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Effect of ambipolar diffusion on the hot-carrier relaxation in semiconductors
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The effect of the change in the carrier density due to ambipolar diffusion on the cooling of hot
plasmas in semiconductors is investigated. It is shown that the diffusion contributes to a warm-up
of the plasma.

In experiments for generation, by photoexcitation, of
electron-hole plasmas in semiconductors, electron-hole
pairs are produced with an excess of kinetic energy equal
to the difference between the photon and the band-gap
energy. Further, for the plasma state to be produced, the
carrier concentration needs to be larger than —10'
cm, so that the system is on the metallic side of the
Mott transition and can be regarded as a two-component
Fermi liquid. The investigation of the relaxation of these
hot carriers is of scientific relevance in the study of the
fundamental process in condensed matter, as well as of
technological interest for the development of very fast
operational devices.

It is acknowledged that, generally, the relaxation pro-
cess can be broken down into three stages. ' In the first
stage, the energy and moment are redistributed among
carriers owing to carrier-carrier scattering; as a result,
the electrons and holes attain thermal distributions
characterized by an effective temperature T, greater than
the lattice temperature TI,' simultaneously, in a very rap-
id process the carriers lose most of their excess energy
due to optical-phonon emission. In the second stage, T,
decreases until optical phonons are no longer eKcient at
removing the excess energy. Finally, in the third stage
the cooling of both carriers and optical phonons to the
lattice temperature occurs through acoustic-phonon
emission. Under the physical conditions relevant to our
study there exists experimental evidence of a process that
significantly reduces the plasma density; in this experi-
ment, the time-resolved luminescence of GaAs in air at
room temperature, under laser surface excitation (wave-
length =0.53 pm, duration 30 ps) is used to investigate
the plasma energy and density relaxation. It was ob-
served that the plasma density increases until the end of
excitation pulse, with energy density equal to 10
mJcm, up to =1.2X10'9 cm, then falls down by
one order of magnitude in the following 100 ps (cf. Fig. 3
in Ref. 2). The aim of this work is to investigate the
effect of this variation of the concentration in the plasma
behavior.

Let us consider a direct-band-gap polar semiconductor,
illuminated by an intense monochromatic laser beam, in
which direct absorption of one photon occurs, producing
transitions from the valence band to the conduction
band. We assume that the conditions are such that a

two-component Fermi liquid of electrons and holes is
formed and that this photoexcited plasma releases its ex-
cess energy through the following relaxation channels. (i)
Radiative recombination (we consider spontaneous emis-
sion only). (ii) Carrier —LO-phonon scattering with polar
interaction (Frohlich) and with deformation-potential in-
teraction. (iii) Hole —TO-phonon scattering with
deformation-potential interaction. (iv) Carrier —acoustic-
phonon scattering with deformation-potential interac-
tion. To take into account the variation of the concentra-
tion, we assume that the photoinjected carriers can
depart from the active region via ambipolar diffusion.
The semiconductor sample is taken as an open system in
contact with external ideal reservoirs, composed of the
laser and a thermostat. The LO and TO phonons are tak-
en as free to depart from equilibrium, and we consider for
them, in addition to the interaction with the carriers, the
anharmonic interaction described in a relaxation-time ap-
proximation. The acoustic phonons are supposed to con-
stantly remain in equilibrium with the thermostat. To
study this system we resort to the method developed by
Zubarev that allows the investigation of nonequilibrium
situations. The derivation of the nonlinear generalized
transport equations that govern the irreversible evolution
of the system has been given in a previous paper, and
here we will proceed directly to use those equations. Fol-
lowing Ref. 4, we must choose a set of dynamical quanti-
ties IP~, P2, . . . , P„ I whose nonequilibrium mean values
in Zubarev's ensemble are the macro variables
IQ&, Qz, . . . , Q„I that are observed and/or controlled in
the experiment. In the situations we are going to consid-
er, we choose for quantities Q the following: E, (t), the
energy of the carriers: n (t) =n, (t) =n&(t), the concentra-
tions of electrons and holes (these are equal because pro-
duction and annihilation occur in pairs): v (q, , t) and
v (q, , t), the distribution functions for longitudinal and
transverse optical phonons, respectively.

The extensive macrovariable Q are thermodynamical-
ly conjugated to one set of intensive variables

I F, , F2, . . . , F„I in the sense that

aI J

where P is the logarithm of the nonequilibrium partition
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function, P=lnZ(F&, . . . , F, ). In our case the variables
F are interpreted as F, =/3, (t)=1/ksT, (r), the recipro
cal effective carrier temperature, F& = —

/3, (&)p, (&);)"e

F = —
/3, (t)ph(t), where /2, (t) and ph(t) are the quasi-

chemical potentials of electrons and of holes, respective-
ly; and FLQ(q, , t) and Fro(q, , t) are the intensive variables
related to the LO- and TO-phonon populations, respec-
tively.

These variables satisfy the equations

H is the system Hamiltonian,

fz(t)=(expIP(t)IEf —p (t)]I+I) ', a=e or h,
are the Fermi-Dirac functions, and

g2g 2 p2g 2

~k EG+ ~ k2' 2ffl h

In the case under consideration the energy and carrier
concentration rates of change are given by

g (P, ;P, ~r).F, (r)= g J,' '(r),
m=0

vr(q, , r)= g J,' '(r),
m=0

dE
dt

n, =rih=n =

dE
dt

dn
dt

dE

dn dn

dt

a
(Sa)

(sb)

where (P~;P~ ~t) are nonequilibrium correlation functions
and J'~ '~ are collision operators of order m in the interac-
tion strengths. Equations (2) are the nonlinear general-
ized transport equations that govern the irreversible evo-
lution of the system; y =LO or TO.

Let us now investigate how the change in the carrier
concentration, owing to ambipolar diffusion, can
inhuence the relaxation process. Equations (2a), explicit-
ly written, are

Ci&, C2(/3, /, —+P, /3, ) C3(/3,A —+/ ~/3, )

T, =k T

C2 C,

p2 p2

where L denotes the interaction with the laser, f with
LO, TO, and acoustic phonons; R expresses the radiative
recombination, and a the ambipolar diffusion.

We can derive, from (3), the carrier effective tempera-
ture rate

g JI '(t)= E—
m=0

C2/3, —C~(p, p, , +p, p, )= g J2 '(t)= n, ,
—

m=0

CP, C~(/3, / ~—+/ ~/3, )= X J3 '(&)= —
nh

m =0

(3b)

(3c)

dE
dt a

X &~fk+ X &kf k
k k

Using Eqs. (4) it can be shown that the denominator is al-
ways positive. To deal with the ambipolar diffusion we
introduce the relaxation time ~, and write

where
a 7 a

gf~= gfk .
k k

~~ —(H H~')= XEVfk(1 —f')+ ge"f'(I —f') Looking for the effect of the ambipolar diffusion on the
rate of change of T, we set

C =(H;n, ~r)= g 8„'f„'(1 f„)—
k

(4a)

(4b)

and

E= dE
dt a

~3=(H n~ ~') = 2 E~f~(1 fk»—
k

C&=(n, ;n, ~t) = g f„'(1 f„'), —
k

C5=(n~ nh~&)= Xf~(i —fk»
k

(4d)

(4e)

dn
ri =

dt

in Eq. (6) to verify, after some algebraic manipulation and
remembering that fp is a monotonic decreasing function
of the energy, that the quantity

E—
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is always non-negative.
Since in Eq. (6), as noted, the denominator is always

positive, and Eq. (8) tells us that the numerator is also
positive, we find that

IO

Therefore we conclude that the ambipolar diffusion term
contributes to a warm-up of the plasma.

In order to evaluate the effect quantitatively let us con-
sider the experimental situation described in Ref. 2: a
CzaAs sample, in contact with a heat bath at room tem-
perature, is illuminated by a laser pulse with exciting en-
ergy density equal to 10 mJ cm, wavelength -0.53 pm,
and a duration of 30 ps.

In our calculation we have used a laser pulse of rec-
tangular time profile. To describe the anharmonic decay
of different LO- and TO-phonon mode populations
through intraband scattering toward their internal
thermalization, we introduce "single-mode" relaxation
times. %'e take these times to be constant and, guided by
experimental observation, we choose for their values 7
ps. The ambipolar diffusion time is written as
~, =L /D, where L is the diffusion length and D the am-
bipolar diffusion coefficient. The calculation of these
figures, in nonequilibrium situations, is a dificult task;
thus, instead of calculating their values, we take L equal
to the inverse of the absorption coefBcient, 10 cm, and
D =2X10 ' cm ps ', so that r, =50 ps. (It is in good
agreement with experiment. ) The initial time is given
by the condition n (t, ) —1 X 10' cm, i.e., the system is
on the metallic side of the Mott transition. In the present
case t,. is of the order of femtoseconds and we take
T(t, )=(ficuL EG)I3kz =348—8 K, and, for the phonon
populations we take the equilibrium values.
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FIG. 2. Carrier-density kinetics calculated with an ambipolar
diffusion relaxation-time constant set equal to 50 ps. Dots are
experimental data from Ref. 2.

Finally, the solution of Eqs. (2) up to terms of second
order in the interactions is obtained resorting to numeri-
cal methods. The results are shown in Figs. 1 and 2. Fig-
ure 1 shows the evolution of the effective temperature of
carriers with (solid line) and without (dashed line) the am-
bipolar diffusion term. Dots are experimental data from
Ref. 2. The significant effect of diffusion can be observed;
this result shows that ambipolar diffusion ought to be
taken into account in the study of the semiconductor
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FIG. 1. Evolution of the carrier effective temperature. Dots are experimental data from Ref. 2. The upper curve is calculated
with the e6'ect of the ambipolar diffusion taken into account; in the lower curve this effect is neglected. The arrow indicates the end
of the laser pulse.
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hot-carrier relaxation and that it helps to explain the
lower than expected effectivity observed in the cooling of
the carriers at high concentration levels. Figure 2 depicts
the plasma density kinetics. Dots are experimental data
from Ref. 2. The rate of change of concentration owing
to radiative recombination, in this stage of the process, is
negligible compared with the rate of change due to ambi-
polar diffusion, so the calculated result is one straight line
with a 50-ps slope. We note that the experimental relaxa-
tion time is not constant; it is smaller than 50 ps at the
onset of the process and larger than 50 ps later on. This
shows that with a more realistic value for ~„ i.e., if we
take into account its time dependence, a better agreement
with expeimental values, in Fig. 1, should be obtained.

In conclusion, (i) it has been shown that the effect of
the ambipolar diffusion term on the carrier temperature
is to increase it and (ii) the significance of this term, in the
study of the relaxation of photoexcited hot carriers in
semiconductors, to explain the unexpectedly slow cooling
of the hot-carrier distribution, is pointed out.
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