
PHYSICAL REVIEW B VOLUME 43, NUMBER 3 15 JANUARY 1991-II

Reply to "Comment on 'Existence of Wannier-Stark localization' "
David Emin

Sandia National I aboratories, Albuquerque, New Mexico 87185

C. F. Hart
Department of Physics, Southern Illinois University, Carbondale, Illinois 62901

(Received 8 January 1990)

The argument of Emin and Hart is not that the staircase potential does not couple Bloch states of
different energy bands; it does. Rather, the net effect of such interband terms on Wannier-Stark lo-
calization is argued to vanish. A new proof of a relationship disputed by Page and Brown is
presented. The contradiction that Page and Brown claim results from this relationship is shown to
be an artifact of their use of an incomplete set of basis states.

The application of a spatially constant electric field has
two effects on the periodic potential of a carrier of charge
q in a one-dimensional periodic solid. First, the electric
field equivalently alters the shape of each potential well.
Second, the electric field shifts the energies of the poten-
tial wells of different primative cells relative to one anoth-
er. The first effect maintains the translational degeneracy
of the solid while the second does not. Thus the second
effect can give rise to (Wannier-Stark) localization. '

To take account of these two distinct effects, Emin and
Hart express the potential energy of the electric field

qEx as th—e sum of a (periodic) sawtooth function and a
(nonperiodic) staircase function, with both functions hav-
ing characteristic lengths equal to the fundamental lattice
constant a. By incorporating the periodic sawtooth com-
ponent into the periodic potential, Emin and Hart reduce
the problem of Wannier-Stark localization to a study of
the effect of the staircase potential on the eigenstates of
an electron in a periodic (albeit, electric-field-dependent)
potential. An electronic eigenstate is then expressed as a
superposition of electric-field-dependent Bloch states
E;n, k) =exp(ikx)u„k(E, x) of energy E(E;n, k) arising

from the periodic potential composed of the solid's
periodic potential plus the electric-field-dependent
sawtooth periodic potential. Here n is the band index
and k is the wave vector. In terms of the expansion
coefficients A; (E;n, k) the ith electronic eigenstate, with
energy E;, is the solution of

[ (sEn, k)
—E; ] A; (E;n, k )

=(qEa) g (E;n, k~S(x, a)~E;n', k') A;(E;n', k'),

where S(x,a) is the staircase function with step length
equal to the lattice constant a and step height equal to
unity. In the single-band approximation, interband ma-
trix elements (nWn') are discarded on the right-hand
side of Eq. (1). ' Then the solution of Eq. (1) yields the
Wannier-Stark eigenstates. ' More generally, Emin and
Hart argue that the interband terms make no net contri-
bution to the right-hand side of Eq. (1). Here another ar-
gument is presented to show that the interband terms of
Eq. (1) vanish.

The matrix elements of the staircase potential between
Bloch states may be readily evaluated:

(n, k ~S(x,a) ~n', k')
N —1

a g m exp[i(k' —k)ma] I(n, k;n', k'),
m=0

where

I(n, k;n', k')= I dx exp[i(k' —k)x]u„*„(x)u„k(x) .

(3)

rhe prefactor of I(n, k;n', k') in Eq. (2) is an oscillatory
function of k' —k that diverges as 1/(k' —k) when
(k' —k)~0. However, the k and k' dependences of the
matrix elements of the staircase potential arise from
I(n, k;n', k') as well as from the m summation. Indeed,
it is I(n, k;n', k') that involves Bloch states and the
coherence effects that provide for the orthogonality of
Bloch states of different bands: I(n, k;n', k)=5„„/X.
Thus, to proceed, the right-hand side of Eq. (2) must be
manipulated to a more useful form:

X —1

( kn~S( a)x~n', k') = —it) g exp[i(k' —k)ma]
m=0

t)k' I(n, k; n', k')

c) ( n, k
~
n ', k ' ) )I( nt, k; n ', k '

)
k, k' (4)
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where it has been noted that
N —1

exp[i(k' —k)ma ]I(n, k;n', k')=(n, k ~n', k')
m=0

and

N —1

g exp[i(k' —k)ma]=N6k k
m=0

Using Eq. (4), Eq. (1) becomes

[E(E;n,k) —E, ]A, (E;n, k)=i(qEa) g
n', k'

B( nk ~n', k') BI(n, k;n', k')
gkr k, k'

gkg i

BI( nk;n', k')
=i(qEa) g ( n, k~ n', k'), +N5k k

' ', ' A;(E;n', k')
n', k'

BA;(E;n, k)=i (qEa ) + QN5
n', k'

BI(n, k;n', k')
A (E.

aI i

where the orthonormality of Bloch functions has been
noted, (n, k~n', k') =5„„.5k k. .

In the absence of an interband contribution, n'Wn, to
the right-hand side of Eq. (7), the solutions of Eq. (7) are
Wannier-Stark states. ' The first term in the large
parentheses on the right-hand side of Eq. (7) involves a
derivative with respect to k, BA, (E;n, k)/Bk. This
feature indicates that this term is the net contribution
from values of k' that are not equal to k but are centered
at k. Thus, while the first term in the large parentheses

after the first equality of Eq. (7) links terms of different
bands, the net contribution, given by the first term in the
large parentheses after the final equality of Eq. (7), does
not.

To establish Wannier-Stark localization, it is now
shown that the second term on the right-hand side of Eq.
(7) vanishes for n Wn since then }I~(n, k; n ', k') /
r)k'~k k =0. To prove that BI(n, k;n', k')I dk'~k,
vanishes for nWn, the equivalence of the u„k(x) in each
primitive cell is exploited to write

BI(n, ;k'n, k') ~ „ ir)
iN ' ', ' =N dx u„*k(x) —x u„k(x)

k'=k

(p+1)a E C3

dx u„*„(x) „—(x —pa ) u„„(x)
pa

N —1

dx u„*„(x) —x u„k(x)+a5„„+
p=0

where it has been noted that the orthogonality of Bloch
states ensures that

J dx u„*„(x)u„„(x)=5„„/N .
pa

The integral of the final equality of Eq. (8) depends on
the arbitrary phase factors of the cellular component of a
Bloch function, the P„(k)'s, through the integral's pro-
portionality to e pxiI[P„,(k) —P„(k)]I. In addition, the
arbitrary phase factor contributes —N '~}P„(k)/Bk to
the final integral of Eq. (8) when n'=n Because of t.his
arbitrariness, the integral of Eq. (8) is generally nonzero

when n ' =n. Since Wannier-Stark localization only
hinges on the vanishing of the integral of Eq. (8) when
n'Wn, the presence of the arbitrary phase factors may be
ignored.

To evaluate the integral of Eq. (8), the cellular func-
tions are represented as a superposition of Wannier func-
tions of site index m of the nth band, a„(x —am):

N —1

u„. k(x) =N ' g exp[ik(am —x ) ]a„,(x —am ) . (10)
m=0

With this representation
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ia „,N ' Sa—x u, (x)=N ~ g —x exp[ik(am —x)]a„(x—am)
m=0
N —1

(
—am)exp[ik(am —x)]a„(x—am) .

m=0

Thus, with Eqs. (10) and (11),

N —1 N —1 Na
dx u„I,(x) —x u„&(x)=N ' g g (

—am)exp[ika(m —m')] f dx a„*(x am— ')a„(x —am)

N —1 N —1

=N ' g g ( —am)exp[ika(m —m')]5„„5
rn =0 m'=0

N —1= —a6„„+m/N,
m=0

(12)

where the orthogonality of the Wannier functions has
been utilized. Combining Eqs. (8) and (12), for nWn,
yields

.N r)I(n, k;n', k')
ak k'=k

a lB=N dx u„*q(x) —x u„. k(x)=0 .
7 Ok

(13)

Thus the second term on the right-hand side of Eq. (7)
vanishes for n Wn and Wannier-Stark localization is es-
tablished. In essence our discussion only restates the
theorems that ir)/dk operating on u„k(x) gives x minus
the cellular location, while —i8/Bk operating on
exp(ikx ) gives x and —iB/Bk operating on a Bloch state
gives the cellular location.

Here, and in the crystal momentum representation,
derivatives are written with respect to k and k'. Howev-
er, k and k' represent discrete points with the minimum
separation between successive values being 2~/Na. As a
result, one cannot always carry out the limiting
procedure associated with differentiation, 8f ( k ) /Bk
=lim~k 0 I [f(k+5,k) —f(k)]/b, k], even though b.k
bcomes arbitrarily small as N ~ ~ . For example, if
f(k) =exp(ikx), one has that [f(k +6 k ) f(k)]/—
Ak =f(k)[exp(ibkx) —I]/hk is only equal to ixf (k) if
xAk (&1. This requirement is not always met because x
is unbounded and can reach a value approximately equal
to Na for which xAk is not much less than 1. Since the
Wannier-Stark states are localized this difhculty should
not arise here.

Page and Brown offer two criticisms of the proof of
Emin and Hart. First, Page and Brown incorrectly
claim that Ref. 4 states that "Bloch states of different
field-dependent energy bands are not coupled by the step-
like component of the electric-field potential. " In partic-
ular, they argue that the right-hand side of Eq. (2) of this
paper does not vanish for k'Wk and nWn'. However,
this is not the claim of Ref. 4 or the present paper. Rath-
er, the argument of Ref. 4 and of this paper [indicated
here in Eq. (7)] is that the net interband contribution of

the first term on the right-hand side of Eq. (7) vanishes
upon summing over O'. In effect, the right-hand side of
Eq. (2) is [86(k' —k )/Bk']lln, k; n ', k'), where
I(n, k; n ', k ) ~ 5„„,. The right-hand side of Eq. (2) does
not vanish for O'Wk. However, when the right-hand side
of Eq. (2) is a factor in an integral over k', the surviving
contribution to the integral is restricted to the immediate
vicinity of k'=k. This is the meaning of the derivative of
a 6 function.

Second, Page and Brown question the correctness of
Eq. (13). In particular, they obtain a formula for
Bg„„(k)/Bk [where g~„(k)=f odx ~u„k(x) x] that van-

ishes when Eq. (13) is fulfilled. Since Bg„„(k)/Bk is gen-
erally nonzero, they challenge Eq. (13). Here another
proof of Eq. (13) is offered [cf. Eqs. (8)—(13)]. In addition,
g„„(k) is calculated in the Appendix of this paper. It is
confirmed that g„„(k) is generally k dependent. In the
Appendix a method similar to that of Page and Brown is
used to obtain formulas for Bg„„(k)/Bk, Eqs. (A7) and
(A13), that differ from the result of Page and Brown.
Furthermore, the formulas for Bg„,(k)/Bk obtained in
the Appendix of this paper are shown, via Eq. (A15), to
agree with explicit differentiation of g„,(k) with respect
to k. Finally, the Page-Brown finding that
Bg„„(k)/Bk =0 is shown [below Eq. (A13)] to arise from
using only Bloch functions of a single wave vector (ex-
cluding O'Wk ) as a basis to describe functions that mix
states of different wave vector [see Eq. (B3) of Ref. (7)].
Thus the general relationship, Eq. (13), does not imply
that Bg„„(k)/Bk =0. The contradiction that Page and
Brown claim is only an artifact of their use of an incom-
plete set of basis states.

This work was supported by the United States Depart-
ment of Energy, Contract No. DE-AC04-76DP00789.

APPENDIX: EVAI.UATION OF (g'„„(k)/Qk

To obtain g„,(k), note that the periodicity of u„k(x)
implies that
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Ng„„(k)=N f dx lu„„(x)l x

f dx Iu„„(x)l (x —pa)
pa

= f dxlg„k(x)l x (N——1)a/2 .

In the Wannier representation

(A 1)

and the n'=n matrix element of x between Wannier
states, with y =x —m'a, is

f dx a„*(x—m'a )a„(x —ma )x

=f dy a„*(y)a„(y+m'a —ma )y+(ma)5
N —1

f„* k (x)g„k(x)=N 'g g exp[ia(km —k'm')]
m' m=O

= &olx Im —m'&+(ma)5 (A3)

Xa„'(x —m'a )a„(x—ma)
since & Ol m —m '

&
=5 . Combining Eqs. (A 1)—(A3)

and defining h =I—m ':

N —1 (N —m —1)
N(„„(k)=N

m=0
exp(ikah)[&olx Ih &+(ma)5& 0] (N ——1)a /2

h= —m

N —1 (N —m —1)
exp(ikah)&Olxlh &

m=0 h= —m

N —1= &Olxlo&+ g [(N —h)/N][exp(ikah)&olxlh &+exp( ikah—)&Olxl —h &]
$2 =1
N —1

=&Olxlo&+ g [(N —h)/N][exp(ikah)&olxlh &+c.c. ] .

In obtaining the second equality of Eq. (A4), the summa-
tion involving 6h 0 was performed and two equal and op-
positely signed contributions were canceled. The third
equality is obtained by combining terms of the double
summation that have the same value of h. The final
equality results from the observation, proved with the
procedure of Eq. (A3), that & olx I

—h &
=

& h Iolo &

=&Olxlh &*. Thus g„„(k) is generally dependent on k.
The neglect of the effect of the edges of the periodic po-
tential, appropriate in treating the potential as truly
periodic, is accomplished by replacing (N —h ) /N by uni-
ty in Eq. (A4).

The derivative of g„„(k) with respect to k may be ex-
pressed in terms of matrix elements of the operators re-
lated to electronic position between Bloch states. To be-
gin, Eq. (Al) is used to write

ag„„(k) =a f 'dxl@„,.( )I'
0

where

X(n, k;n', k')= f dx q„*,(x)xq

and

(A8)

ag„k(x)M(~', k', n, k )= i f d—x tij„*, „,(x)
0

(A9)

X(n, k;n', k')=M(n, k;n', k')+P(n, k;n', k') (Alo)

and

M(n', k'; kn)

N —1

=aN 'g g m exp[ia(km k'm')]5 5„—„

Here X(n, k;n', k') and M(n', k';n, k) are matrix ele-
ments of the operators associated with the carrier's posi-
tion and cellular location, respectively. Using Eqs. (A2)
and (A3), the expression for the matrix elements of x be-
tween Wannier states, in Eqs. (A8) and (A9), yields

= f dx x g„*k(x) ' +c.c. . (A5)
0

With the completeness relation,

m' m=O

N —1

=aN ' g m exp[ia(k —k')m)5„, „ (A 1 1)

5(x —y)= X 4. , k(x)4.*,k(y»
n', k'

and its complex conjugate, we have

(A6) where

N —1

P(n, k;n', k')=N 'g g exp[ia(k'm —km')]
m' m=O

ag„„(k)
Bk

=i g [X(n, k;n', k')M(n', k';n, k) —c.c.],
n', k'

(A7)

x&olxlm —m'& . (A12)

P(n, k;n', k') is a matrix element of the oper-
ator associated with electronic polarization:
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P(n, k;n, k)=X/„„(k) of Eq. (A4). Furthermore, since
M(n, k;n', k')=M"(n', k', n, k) and M(n, k;n', k') van-
ishes when nWn', Eq. (A7) may be transformed [using
Eq. (A10)] to

t)g„„(k) =X &k, i
k'

=X &k, k
k'

t)P(n, k;n, k') t)P*(n, k;n, k')
ak

t)P(n, k;n, k') BP(n, k';n, k)
ak

Bg„„(k)
X ' =i+ [P(n, k;n, k')M(n, k';n, k) —c.c. ] .

Bk since P*(n, k;n, k')=P(n, k', n, k) and

X —1

X ' g exp[ia(k —k')m]=5k. k .

(A15)

(A16)

X —1

M( n, k', n, k)=i t)X ' g exp[ia(k —k')m]
m=0

Bk' .

(A14)

Then, inserting Eq. (A14) into Eq. (A13) and integrating
by parts yields

Since P(n, k;n, k) and M(n, k;n, k) are both real for
k'=k, the k'=k term of the summation of Eq. (A13)
vanishes. Since Page and Brown ignore the O'Wk terms
[cf. Eqs. (83), (85), (86), and (88) of Ref. 7], they find that
t)g„„(k)/t)k =0. However, it is the O'Wk terms that pro-
vide the contribution to the right-hand side of Eq. (A13).

To determine the contribution of the O'Wk terms to
t)g„„(k)/Bk, Eq. (Al 1) is first rewritten as

Because P(n, k;n, k)=X/„„(k) [given by Eq. (A4)], the
right-hand side of the last equality of Eq. (A15) confirms
that Xt)g„„(k)/t)k is simply the derivative of the right-
hand side of Eq. (A4) with respect to k.

In summary, in this appendix it has first been shown
that g„„(k) is generally a function of k, given by Eq.
(A4). Second, it has been confirmed that expressing
Bg„„(k) /t) k in terms of matrix elements of x and
—it)/Bk between Bloch states, Eqs. (A8) and (A9), yields
the same result for tip„„(k)/t)k as is obtained by explicit
differentiation of g„„(k),given by Eq. (A4), with respect
to k. Finally, it is shown that the Page-Brown result that
t)g„„(k ) /tik =0 follows from the suppression of the
O'Wk states from the summation involved in the com-
pleteness relation, Eq. (A6) [for comparison, see Eq. (83)
of Ref. 7]. It is not surprising that the O'Wk terms deter-
mine t)g„„(k)/t)k, since the act of dilferentiation involves
states of difterent k: t)f(k)/t)k =limk k [f(k')
—f(k)]/(k' —k).
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