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Dynamic approach to local-polarization distribution and NMR line shape in deuteron glasses
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The path-integral formulation of Glauber dynamics by Sommers is applied to calculate the deute-
ron NMR line shape in structural glasses such as Rb& „(ND4.)„D2PO4. The system is described by a
classical pseudospin Ising model with infinite-range exchange interactions and quenched random
electric fields. It is shown that in the fast-motion limit the NMR line shape is directly related to the
average probability distribution of local deuteron polarization and that the observable truncated
second moment of the NMR line M2" is proportional to the Edwards-Anderson order parameter
q«. Leading dynamic corrections due to the slowing down of deuteron jumps in the ergodic phase
are evaluated, and the behavior of M2' at the crossover between the fast- and the slow-motion re-
gimes is discussed.

I. INTRODUCTION

In contrast to magnetic spin glasses, the random
freezeout of electric dipole moments in so-called proton
or deuteron glasses is characterized by the simultaneous
presence of both random exchange interactions and ran-
dom local electric fields. ' Typical representative sys-
tems are solid solutions of hydrogen-bonded ferroelec-
tric and antiferroelectric crystals such as
Rb& (NH&) H2PO4 (RADP) and its deuterated counter-
part Rb& (ND&) D2PO& (DRADP). ' Since the
random-field variance 6 acts as an effective ordering field
for the glassy state, the corresponding Edwards-
Anderson ' order parameter qE~ is expected to be
nonzero at all temperatures. A static replica theory
based on the pseudospin random-bond Ising model with
infinite-range interactions, ' where the pseudospin sym-
bolizes the two possible equilibrium sites for a proton
(deuteron) in the O—H 0 hydrogen bond, predicts
that a replica-symmetric proton (deuteron) pseudospin-
glass phase is stable in a range of temperatures T and
random-field strengths 6 above the instability line
T~(h) 'Alternat. ively, the instability line can be inter-
preted within the framework of the dynamic theory of
spin glasses' '" as a line separating the ergodic from the
nonergodic pseudospin glass phase.

It has recently been demonstrated' that quadrupole-
perturbed nuclear magnetic resonance (NMR) provides a
powerful technique to determine the average local-
polarization distribution and its second moment, the
Edwards-Anderson order parameter in proton and deute-
ron glasses. ' In the fast-motion regime at high tempera-
tures, i.e., when the deuteron intrabond jump rate is large
compared to the quadrupole splitting, the frequency of
the 0—D . 0 deuteron NMR line at a given site is pro-
portional to the local deuteron polarization. Consequent-
ly, the second moment of the site-averaged distribution of
NMR frequencies is a direct measure of the Edwards-

Anderson order parameter qEA. An analogous relation-
ship can be established for the Rb NMR line in
DRADP (Ref. l) and the Tl + EPR spectra in doped
RADP. ' At low temperatures, however, a transition
into the slow-motion regime gradually occurs, and, in or-
der to be able to extract quantitative information on the
deuteron-glass order parameter from the measured NMR
line shape, it is necessary to take into account dynamic
effects due to the slowing down of deuteron jumps.

In this paper we present a dynamic theory of the deute-
ron NMR line shape in deuteron glasses based on the
infinitely ranged random-bond Ising model with the addi-
tion of quenched local random fields. As argued earlier,
this model is—in spite of its simplicity —capable of
describing the essential features of the pseudo-spin-glass
phase in DRADP systems. We limit ourselves to deu-
terated systems where the tunneling splitting of the
ground-state doublet in the 0—D 0 potential
represents only a small perturbation on an energy scale
relevant to the observable dynamic effects. Thus, the
transverse field usually associated with the tunneling
motion of protons can be neglected, and the system is ac-
cordingly described by the classical Ising pseudospin
model. To deal with the dynamics of deuteron intrabond
jumps, we will apply the method of Glauber kinetics for
discrete Ising spins'" using the recently developed path-
integral formulation of Sommers. ' ' In this approach
one can avoid the difficulties associated with the familiar
replica formalism while preserving the discrete Ising na-
ture of the dynamic variables at each step in the pertur-
bation expansion. ' In principle, analogous results can be
obtained if one starts from the Langevin equations of
motion for continuous soft-spin variables, subsequently
transforming back to the correct Ising limit. ' '"

In Sec. II of this paper we outline the path-integral for-
malism and its application to the pseudospin model of
deuteron glasses (DG). The reader who is unfamiliar
with this formalism may skip most of this section on first
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reading. In Sec. III, the line shape of quadrupole-
unperturbed deuteron NMR is calculated, and in Sec. IV
it is related to the local-polarization distribution. Section
V deals with the observable second moment of the NMR
line which is related to the DG order parameter in the
fast-motion limit, and its behavior at the crossover be-
tween the fast- and the slow-motion regime is discussed.
The results are summarized in Sec. VI. In Appendix A,
the local-polarization distribution is calculated using the
replica formalism, while in Appendix 8 the derivation of
the truncated second moment of the NMR line is
presented.

II. PATH-INTEGRAL FORMALISM
FOR DEUTERON GLASSES

The microscopic state of a proton glass (PG) or
deuteron-glass system is specified by the vector
rr =(o &, o 2, . . . , o &), where the pseudospin o; =+1
refers to the left-right position of a proton (deuteron) in
the ith 0—D . 0 hydrogen bond. ' By assumption,
the time evolution of this state is governed by a Markov
process involving random pseudospin flips due to the in-
teraction with a heat bath. (See Fig. 1.) This approach is
by now standard' and we will only describe the steps
necessary to stress the specific features of the present
physical problem. First, we introduce the probability
P (o, t) for finding the system in a state o at time t, which
obeys the master equation

P(o, t)= —g[W(o o')P(o, t)
a
at

—W'(o. 'io )P(o', t)],
where W(o io') is the rate of transition from state o to
state o'. In the Glauber model, one focuses on the one-
pseudo-spin-flip processes o.;~—o.; and the correspond-
ing transition rate is written in a form explicitly satisfying
the condition of detailed balance

cgpg (slow motion j

~»R (fast motion)

FIG. 1. Schematic time dependence of the local pseudospin
variable o.;(t) describing stochastic deuteron motion between
two equilibrium sites in the 0—D . 0 bond. Also shown are
the average dwell times ~+ and correlation time ~, = 1/I
defined in Eq. (36). The relation between w, and the characteris-
tic time scale ~~M& for quadrupole perturbed NMR determines
the fast- (~, &&~&Mz) and slow-motion (~, ))~&Mz) regimes,
where w~Mg = 1/2col.

h;=E;+f;+g J;.o
J

(3)

with E, representing the value of an external electric field
E at site i, f, the internal random electric field due to
substitutional disorder, and J; the random interbond
coupling. The probability distributions of random bonds
and fields are given by two independent Gaussians:

' 1/2

P(J;, )= exp( —XJ,J/2J ),

P(f;)= exp( f, /2b) —. .1
(4)

As usual, in the infinite-range model, the scaling of
J," ~ 1/VX ensures that the free energy behaves as an ex-
tensive variable. In general, the pseudospin-flip rate I in
Eq. (2) may be depend on the local field h, and the tem-
perature.

Following Sommers' we now rewrite Eq. (1) in the
compact form

P ( o, t ) =RP ( o.., t ),a
at

where R is the relaxation operator

R =g —,'I ( Y; —1)(1—o;tanhlih;),

(5)

with Y; representing the pseudo-spin-reversal operator,
i.e.,

YF(o; ) =F( —o;)Y;

for any function E. The formal solution of Eq. (5) is

P(o, t)=T exp I drR(r) P(o, O), (7)
0

where T is the time-ordering operator. It is convenient to
choose the initial condition for Eq. (5) in a form corre-
sponding to a system of independent pseudospins'

N

P(~, O)= g —,'(I+o p, ), (&)
j=l

where p is the polarization of bond j at t =to=0. It
may also be noted that, for a system in thermodynamic
equilibrium, the stationary solution of Eq. (3) should be
canonical, i.e.,

P(rr), q=e ~ /Tr(e ~ )

with H representing here the model Hamiltonian for a
DG system

H = —
—,
' g J, o;cr —g(E, +f; )o.; . (1O)

l,j l

The quantities of interest will be the pseudo-spin-
correlation functions

w(o ~ ~ ~ o' ~ ~ ~ o I o ' ' o' ' o1 N~ 1 1 N~

=
—,
' I ( 1 —o.

, tanhPh, ) .

Here I is the pseudo-spin-fiip rate and h, =h;(t)
represents the local field acting on the ith pseudospin,
which for a DG system is given by
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(o;.(t, )crj(t2) o „(t„)& =g T exp f drR (r) cr, (t, )cr, (t~) o „(t„)P(o,0) .
0 0

This definition includes the local case i =j=. . . , but t i Wt2&. . . , etc. In general, the correlation functions (11) still de-
pend on the initial polarizations p .

As first shown by Sommers, ' the time-ordered product in Eq. (11) can be explicitly evaluated as a path integral over
real fields h (r), h (r), o. (r), and o (r), leading to the result' '

N

(cr;(t, ) . . cr„(t„)&=f + Dh/(r)Df (r)Do (r)Dcr (~).o, (t, ). . . cr„(t„)

N

Xexp i f—dr g h (r) h)(r) —g J;,cr;(r) f, (r—) E (r—).
l,j I

N

Xexp i f—dr g o' (r)[o,(r) —pj(r)]
j = 1

(12)

Here the fields p (r) represent local polarizations which
obey the exact stochastic equations

Bpj =io, (1—
p, )

—I (p, —tanhPh. ) (13)

with initial conditions p (0)=p& .
Since J; and f appear linearly in the exponent of Eq.

(12), the right-hand side (rhs) can be explicitly averaged
over both of the random distributions (4). The lowest
nontrivial average of the type (12) is related to the bulk
pseudospin polarization

P(t, ) =—g[(~, (t, ) &],„=[(o(t, ) &]„,1

I

Equations (14)—(15) imply the self-averaging feature of
the DG system in the limit iV —+ ~.

When the system is in equilibrium, p(ti) in Eq. (14)
must be time independent, whereas the functions (15) are
expected to depend only on the difference t =t, —t2. The
long-time limit of C then corresponds to the Edwards-
Anderson order parameter, i.e. , limC(t~ oo )=qEA. In
the presence of random fields, this quantity is nonzero at
all temperatures. In particular, in the ergodic DG phase
above the Almeida-Thouless (AT) instability line, qE~
is equal to the DG order parameter q. Thus, for T ) T~,
where Tt = TI(b, ) is the instability temperature, it is con-
venient to write'

where [ . . ]„denotes the simultaneous average over
random bonds and random fields. Similarly, the local
two-point correlation and response functions are given by

C(t)=C(t)+q, (16)

C(t„t, ) =—g[(o;(t, )cr;.(t, ) & ]„1
1& 2

(15a)

(15b)

expectswhere limC(t ~ oo ) =0. Likewise, one
G(t~ ~ )=0.

The calculation of the correlation functions (12) in the

erg odic phase now parallels that for the magnetic
case' ' with only one extra contribution to the quadratic
terms in the exponent resulting from the averaging over

f, i.e. , q~q+b, /J, similar to the static replica theory.
After linearizing this term by means of a Guassian trans-
formation, one obtains a modified generating functional
for the correlation and response functions:

+ —x /2
Z(io. ,E)=f dx

277
exp —J f f dr, dr& C(1,2) +20(1-2)G(1,2)6 6 — 6 5

x exp f icr(r)p(r)dc.
h =h(x)

(17)

where 8 denotes the step function,

h (x)=E+J(q+b, )' x

with b, —= b, /J, and p(r) is the solution of the stochastic
equation

c)p(r) = icr (r) [I—p (r) ]a~
—I [p(r) —tanh/3h(r)] .

From Eq. (16) one can obtain any correlation function
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[(cr(t) ) ' cr(t„))],„

via the corresponding functional derivatives

5"Z/5icr(ti) 6io(t„)

evaluated at o. =0. The response functions can similarly
be derived by performing the derivatives with respect to
the external field E(t). The unknown two-point func-
tions C and G in Eq. (17) can be determined self-
consistently by means of a perturbation expansion.
Furthermore, they are related by the Auctuation-
dissipation theorem'

III. LINK SHAPE
OF QUADRUPOLE PERTURBED NMR

Since deuterons have a nuclear quadrupole moment,
the Larmor frequency coL of the ith 0—D 0 deuteron
in an external magnetic field is perturbed by the interac-
tion with the corresponding local electric-field gradient
(EFG) tensor. For symmetry reasons, only the
orientation —but not the magnitude —of the EFG tensor
depends on the position of the deuteron in the 0—
D 0 bond, i.e., for a certain orientation of the bond in
the external magnetic field the resonance frequency co; is
proportional to the instantaneous position o;(t) o.f the
deuteron

G(t) = —Pe(t)
at

(19) co; ( t ) —cot + co g +co
~ cr, ( t ) —coo + co

~ cr; ( t )

It can be shown that the static behavior in the ergodic
phase is independent of the short-time functions C(t) and
G(t). Thus, the correlation and response functions in
equilibrium can readily be calculated from Eqs. (17)—(19),
and the results agree with the replica theory of DG.

where co& and co
&

are the position-independent and
position-dependent contributions of the quadrupole cou-
pling, respectively, and co0 =coL +u&. Writing
co=co„—co0, where co„- is the frequency of the NMR sig-
nal in the laboratory frame, one can characterize the
NMR spectrum by the line-shape function' ''

i COtI(co)=—Ref dt e ' '—g exp ico f o(r)dr
VT 0 N, . '

0 av

+ oo

Re—f dt e ' ' exp ico, f o(r)dr
0 0 av

(21)

With the help of the generating functional Z (i o,E) introduced in Eq. (17), this can be rewritten as

I(co)=—Re f dt e '"'exp ico& f dr Z(to, O)
7T 0 0 micr(r)

+~=—Re dt e ' 'Z(ico„O),
7T 0

(22)

where the last line follows from the fact that the exponen-
tial operator merely translates all variables io(r) in Z by
the same amount ice, . It should be noted that the above
relation between the line-shape function I(co) and the
Glauber-Sommers generating functional Z is still general.

We will now evaluate I(co) by neglecting the short-
time pseudospin correlations contained in the functions C
and G. Physically, this is equivalent to assuming that the
time scale of the NMR experiment is such that the deute-
rons can make a very large number of jumps and the sys-
tem remains close to the equilibrium. Thus, we find from
Eqs. (17) and (22)

I(co)=—Re dt e '"' exp icoi f pi(r)dr
7T 0 0

(23)

where ( ) denotes a Gaussian average as in Eq. (17),
and p &

(r) is the solution of a modified Eq. (18)

p, (0)=p =tanhPh (x),
i.e., at t =0 the polarization is given by its equilibrium
value in the local field h (x).

The long-time behavior of p&(r) is determined by the
complex fixed points of Eq. (24), i.e. ,

p+(p) =i [I /2co, +r (p) ] (25)

p(r) =(p Bp+e ' )/(1—Be ' ), —(26)

where r =r(p), p+ =p+(p), and the integration constant
is given by

B =—B(p)=(p —p )/(p —p+ ) .

We can now easily perform the integration in Eq. (23)
and obtain the result for the line-shape function I (co):

with r(p)=[(1 /2co&) —1+iIp/co&]'~ . The solution of
Eq. (24) can then be written in the form

c)p, /dr=ico, (1 —p, )
—I [p, —tanhPh(x)], (24)

where h (x)=J(q+b, )'~ x. We will choose the initial
condition

I(co)=—Re f dt e '"'( 3 (t) )
0

where

(27)
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3 (t) =i(co, /r)[(p —p+)e ' —(p —p )e ' +
] . dco X co,p —1 (35)

(28)

IV. LOCAL-POLARIZATION DISTRIBUTION

As argued below, we can identify the quantity
p =tanhPh (x) in Eq. (24) as the local pseudospin polar-
ization in a Gaussian random field x. From Eqs. (14) and
(17) the equilibrium bulk polarization is given by

gZ + —x /22

dx tanh J q+dk ' x
5i&(t) —~ &2~

(29)

where the derivative has been evaluated for t ~~ and
o =E =0. The last expression agrees with the result of
the static replica theory of proton glasses. It may be
noted that p=0 for a symmetric bond distribution and
zero external field E.

By introducing a new integration variable
p =tanhPh (x), we can formally rewrite Eq. (29) as

p= "dp&pp (30)

where

1 1W'(p) =
P J[2 i(rq +b, )]' 1 —p

1 arctanh pX exp
2 pJ( +b)

(31)

The same substitution can now be made to rewrite the
average over x in Eq. (27) as an average over p. Inverting
the order of integrations in Eq. (27), we obtain

I(co)= f dp W(p)I(co, p), (32)

where

In principle, Eq. (34) could also be derived from the
general theory of the NMR line shape. ' Instead of a sin-
gle autocorrelation time w, =1/I for a particle jumping
between two sites in a symmetric bistable potential, how-
ever, one has to introduce two parameters ~+ correspond-
ing to the average dwell times in the left or right
minimum of an asymmetric 0—D . 0 potential with
bias energies +DE, respectively. For a Markov process,
the relation between ~, and ~+ is given by

I =1/r, == 1

7 +
(36)

where r+ =r exp( —2Pb,E) according to the detailed
balance condition. This is illustrated schematically in
Fig. 1. Furthermore, the local static pseudospin polariza-
tion can be written as

p = (r —r+ ) /(r +r+ ) =tanh(Pb E) . (37)

It is shown in Appendix A that the random average in
Eq. (38) can be evaluated by means of the replica trick,
and the result is precisely the same as given by Eq. (31).
Here W(p) has been derived within the framework of
Glauber-Sommers dynamics in the long-time limit, which
is thus indeed equivalent to a static equilibrium.

The second moment of W(p) is, according to Eq. (38),

+1 2 1
dp W(p)p =—g(o, ) =qE~,

l

(39)

which is just the Edwards-Anderson order parameter for

Clearly, in the present deuteron-glass model one has
bE=h (x).

Equations (29) and (30) suggest that the function W(p)
represents the static equilibrium probability distribution
of local polarization p, which is defined as'

W(p)= —g &(p —(cr; ) )=[&(p —(cr ) )]„.1

I(co,p)= —Re f dt e ' 'A(p, t),
0

and the function 2 (p, t) is given by Eq. (28). Evaluating
the integral in Eq. (33) we find, after some simple algebra,

'wtp j

I co, (1—p )&(,p)=—
(

2 2)2+ p2(~ ~@)2
(34)

The function I(co,p) represents the line shape due to
the chemical exchange in an asymmetric two-site poten-
tial. It contains the effects of time-dependent pseudospin
fluctuations around equilibrium in the lowest nontrivial
order. At this order, the short-time part of the pseudo-
spin-correlation function is given by its unperturbed
value, i.e.,

C(r)—= (1—q)exp( —I ~t~) .

It is easily verified by contour integration that l(co,p) is
properly normalized, i.e.,

1
p

FIG. 2. Local-polarization distribution 8 (p) calculated for
fixed temperature T= T& =J/k and several values of random-
field variance 6: (a) 10 ', (b) 10 ', (c) 0.1, (d) 0.25, and (e) 1.0.
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NI p'I

P

FIG. 3. Same as Fig. 2, but for fixed 6=0.33 and several
values of reduced temperature T/TG. (a) 9.1, (b) 5.3, (c) 1.0, (d)
0.62, and (e) 0.1.

relationship between the predicted line-shape function
I (co) and the observable quantities.

First, we notice from Eqs. (25)—(28) that the character
of the line-shape function will generally depend on the ra-
tio of I /2'„since the function r(0) in Eq. (25) has a
branch point at I /2', =1. Physically, the case I )2'&
corresponds to the so-called fast-motion regime where the
characteristic NMR time ~NMR=1/2'& is longer than
the correlation time ~, . By contrast, the case I &2~, will
be referred to as the slow mo-tion regime (cf. Fig. 1).

Next, we want to specify the physical process responsi-
ble for the pseudospin-flip rate I. A standard model
applicable to the case of deuterons in DRADP (Ref. 1) is
that of thermally activated jumps across a potential bar-
rier E, with an additional biasing h(x) due to a cou-
pling to the DG order parameter. Thus, from Eqs. (36}
and (37), one obtains

(41)

a DG system. In the ergodic phase one has q =qEA.
From Eqs. (31} and (39) we recover the self-consistency
relation for the DG order parameter

where we assume that I o obeys the Arrhenius law

I/ro ro r exp(PE, ), (42)
—x /2

q = J ™
dx tanh [PJ(q+6)' x],

v 2m
(40)

which can, of course, also be derived directly from Eq.
(17).

In Fig. 2, the local-field probability distribution func-
tion W(p) is plotted for T = TG, where TG is the nominal
freezing temperature TG =J/k, and several values of the
random-field variance b, . Similarly, Fig. 3 shows W(p)
for 6=0.33 and several values of the reduced tempera-
ture T/TG. It is evident that, at high temperatures,
W(p) is bell shaped with a maximum at p =0 which nar-
rows on increasing the temperature. For T~ ~, W(p)
approaches a 5 function as is readily seen from Eq. (31).
For T ( TG, however, W(p) exhibits a symmetric two-
peak structure with its maxima moving towards p =+1
as the temperature is lowered. It is interesting to note
that, in the absence of random fields, i.e., for 5~0, one
again has W(p)~5(p) for all temperatures T ) TG, as it
follows from Eq. (31) for q ~0.

V. SECOND MOMENT OF THE NMR LINE

It has been argued in Ref. 1 that Eqs. (32) and (34) can
be used to interpret the measured deuteron NMR line
shape in DRADP and determine the relevant parameters
of the model. Let us therefore examine more closely the

with ~ playing the role of an inverse attempt frequency.
Since I diverges for p~+1, some of the bonds will al-
ways be in the fast-motion regime, even if I o&2~, .
Thus, in general, the line shape I (co) might display
features corresponding to an average over these two re-
gimes.

A standard method to analyze the experimental NMR
line shape is to consider its second moment Mz. In Ref. 1

the second moment of the Rb line in
Rbo 56(ND4)044D~PO4, which is simply related to the
deuteron line shape, has been used to determine the
Edwards-Anderson order parameter qEA in the fast-
motion regime. Here we discuss the relation between Mz
and qEA in more detail including the role played by the
dynamic effects. It should be noted that, according to the
general theory of NMR, ' the complete second moment
is not affected by molecular motion. However, in any
NMR experiment the available frequencies are limited,
and thus the observed second moment is always truncat-
ed, i.e., evaluated over a finite frequency range—co, & co & cu„where co, is some cutoff frequency. Under
specific conditions, the truncated second moment Mz' can
be used to determine the molecular rate processes, or in
the present case, the DG order parameter.

As shown in Appendix 8, the general expression for
the truncated second moment can be written in the form

( P/2 ~)I d W( )
& g J

+
d( )

g (g +Qg)+(0 —g') (g —Qg)

g +g —~ (co/co, —g) +(0—g)

+ g (q —Qg)+(0+/) (g +Qg)
(co/co, +g) +(Q+g)

(43)
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r =/+ill=(Q —1+2i Ap)'

with

(44)

(45a)

(45b)

Here 0=1 /2'„k, =co/co„and the parameters g and g
represent the real and imaginary part, respectively, of
r(p) introduced in Eq. (25), i.e.,

co I coo+ co I ( cT ) ) (51)

(52)

The resulting line shape can then be interpreted as a stat-
ic inhomogeneous broadening of the deuteron NMR line
due to a random local polarization p having a probability
W(p). The inhomogeneous NMR line shape is charac-
terized by the average frequency distribution function'

and with ~r~
= [(0 —1) +40 p ]' . Clearly, Eqs.

(43)—(45) are valid both in the fast- (II) 1) and the slow-
motion regime (0 & 1).

The integrals in Eq. (43) are elementary. At the upper
limit, they are typically given by

(II+g) 'arctan[(A+g)/(II+g)],

whereas, at the lower limit, A, is simply substituted by
Thus, one can easily check, after some rearranging,

that the complete second moment, which is obtained for
A.~~, is precisely equal to

M~ = I dc' I (co)cc) —col (46)

(=Q—(1—p )/20+0(p /0 )

g=p+O(p /0 ) .

(47a)

(47b)

Thus, we see that fl —g «
~

A, +q
~

&&0+g, and the
second integral in Eq. (43) is negligible compared to the
first one. After some straightforward algebra and with
the help of Eq. (39), we obtain, to leading order,

M2'=co, I dp W(p)p =co2IqE~ . (48)

We conclude that the observable truncated second mo-
ment is directly proportional to qEA in the fast-motion
limit. Thus, by measuring the second moment of the
NMR line, one can determine the temperature depen-
dence of the DG order parameter. '

It can easily be shown from Eq. (34) that, in the ex-
treme fast-motion limit, i.e., for 0=1"/2col~ ~, I( pc@)

effectively behaves as a 6 function:

It should be noted that a typical frequency range for a
NMR experiment is k=—3 or even less. A simple expres-
sion for the truncated second moment can be obtained
from Eq. (43) in two limiting cases, namely, the fast
(Q))1) and slow motion-limits (A«1). Focusing on
the fast motion limi-t first, we derive from Eqs. (45) a
power-series expansion for g and g in terms of 1/fl:

where, again, we write co=co„—coo. Comparing Eq. (52)
with Eqs. (32) and (49), we realize that, in the extreme
fast-motion limit, the line-shape function I (co ) is
equivalent to f (co). Furthermore, it is trivial to verify
from Eq. (52) that the second moment of f (co) is equal to
co&qEA. It should be stressed that this relation is model
independent, i.e., it applies both to the long- and the
short-range random-bond Ising models of the spin
glasses.

In Fig. 4 we compare I( c)@with W(co/col) for three
values of I o/col. For I o))2col, the line shape indeed ap-
proaches W(co/col ), however, for smaller values of
I o/cu„dynamic effects become increasingly important,
resulting in a two-peak structure of I(co).

In similar fashion, one can discuss the slow-motion lim-
it Il « l. Equations (45) now yield

g=Qp+O(A p ), g= 1 —
—,'0 (1—p )+O(Q ), (53)

0.6

and it follows that the integrand in Eq. (43) consists of
two peaks centered on co/~I —=+1 with respective half-
widths Q(1+p). Therefore, the value of the integral is
the same as for A, —+ ~, and the truncated second moment
reaches its maximum value given by M2' =co, =M2.

For the pseudo-spin-Aip model introduced above, this
implies that, at low temperatures, where, according to
Eqs. (41) and (42), an increasingly large fraction of bonds
belongs to the slow-motion regime, one should observe a
deviation of Mz' from its fast-motion value cuIqE~, and
for T~O one expects M2' —+~I for all values of co, . This
is shown in Fig. 5 where the normalized truncated second
moment Mz'/col, calculated from Eq. (43) with A, =3, is

lim I(co,p) =5(co—co@),
Q~ oo

(49)

0.2

while the line-shape function (33) in the same limit be-
comes

I (co)=( I/col) W(co/co&) . (50)
0.0

-2 0

u) /(u]

Equation (49) suggests that, in the extreme fast-motion
limit, a deuteron effectively sees the time-averaged value
of the quadrupolar splitting colo (t), which, for an ergodic
system, is equivalent to co, (o ) =colp. Thus, Eq. (20) in
this limit simplifies to'

FIG. 4. Line-shape function I(co) (in units of co& ) calculated
from Eq. (34) for three different values of I p/co„kT/J=1. 33,
and 5=0.5. (a) 8 (co/co& ), (b) I (co) for I p/2'& =50 (c)
I p/2', =1.5, and (d) I p/2coI =0.05.
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FIG. 5. Calculated temperature dependence of the normal-
ized second moment M2" /col for several values of co&, illustrating
the crossover between the fast- and the slow-motion regimes:
(a) col/2m=10 kHz, (b) 100 kHz, (c) 1 MHz, (d) 10 MHz, (e) 100
MHz. Heavy line: Edwards-Anderson order parameter q«
calculated from Eq. (40). The model parameters corresponding
to DRADP were taken from Ref. 1, i.e., J/k =90 K, 6=0.35,
and I was obtained from Eqs. (41) and (42) with E, =80 meV
and w =1 93X10 ' s.

plotted as a function of temperature for five different
values of co, . The parameter I has been obtained from
Eqs. (41) and (42) using values of r and E, appropriate
to 0—D . 0 deuterons in DRADP, taken from Ref. 1.
It is evident that, at high temperatures, the ratio Mz'/co,
approaches the fast-motion value qE~, however, in a nar-
row temperature range, which depends on the value of
co„a crossover to the slow-motion limit occurs and, at
low temperatures, we find Mz'/co, —+1, as anticipated.
The above predictions have been tested by comparing the
temperature dependences of M2'/co, for two probes with
different values of co&, i.e., for Rb where co, is of the or-
der 10 Hz, and for Tl + where co& =—10 Hz. A good
agreement between the predicted behavior and the exper-
imental data has been found. '

Edwards-Anderson order parameter qEA.
Experiments' indicate that, in the low-temperature

part of the fast-motion regime, which in DRADP occurs
above 45 K, the system is in a crossover regime between
the fast- and the slow-motion limits. Therefore, one has
to take into account the slowing down of deuteron intra-
bond jumps, which gives rise to an additional line
broadening. These effects have been evaluated here by
means of a lowest-order perturbation expansion for the
dynamic pseudospin correlation function, leading to a
general form for the local chemical exchange line shape
I (co,p), which depends on the local polarization p as well
as the deuteron intrabond jump rate I . The resulting
NMR line shape can be then obtained by averaging
I(co,p) over W(p).

By contrast, in the slow-motion limit I ((2'&, the pre-
dicted function I(co,p) has the form of a two-peak struc-
ture whose maxima are shifted with respect to the unper-
turbed Larmor frequency coo by the amount +co& corre-
sponding to the maximum quadrupolar splitting. In this
case, the second moment of the observed NMR line
equals its maximum value co, independently of q EA.
These results demonstrate the importance of taking into
account dynamic effects when comparing theoretical and
experimental NMR line shapes in glasses.

The theory is easily extended to nuclei other than
deuterons such as Rb in DRADP. Both deuteron and

Rb quadrupole-perturbed NMR as well as Tl EPR
have recently been used to check the validity of some of
the predictions, and a good agreement has been found. '
The observed temperature dependence of the Edwards-
Anderson order parameter gives strong support to the
present model according to which the DG freezing in
DRADP is characterized by the presence of both ran-
domly frustrated competing interactions as well as
quenched random electric fields created by the substitu-
tional disorder.
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APPENDIX A

+ oo

8'(p) = Ref —dt e '"'[exp(i (o, &t)]„. (Al)

Next we expand the second exponent into a power series
and find

W'(p)= —Re f dt e '~' g i t [(o, & ],„/m! .
0 m=0

(A2)

Here we derive the probability distribution of local po-
larization 8'(p) using the replica formalism. Starting
from its definition, Eq. (38), we first rewrite the last aver-
age by means of the Fourier representation for the 6
function
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According to the replica formalism, '" the product of m
thermodynamic averages ( 0 ) of any operator 0 can for-
mally be written as a single trace

n

(0) =lim Tr„O 0 0 exp —P g H
n O Pl a=1

(A3)

where the dummy replica indices o.1. . . n are all dis-

tinct but contained in the sum over the replicated Hamil-
tonian (10). This is readily applied to the case 0=o, in
Eq. (A2) and the random average evaluated by integrat-
ing over the random distributions (4). One can then per-
form the standard manipulations from the theory of
spin ' and proton glasses with infinite-range interac-
tions. After averaging over the random distributions (4)
the result does not depend on the site index i and we ob-
tain in zero external field (E, =0)

[(o., ) ]„=lim Tr„o o . o exp —P J g (q &+6, )o o&.1 22 (A4)

where q &
is the usual spin-glass order parameter. As

discussed by Binder and Young, in the case of broken re-
plica symmetry, the rhs of Eq. (A4) has to be averaged
over all permutations of the replicas o;, o. . In the
present problem, however, we focus on the replica-
symmetric solution q &

=q which is stable above the in-
stability line Tl(h). The bilinear terms o cr& in the ex-
ponent can then be decoupled in the usual manner by in-
troducing a Gaussian random variable x, thus factorizing
the trace into a product of n traces over independent re-
plicas. After the limit n ~0 has been performed the
average (A4) becomes

2—x /2

[(o;) ],„=f dx tanh [pJ(q+b)'~ x] .
&2~

(A5)

Returning to Eq. (A2), we find, after evaluating the
sum over I and the integral over t,

—x /2
W(p)= f dx —5(p —tanh[pJ(q+b, )' x]) .

&z~

5(f (x))=5(x —x, )/~ f'(x, )

where f '=df /dx and xo is the solution off (x)=0, lead-
ing to the result (31).

APPENDIX B

Here we present a brief derivation of the truncated
second moment M2' as given by Eq. (43). Introducing a
dimensionless parameter O, =I /2'„we first combine
Eqs. (32) and (34) to obtain

M~=20~1 dP8 P 1 —~ K (B1)

The remaining integration can be carried out after apply-
ing the standard relation

(A6) where
I

1 +x (co/co, )
Kz =— d (co/co, )

[(co/~) —g) +(0—g) ][(co/co, +g) +(II+g) ]
(B2)

with g and g defined in Eqs. (44) —(45). The integrand in Eq. (82) has four simple poles located at z& z =g+i (0—g) and

z3 4= —g+i(Q+g), where z =co/co&. Thus, it can be decomposed into a sum of partial fractions of the type

, c, /(z —z; ), where c; is the residue at z, , e.g. ,

c, =z, /(z, —z~ )(z, —z3 )(z, —z4),
etc. Recombining partial fractions into appropriate pairs, we find

1 2 p p 2 ~ f +~ g (r) +fig)+(0 g) (r) Qg) g (ri Qg)+(0+/) (g +Qg)
4~ —x (z —r)) +(0—g) (z+q) +(0+/)

+g(Q +g +g )
(z —q) +(0—g)

The last term in large parentheses is an odd function of z and its integral vanishes.
(B3) into Eq. (Bl), using the relation

(0 —
g )(0 +q )=Q (1 —p ),

and replacing z again by co/co„we arrive at Eq. (43).

+,", . (B3)
(z+g) +(0+/)

After inserting the remaining part of
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