhat
counter intuitive for the cylindrical case, but upon fur-
ther reflection one may convince oneself that this is
correct.

Now we come to one main point of this paper. To fix
the braid-group representation we need to fix the phase of
pi. This implies that the existence of the generators p
requires an additional parameter, in addition to 0, to la-
bel the braid-group representations on a cylinder or an-
nulus. Physically this is not very surprising, since the ex-
istence of the hole makes it necessary to consider the
Aharonov-Bohm effect, that is, the effects of a central
fiux @ threading through the hole (see Figs. 1 and 2).
Naturally we include the effects of this Aux by setting

~ ~ .~ ~
t+f pl=- t )'

relabeling

N—J
~ ~ ~

p, =exp[i2m. @] . (2.10)

In other words we define physical Aux @by this equation.
Thus p is given by

p =e px[i [28(j —I)+2m'@]j (2.11)

We see that the two parameters 0 and N are tangled in
the phase of p .. This is an unavoidable consequence of
the topological nontriviality we mentioned several times.
And it turns out to be important later for correct rules

FIG. 3. Schematic figure to explain the restriction for the
statistics on the cylinder. The cylinder has an extra symmetry
that the annulus does not have, namely, under the 180' rotation
in the three-dimensional space that brings either edge into the
other.
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and reverses the direction of the central Aux. However,
the direction of the statistical Aux of the particle does not
change. Now let us relabel the particles in Fig. 3(C) and
denote the new generators with prime like o':

Ij %+1 —j
Pq('c') =pe+ i —J (

(2.14)

(2.15)

where the inverse on the right-hand side of (2.15) is
present because the direction of p is reversed by the ro-
tation procedure. Because of the symmetry of the
cylinder, this relabeling should not change any physics
and, therefore, the new generators should be represented
in the same way. Thus (2.15) gives

exp[i (20(j —1)+2'@�)]
=exp[ —i [20(N +1—j —1)—2vr@] ] . (2.16)

This leads to the same constraint (2.12).
A third argument can be given for the restriction (2.12)

as follows: We let one anyon go around all other anyons
counterclockwise which produces a phase e' '

Now let us deform the loop on the cylinder as shown in
Fig. 4. We obtain a loop consisting of two loops at the
opposite edges with opposite orientation and a line from
one edge to the other and back forth. Since here we only
consider Abelian phases, the contributions from the latter
line cancel during traveling back and the contributions
from the two edges cancel against each other because of
the symmetry between the edges of the cylinder and their
opposite orientation. Thus, though the above loop is non-
contractible, it produces a trivial phase factor of unit on a
cylinder. Again this gives rise to (2.12), which is similar
to the restriction on a sphere. '

We note that physically (2.15) implies that on the
cylinder, reversing the direction of the central Aux N will
not change the spectrum of the anyon system. As a
consequence, one infers that changing only the sign of 0

will not change the spectrum either. (This is because
changing the sign of both 0 and N only turns the repre-
sentation into its complex conjugate. ) These are certainly
desired symmetries for the cylinder case, since the central
Aux is perpendicular to the statistical Aux. In this way
we see that to recover these symmetries anyon statistics
or the number of anyons has to be constrained by (2.12).
The anyons on annulus does not necessarily satisfy this
restriction. This tells us that though the cylinder and an-
nulus are topologically equivalent, however, the special
geometric symmetry of the cylinder has eAects on anyons
on it. This is also an evidence showing that compared
with the planar case, the nontrivial topology of the
cylinder can have observable efI'ects on physics of anyons
in a finite system. (As in the spherical case, these
topology-dependent eA'ects are expected to disappear in
the thermodynamic limit, since when X tends to infinity,
the allowed values of 0 becomes quasicontinuous. )

To conclude this section let us comment on symmetries
of anyons on an annulus. First we note than an annular
anyon system described by the representation (0,4)
should have the same spectrum as that by ( —0, —4'),
since the two systems are related to each other by revers-
ing the orientation of the annulus. Generically it is ex-
pected that the +0 anyons on an annulus with the same
nonzero central Aux do not have the same spectrum,
since their statistical Auxes have opposite direction with
respect to that of N. However, when the value of 8
satisfies (2.12), one can establish relations like
(2.14)—(2.16) for two identical annular systems with the
central Aux reversed, which imply that such an annular
(0,N) anyon system does have the same spectrum as that
for (0, —4) and for (

—0, 4). Later we will perform nu-
merical calculations to check these symmetries.

III. PUTTING ANYONS ON A LATTICE

To investigate anyons numerically one has to be able to
define anyons on a two-dimensional lattice with appropri-
ate boundary conditions. The guiding principle for doing
this is to produce the phase factors for all noncontracti-
ble loops in the many-body configuration space which are
consistent with the braid-group representation. In partic-
ular, the braid-group relations for its generators have to
be respected. In the cylinder or annulus case, attention
has to be paid to the relations and values for the addition-
al generators corresponding to moving anyons around the
hole.

In this section we first review the (square) lattice Ham-
iltonian and anyons on a board, then discuss the neces-
sary modifications for the cylinder or annulus. By
"board" we mean the vanishing boundary condition for
both x and y directions; for a "cylinder" or "annulus"
one has the vanishing boundary condition for the x direc-
tion, but the periodic boundary condition for the y direc-
tion.

A. General Hamiltonian

FICs. 4. Schematic figure to explain the restriction for the
statistics on the cylinder.

If two anyons are interchanged, the total wave function
of the system changes by a phase factor e ' . First one has
to assume that the particles have a hard core, which is
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crucial for the existence of anyons. ' Then one can im-
agine an anyon as a particle having a unit charge and a
Aux tube of strength 0, and interpret the exchange-phase
e' as due to the Aharonov-Bohm phase associated with
the fiux tube. ' When two particles are interchanged,
each particle feels the other's Aux so that the total phase
change is e' . This argument is important for a mean-
field treatment.

We represent the Aux tube adjoined to an anyon by
drawing a string from the dual site to the boundary and
assign a phase e' to each of the links cut by the string, or
more precisely to each hopping matrix element on such a
link. Thus, a lattice anyon is defined as a particle with an
associated string, which has only one end point and goes
to the infinity or the boundary (see Fig. 5). The Hamil-
tonian of the system is given by

H= —g t; c e' 'Jc;+H. c. ,
(Ij)

(3.1)

where the summation is over the nearest neighbors and c;
is the hard-core boson operator at site i, ' satisfying

[c, , c, ]=5,,
c c =0.

I I

(3.2)

(3.3)

The phase factor 8,~
= —

8J, is defined on the link (ij ). If
we include a real magnetic field, then 0; is written as

0;j=
string E link(ij )

+0+2~&; (3.4)

where N, is a contribution from the real magnetic field.
Here we identify 0," as (2vre/ch) J 1 A dl, where A is a
total vector potential of the statistical Aux and the real
magnetic field; the quantity

0,,=' f, sA dl= fBdS
2m „,„„ds

' ch o s

is the total (statistical plus real) magnetic fiux through
the area S in units of the fiux quantum go=eh /e. The
sign of the statistics part of 0, . depends on the direction
of hopping across the string. The Hilbert space of the
system is spanned by the basis which specifies the posi-
tion of the particles,

(3.5)

where r is the two-dimensional coordinate of the jth par-
ticle. Here the order of r is irrelevant in this basis.
From (3.1) and (3.4) we can determine the hopping ma-
trix elements between the base vectors (3.5).

We have not specified the boundary condition yet. The
key point here is that the choice of the set of phase fac-
tors 0, -, or the choice of anyon strings, has to be compati-
ble with the boundary conditions in the sense of agreeing
with the braid-group requirements. Now let us consider
this problem step by step.

B. Rule A (for a board)

By the argument of the previous section it is easy to
define the anyons on a board. We consider an L„XL
square lattice and define the anyon system by assigning
strings as shown in Fig. 6. Every anyon string is parallel
to the x direction and runs from left to right all the way
to the boundary. If another anyon hops from down to up
across such a horizontal string, the change of the phase is
given by e+'; the hopping in the opposite direction
across the string would give rise to the opposite phase.
When a particle moves, the string attached to it moves
accordingly. The phase change caused by the sweep of
the moving string over other anyons is determined as if
those anyons hop across the string.

We emphasize that since anyons are identical particles,
all the anyon strings have to be the same. One cannot
simply have some of the anyon strings running in the op-
posite direction, since it is easy to see that if so, not every
exchange of a pair of anyons (without enclosing other
particles) will give the same phase e', though moving
one anyon around the other once always gives the right
phase el 20

There is a subtlety involving the configurations in
which more than one particle has the same y coordinates.
When one of them hops in the y direction, we have to
give a rule to determine unambiguously how many
strings it goes across and how many other anyons are
swept by the string of the hopping anyon, so that ex-
changing a pair of such anyons should lead to the same

Particle

5'lux tube String

0
'

20 20

i:)0

I'X

0 ' 20

FIG. 5. The configuration of a particle and a Aux. The white
circle is the particle and the black circle is the flux tube. The
line with arrow is a string to represent the Aux tubes. If the
string cuts links, we give a phase factor e' to the hopping ma-
trix element across the link.

FIG. 6. The string rule for the board geometry. The white
circles are the positions of particles and the black circles are the
positions of Aux tubes. We call this string rule as rule A.
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phase e' . To achieve this we shift the position of the flux
tubes from (m + —,', n —

—,') to (m + —,', n —
—,
' +m 6), where 5

is a infinitesimally small positive number, so that for
anyons with the same y coordinate, the particles more to
the left have a lower string.

With all these specifications, now one can verify that
all exchange phases associated with o. s are in agreement
with (2.3) and (2.4). We call the above rules as rule A,
which consistently describes the anyons on a board.
However, in the next subsection, we will see that without
modification it does not apply to the cases when the
periodic boundary condition is imposed on one direction.

C. Rule 8 (for an annulus or cylinder)

Let us impose the periodic boundary condition in the y
direction of the lattice. We have to model the anyons on
such a lattice to satisfy the braid-group representation re-
lations on a cylinder or annulus that we discussed in the
previous section.

The relations for the o. 's are satisfied by rule A, i.e.,
the assignment of anyon strings as in Fig. 6. But as em-
phasized before, we have to take into account the genera-
tors p 's, i.e., the phase [20(j —1)+2nN] for the jth
anyon moving around the hole. The 2~& part can be
easily included into the phase of each hopping amplitude
along a link in the y direction by changing it from real t
to t e xp[i2vrC& /L]. Thus, whenever an anyon moves
around the hole in the positive direction, an extra phase
2m.@ is added to that obtained by rule A.

Let us check whether these rules can give correct
phases in consistency with the braid-group relations (2.8)
and (2.10). To do this we need to carefully consider the
hopping in the periodic direction (i.e., y direction) around
the hole. If no two anyons have the same x coordinate,
then it is easy to verify that the relation (2.8) is always
satisfied. Since for the ith particle from the left edge,
there are i —1 particles on its left and N —i —1 on its
right, contributing opposite phases to p;. So p, + &

differs
from p; by a factor e' . However, when one evaluates
the phase of, say, p„one immediately realizes that it does
not satisfy the relation (2.10). The phase )0( for the left-
most anyon moving in the y direction, obtained from rule
A supplemented by that for N, is not the right one: it is
—(N —1)0+2m@ but not 2m@, since in implementing p(

f~(1)fi(2)' 'fi(N) ~0) (3.6)

where f, ( )
is a creation operator of the usual fermion at

site i (j) and the sites i (j) s are ordered by some conven-
tion. An ordering convention which is consistent with
rule B is

the moving anyon string sweeps over all N —1 anyons to
its right. This is the problem we emphasized before: The
effects of 0 and + are tangled in p, . So rule A is actually
wrong in having a wrong value for the central flux by an
amount of (N——1)0. To correct this we simply add a
cut or string at y =—,

' from the left edge to the right edge

and let it carry the strength or phasejump (N —1)0, so
that every anyon going across it upward mI// gain an extra
phase (N —1 )0, compensating the error brought by sim-

ply applying rule A on an annulus. With this rule supple-
mented to those of rule A, we obtain rule B, which
correctly describes the anyons on an annulus by having
properly isolated the statistics 0 from the central flux N.
For the cylinder case we simply require, in addition, that
N and 0 satisfy the restriction (2.12).

We notice that our correction is formally equivalent to
shift the central Aux, since the braid-group relation (2.10)
gives an unambiguous definition for the central flux N.
Alternatively the above correction of the central flux can
be achieved by changing the hopping amp/itude along
each y link to texpIi [2m&I+(N' —l)0]/L ]. Then one
does not need the cut at y =

—,
' and this treatment will ex-

plicitly maintain periodicity everywhere.
One may think that the situations with more than one

particle having the same x coordinate are more delicate.
However it is not much so, since in implementing p, for
one such particle, horizontal hopping has to occur some-
where to avoid the anyons standing on its way in the y
direction, and not any ambiguity would arise consequent-
ly. Thus, rule B is enough to deal with all situations.

Another more intuitive derivation of rule B is given in
the Appendix without explicitly involving the braid-
group arguments.

As a consistency check let us show that for the 0=~
case, rule B reproduces the usual rule for the Fock space
representation of the fermionic Hilbert space. The Hil-
bert space is spanned by

(1,1) ((2, 1) ((3,1) « . . (L„,1) &(1,2) &(2,2) & (3.7)

If the hopping particle is not across the periodic bound-
ary, e.g. , from (m, n) to (m, n +1) (n &L ), (3.7) tells us
the sign of the hopping process is given by

1 )L+R (3.8)

where I. is the number of the particles whose coordinate
is (x, n + 1) (x (m —1) and R is the number of the parti-
cles whose coordinate is (x, n) (x ~ m +1). By rule A or
rule B, the change of the phase is given by

exp[i (L —R )7r] = (
—1 ) (3.9)

( 1)Ã( A)+Jv(D)+A'(E) (3.10)

where JV(X) is the number of particles in region X. By
rule B, the change of the phase is given by

It coincides with the fermion sign. However, if the fer-
mion at point P in Fig. 7(a) hops to point Q, the ordering
convention tells us the sign is
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FIG. 7. (a) A hopping process in which a particle hops at the
edge of the system under the periodic boundary condition. (b)
The string configuration after the hopping. These figures ex-

plain rule B. String I shows the configuration just after the
hops. String II is the standard position of the string.

FIG. 8. Another string rule for the cylinder. We call this
string rule as rule C.

be included as usual. We call the following rule as rule C:
Assign to each anyon located at, say, the site (m, n) a 0
string from the adjoining plaquette (m +—)+n5, n —

—,')
vertically to (m + ) +n5, —,') where it is turned into a hor-
izontal 20 string to the right edge, as shown in Figs. 8
and 9. Here 5 is an infinitely small positive number to
avoid the ambiguity in the positions of the vertical strings
when several particles have the same x coordinate. This
rule is similar to that given in Ref. 18 for anyons on a
torus.

For various noncontractible loops in the anyon

configuration space, one can straightforwardly verify the
consistency of rule C for the anyon string with the braid-
group relations on the annulus or cylinder. Especially
the horizontal 20 strings are designed for the relation
(2.8) to hold, with p; realized as a closed hopping along
the y direction across i —1 such strings. Although the
cut at y =

—,
' appears to have broken the periodicity in the

y direction, no real breaking occurs. But the advantage
of this rule is that no correction like in rule B for the cen-
tral flux N is needed, since it is easy to see that for the
leftmost anyon, p) is exactly exp I i 2vr&b J.

As a check, we show that rule C is also consistent with
the usual fermion rule if we take the ordering convention
as

in agreement with (3.10), where JV( A )+Ã(8)+JV(C)
+JV'(D) +JV(E)=N —1 is used.

However, if we use rule A, this phase is given as
( —1) ' ' ' ', in conflict with the fermion rule (3.10).
So we conclude that rule A, when naively applied to the
annulus or the cylinder, cannot even reproduce the free
fermions by starting from the hard-core bosons. Indeed,
we have noticed that in Fig. 1(a) of Ref. 17 for the
ground-state energy versus statistics, the fermion point
does not agree with the exact result from the usual fer-
mion calculation. It is expected that the whole curve
there is not correct, since it actually corresponds to the
cases with a nonvanishing central flux —(N —1)0, which
depends on 0.

same x coordinate
boundary

equivalent

D. Rule C (also for an annulus or cylinder)

There is another rule which can consistently define the
anyons on the annulus or cylinder. Qf course, N should

FIG. 9. A schematic figure to express the delicate phase in
rule C. The black circles express the composite of a particle and
a Aux tube.
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(l, l)&(1,2)&(1,3)« . . (1,L )&(2, 1)&(2,2)& . (3.12)

For the cylinder case, there are some subtle points. Con-
sider the case in which the particle at the site (m, L~) (A
in Figs. 9 and 10) hops to the site (m, 1) (C in Figs. 9 and
10). The usual fermion rule tells us that the phase should

M —1

be (
—1),where M is the number of particles

which have the same x-coordinate m (in Fig. 9, M =3).
To take into account this phase we divide the hopping
process into two parts. First, the particle at 3 hops to a
virtual B site [Fig. 10(a)]. There is no phase change in the
process. Next it hops from the site 8 to C [Fig. 10(b)].
The phase change in this process is

exp[i9(M —1)], (3.13)

because the M —1 particles are swept by the 0 string of
I

the moving particle in the positive direction. For a fer-
M —1

mion, 8 is equal to ~, thus (3.13) is (
—1),which is

consistent to the usual fermion rule.
Let us proceed to check whether rule C correctly

represents the generator p or not. We continue the pro-
cess until the particle returns to the original point A. If
the particle hops from C to D [Fig. 10(c)], the change of
the phase is exp[i20X ], where X is the number of the
particles whose x coordinates are less than m. We as-
sume that the string loop disappears completely after the
particle crosses the line y =

—,
' where the 20 strings are ly-

ing. Next it hops from D back to 2 and the phase
change is exp[ —i 0(M —1)]. Then the total phase
change in the process in which the particle at 3 moves
around the cylinder by the route shown in Fig. 10(d) is

e xp[i0(M —1)]exp[i20N ]exp[ —i 6(M —1)]=exp[i28N ], (3.14)

which is p& +, as expected.
m

Rule C for anyons on the annulus or the cylinder looks
very different from the previous rule B. The equivalence
between them can be established indirectly by showing
that for each generator o and p, the two rules always
give identical phases. As we will show later, numerical
calculations also verifies the equivalence. We emphasize
that rule C looks very natural in dealing with the central
Aux, and so its equivalence with rule B confirms that our
correction for the central flux in the latter is really
correct.

We conclude this section by making the following re-
mark. A lattice has no geometry. Our lattice described
by rule B or rule C generically corresponds to an annulus
system. But when the condition (2.12) is satisfied, it

(b)

o o

represents either a cylindrical system or one of two iden-
tical annular systems with opposite 4 (see Fig. 2). This
agrees with the known equivalence of the latter two free
systems satisfying (2.12) in the continuum case, since the
braid-group relations (2.3)—(2.11) hold unchanged during
the continuous deformations shown in Figs. 2(A) and
2(B), which change the cylinder into the two annuli with
opposite N.

IV. NUMERICAL RESULTS

We treat an L XL finite-size system with N particles
by an exact diagonalization and we denote it by
L XL /X. For a small system, we use the usual pack-
ages of a combination of the Hausholder method (to get
eigenvalues) and the bisection method (to get eigenvec-
tors). We can get all the states for a small system such as
3X3/3. For a larger lattice we also use the Lanczos
method to obtain eigenenergies.

A. Consistency with the analytical argument

Cg oB

D ii
o o

FIG. IO. Schematic figure to count the phase in the process
in which a particle hops from A to C, C to D, and D to A by
rule C.

We want to check the consistency of our numerical cal-
culation with the analytical argument presented in the
last section. First we compare the energy of 2~—,

' anyons
to that of usual fermions (tight-binding model). Our re-
sults are completely consistent with it both for the board
and the cylinder geometries. One point we have to note
in the cylinder geometry is the following. We have con-
structed two sets of rules to satisfy braid-group argu-
ments, rules B and C. We believe that they are
equivalent. However, it is not so simple to show the
equivalence directly. We investigate the consistency by
the numerical calculation of the ground-state energies.
We have calculated the total energies for a 3X4/6 an-
nulus geometry by these two rules and rule A. The re-
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suits are shown in Fig. 11. Rules B and C give complete-
ly the same results for general statistics on the annulus
geometry. If we use rule A, the energies are different.
We cannot reproduce the free fermion value by rule A
(here —6—2+2 shown in Fig. 11 indicates the exact free
fermion energy). It seems that Fig. 1 of Ref. 15 and Fig.
1(a) of Ref. 17 coincide with those calculated by rule A.

Next we want to investigate the effects of the central
fIux which threads through the hole of the annulus. Re-
sults for a 3 X 3/4 system with various statistics parame-
ters are shown in Figs. 12(a)—12(c), results for a 3X4/6
system are shown in Fig. 12(d) and results for a 3X3/3
are shown in Fig. 12(e). For each case we calculate
ground-state energies of +0 anyons versus N, where
0/2~'s are —,

' (semion), —,
' and —,

' for the 3X3/4 system, —,',

for the 3 X4/6 system, and —,
' (semion) for the 3 X 3/3 sys-

tem. In general, we have E(0,@)AE(—0, @) and
E( 0C&)W E( 0,

—@). So it is not surprising that on an
annulus the energy is not symmetric with respect to rev-
ersing &b. However, if the condition (2.12) (e' ' "=1)
is satisfied, that is 0/2~=+ —,

' for 3 X 3/4, 0/2' =+
—,
' for

3 X4/6, and 0/2~=+ —' (semion) for 3 X 3/3, +0 anyon's
energies are exactly the same. If the system is a cylinder,
we cannot distinguish 0 statistics and the equation
E (0, C&) =E ( —0,@)holds. Also the energy is invariant if
we change the signs of 0 and N simultaneously. This im-
plies that E (0,N) =E (0, —4) and there is no asymmetry
with respect to 4 in the energy diagram for the cylinder
system [see Figs. 12(c), 12(d), and 12(e)].

We have also calculated an E —N diagram by intro-
ducing a next-nearest-neighbor interaction u. We calcu-
lated for the case u = —O.S which corresponds to the
cases in Fig. 2 of Ref. 16. The results obtained from our
rule agree with theirs. It seems our rule and their rule in
Ref. 16 are consistent. This means the rules used in Refs.
15 and 16 are different.

3x4/6 by various rules

B. Spectral Bow and level crossing

We calculated not only the ground-state energies, but
also excited energies. We find that there are many level
crossings when we sweep the central Aux. The Hamil-
tonian of the system is invariant if we change N by an in-
teger. A change of N by AN is removed by a redefinition
of the original hard-core-boson operators (3.2) as

nc „—+c „exp —i 2~6+
L

(4.1)

where c „ is the annihilation operator of the hard-core
boson at (rn, n) site. If b,N is an integer, (4.1) does not
cause any effect to the boundary condition, that is,
c~ L +,=c, is also satisfied for the new operators. We

calculated the lowest several energies for various systems.
In Fig. 13 we show the results (a) for 2m —,

' statistics in the
3X3/4 system, (b) for 2' —,', statistics in the 3X4/6 sys-
tem, (c) for 2' ,

' statisti—cs in the 3X3/3 system, and (d)
for 2' 'statistic—s (semion) in the 3X3/3 system. These
show that the spectrum is really invariant if we change N
to &+1, however, the period of each level is not one.
This is the so-called spectral flow. In Fig. 13(a), the
lowest three levels are separated from the other levels
(there is an energy gap) and the period of the states is
three. We can explain this by a simple consideration.
We can remove the effect of the change from N to W+ 1

by a gauge transformation (4.1) and we can interpret this
gauge transformation as a "large" gauge transformation
because this gauge transformation is not continuously
connected to the identity. On the other hand if the
change of the central flux is 1. , (4.1) becomes an identity.
Thus the period of the whole system has to be L . It is
also possible that the period is not L„but a factor of L .
In Fig. 13(c), for example, the period of the ground state
is 1. These considerations are most easily seen in the fer-
mion case. In this case the eigenstates are constructed by
the product of one-body states. The energy of a one-body
state is easily obtained as (see Fig. 14)

8 0 I ~ e

-8.5

"x—2t . cos
L +1

n +@
+cos 2'

L
(4.2)

-9.0 = -8.8284

-1 0.5

-11.0

-11.5

I . ~ . I « i I ~ ~ ~ I

5.0 0.20 0.40 0.60 0.80
Statistics 0/ z

1.0
Free fermion

FIG. 11. Ground-state energy vs statistics diagram by three
diff'erent rules for a 3 X4/6 annulus system.

where n = 1,2, . . . , L and ny 1 2 Ly A many-
body state is obtained by filling these states up to the
number of particles. The energies of the one-body states
change continuously as (4.2) when + changes. If we start
from ground state and change N from zero to 1, the state
continuously changes to one of the excited states. The
schematic diagram of the situation is shown in Fig. 14.
For general anyon cases, there are many level crossings
due to these spectral Aows.

In some cases, there is an energy gap when we change
the central flux as shown in Figs. 13(a) and 13(c); howev-
er, we cannot get this type of energy gap for larger sys-
tems [for example, Fig. 13(b)]. We cannot make a sys-
tematic conclusion as to the existence of the energy gap.

There are also spectral Aows which cause many level
crossings when we change the statistics. We show such
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F' ll: (a) on the annulus and (b) on theresults in Figs.
board.

C. Comparison with the mean-field treatment

In this su sec ionh b t' n we want to investigate t e accuracy
-field treatment. Several authors trea eof the mean- e rea

hich the sta-anyon sys emt by an analytical method in w ic

tistica ux i1 fI is replaced by a uniform magnetic
field. ' ' ' e c8 13'15'17'22 ~ ompare the exact solution or
finite system to the mean-fie 1 results. Here we summa-

n-field treatment of the statistical Aux. %'erize the mean- e rea
'd r 0 statistics anyon with density n as a erm'consi er s a

'

ce the s stem withwit ux uh 0 tube m —0 and want to rep ace e sy24 ma-of noninteracting free fermions with ~ F g-a system o nonin
netic field. %'e find CF by the condition that e

~ ~

the aver-

(a)
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to +=0.



43 BRAID GROUP AND ANYONS ON A CYLINDER 2671

1/1 0 statistics anyon 3~4/6 on cylinder
-9.8
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1/4 statistics anyon 3&3/3 on cylinder
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FIG. 12. (,Continued).

aged Aharonov-Bohm phase of the particles to be the
same as the phase due to the statistics. When one anyon
moves around another anyon, the total change of the
phase is 2(vr 9). Thus t—he anyon gets a phase change
2(7r 9)nS on —average when it moves around an area S.
If the particle is a fermion in a magnetic field, the change
is 2~+FS. By this consideration one finds that the mean
field is given by (see Fig. 16).

NF= n .~—0
(4.3)

In our finite-size calculation we also calculate a mean
field which corresponds to n'=(N —1)/L, L instead of
n =N/L„L~. The factor X —1 is present because the
anyon do not feel its own field at least in our lattice mod-
el (no self-interaction).

In Fig. 17(a) we show the exact ground-state energies
for a 3X4/5 annulus system and the mean-field ground-
state energies where the mean-field calculation is done
by(4. 3) with n'=(N —1)/L, L . It shows that the mean-
field energy of the ground state agrees with that of the ex-
act one within 5% until about semion statistics. There
are many level crossings when we change the statistics
and the global structure of these level crossings is also
present in the mean-field calculation. In Fig. 17(b), we
show the overlap between the ground-state wave function
of the exact anyon system and that of the fermion system
in the uniform magnetic field where +b„,„is a strength of
the mean field which corresponds to the boson system. It
shows that the overlap between the exact ground state
and that of the mean-field calculation is not so large if the
statistics is less than about 0.9m. We can only say that

0N~= —n . (4.4)

We also show that the mean-field calculation using
n'=(N —1)/L L . The results also show that mean field
is good unless level crossing occurs. The region where
the mean field is good is wider than that of the mean-field
calculation from the fermion, because there are fewer lev-
el crossings near the hard-core-boson point.

the mean-field wave function is not so bad unless some
leve1 crossing occurs when the statistics changes from the
fermion point. However, there are many level crossings
and the region where the mean field is very good is not so
large. In Fig. 18 we also show similar results for the fixed
boundary condition. Figure 18(a) shows that the mean-
field energy is very good unless level crossing occurs. We
also show the result of the overlap in Fig. 18(b). It
confirms that the mean-field calculation is good unless
level crossing occurs. After the level crossing, however,
the mean-field approximation is not so good. The range
where the mean-field ca1culation is good is larger for the
fixed boundary condition (board) compared to the period-
ic boundary condition (annulus).

We also perform a mean-field calculation from hard-
core bosons. The hard-core bosons are not so easy to
handle by the analytical method. Some authors, howev-
er, make such an approximation using a vortex struc-
ture. ' In Figs. 19(a) and 19(b) we show the compar-
ison of the energies by the mean-field from the hard-
core-boson point for both the cylinder case and the board
case. The mean-Geld strength is obtained by replacing ~-
8 by 8 in (4.3), i.e., one has
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FIG. 13. Energies for the several lowest states as a function of the central Aux: (a) 2m —,
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FIG. 13. {Continued).
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V. SUMMARY AND DISCUSSIONS

In this paper we presented a careful reexamination of
anyons on a cylinder (or annulus), starting from the
braid-group analysis. We focused on the topological
features arising from the existence of noncontractible
loops. In the usual two-dimensional plane, generators of
the braid group are given by local exchanges of two
neighboring particles which characterize the statistics of
the system. We notice, however, that the cylinder,
though noncompact, is still topologically nontrivial and
differs from a board or a plane in that there are noncon-
tractible loops on it. On the cylinder we find that there
are additional generators besides the usual local ex-
changes in the braid group which correspond to moving
anions around noncontractible loops. To define the rep-
resentation of the braid group on the cylinder, we have to
include the effect of the central Aux N through the cen-
tral hole. The braid group is characterized by two pa-
rameters (9,4) and these two are tangled with each other.
We have to treat it carefully to obtain efFects of the physi-
cal central fIux N separately.

There is no ambiguity when we put anyons on the
board. However, the rule for putting anyons on a square
lattice has to be modified when the periodic boundary
condition is imposed on one direction (cylinder). We
have explicitly constructed two seemingly different rules
to define anyons on a cylinder which satisfy the require-

ment of the braid group.
To check our analysis we have performed some finite-

system calculations. The consistency of our results has
been verified by the agreement of the numerical results
from our two difFerent sets of rules. Although they both
satisfy the braid-group requirements, the equivalence be-
tween them otherwise is not obvious at all. We have also
explicitly shown that both of our rules reproduce the usu-
al Fock space of fermion system.
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FIG. 14. Schematic diagram to explain the spectral How of
the free fermion. The ground state for +=0 case is continuous-
ly connected to the first excited state for the N = 1. Notice that
the 4=1 Aux is removed from the Harniltonian by the "large"
gauge transformation (see text).

statistics
FIG. 15. Energies for the several lowest states as a function

of the statistics: (a) for a 3X4/6 annulus system and (b) for a
3 X4/6 board system.
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FIG. 16. SchSchematic diagram to explain the mean-field a-
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We have calculated not only the ground state but also
a so ca cu ate the spec-several excited states. We have also l 1 d h

tra Aow o the excited states with var t t'ing s a istics or
ux and have seen a lot of level crossings, which seem to

be a general feature of anyon systems.
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o s, where X is the number of the particles. Any 0,

=1

owever, is allowed on the annulus. At these s ecia
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FIG. 17. (a) Com arisp 'son of the ground-state energies be-
tween the exact calculation and the mean-field l l- e cacu ation ror a

annulus system. (b) Square of the overlap between the
exact anyon wave function and the fermion wave function with
uniform magnetic field. The diago 1 diagona irection corresponds to
the mean-field value.

FIG. 18. (a) Com arip 'son of the ground-state energies be-

3X4/5 board s stem. b
tween the exact calculation and the me -fi lde mean- e calculation for a

5 board system. (b) Overlap between the exact anyon
wave function annd t~e fermion wave function with uniform
magnetic field. The di'c e . e diagonal direction corresponds to the
mean-field value.
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annulus as a cylinder. In general, there is a symmetry for
the ground-state energy, that is,
E,„„„,„,(0,4&) =E,„„„&„,( —0, —4&); however, generically
E,„„„~„,(0,@)WE,„„„~„,( —0,@). If the above condition is
satisfied
E,„„„~„(0,@)=E, );„~„( 0,@—) =E,y„„~„(0,—&0). This
means that the direction of the fiuxes (both central fiux
and virtual statistical Aux) does not have any physical
role in the cylinder geometry. We numerically checked
these symmetries.

Finally, we have compared the energy and the wave
function of the exact state with those of the mean-field
calculation in the annulus (we cannot say "cylinder" ).
There are many level crossings when we change the
statistics on the annulus. First we have performed a
mean-field calculation from a free fermion. The energies
are accurate in a few percent up to the semion point.

However, if we compare the overlap of the wave func-
tion, the mean field is not so good if level crossing occurs.
In this point of view, the region where the mean field is
good is not so large away from the fermion point. We
also calculated a similar calculation for a board
geometry. The results are similar and the range is wider
where the mean field is good. We have also compared a
similar mean-field calculation from a hard-core boson.
The tendency is similar to the mean-field calculation from
the fermion. However, it seems that the level crossing
does not occur near the hard-core-boson point and the
range where the mean field is good is rather wider than
that of the mean-field calculation from the free fermion.

Note added in proof. After the present work was comp-
leted, Chih-Han Sah proved that our defining relation of
the braid group on the annulus is complete.
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APPENDIX

Here, we give an intuitive derivation of rule B. We in-
vestigate the process in which the particles at P hops to Q
in Fig. 7 under the periodic boundary condition. This
process is decomposed into two steps. The first step is ex-
pressed by a solid line in Fig. 7(a). The change of the
phase is given by

JV( C)0, (Al)

Mean field from hard core boson -x33/ o3n the board
-5.0 I AT , ~

~
~ ~

where JV(C) is the number of the particles in region C.
After this step, the configuration of the strings is given by
Fig. 7(b) with string I. This string configuration is not a
standard one and we have to deform it to the standard
string II. The change of the phase in this step is given by

-5.5-

-6.0-

Exact
-----Mean field N

[JV( A)+ JV(C)+JV(D)+JV(E)]0 .

Thus the total change of the phase is

[JV( A)+2JV(C)+ JV(D)+ JV(E)]0 .

Using a simple constraint

N= JV( A)+ JV(B)+JV(C)+JV(D)+ JV(E)+ 1 .

(A2)

(A3)

(A4)
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The total change of phase in this process is rewritten as

Statistics (N —1)0+[JV(C)—JV(B)]0, (A5)

FIG. 19. Comparison of the ground-state energies between
the exact calculation and the mean-field calculation for 3 X 3/3
cylinder system. In this case the particles are hard-core boson,
that is, the mean Geld are from the hard-core boson point: (a)
for a cylinder and (b) for a board.

where [JV(C)—JV(B)]0 could be given by rule A, howev-
er, there is another factor (N —1)0. We have to give an
extra factor e' " to the simple rule A if some particle
at the edge hops to the other edge under the periodic
boundary condition.
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