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The frequencies of anharmonic local modes in one-, two-, and three-dimensional lattices have
been obtained analytically by combining the rotating-wave approximation with some of the formal-
ism used previously to characterize defect modes in harmonic crystals. For weak anharrnonicity
these modes become delocalized, while they take on the vibrational pattern of a small molecule
when the anharrnonicity becomes large. The first-order corrections to the rotating-wave approxi-
mation are found to be small for any anharmonicity parameter, verifying that this approximate
method of analysis can be used to separate the equations of motion. This identification of the
weak-anharmonicity limit permits us for the first time to address the question of the existence of
anharmonic local modes in real crystals. With anharmonic parameters similar to those found in
alkali-metal halide crystals, the energy needed to produce these modes in all three dimensions is es-
timated. We find that thermal motion alone does not provide enough amplitude to support these
modes in a lattice with the anharmonicity of pure LiF. On the other hand, at some defect sites the

requirements could be less severe, and anharmonic modes might be generated by a nonthermal pro-
cess such as an optical excitation of the F center, which introduces an energy equivalent of -40-
Debye phonons into the lattice. The large anharmonicities found in solid He and near ferroelectric
systems should provide more friendly environments for these modes.

I. INTRODUCTION

The possibility of intrinsic localized modes in pure
anharmonic crystals for suKciently strong quartic anhar-
rnonicity' has been confirmed by numerical simulation
studies ' in one and two dimensions. In some ways the
results are reminiscent of the defect-induced local modes.
For example, simulations for a one-dimensional (1D) dia-
tomic anharmonic lattice show that intrinsic local modes
appear both in the gap between the optic and acoustic
plane-wave spectrum as well as above the optic branch,
similar to the spectrum generated by a point defect in a
harmonic diatomic lattice. Although the original
analytical study' focused on the odd-parity vibrational
mode, which in one dimension has essentially the ampli-
tude pattern of a simple triatomic molecule, both the
simulations ' and the recent analytical work by Page
have shown that an unusual even-parity mode with the
vibrational pattern of a diatomic molecule also exists. So
far all efforts have been directed at characterizing and un-
derstanding the large-anharmonicity regime.

Here we study analytically an experimentally relevant
problem: the inhuence of hard but small quartic anhar-
monicity on the vibrational spectrum of a monatomic lat-
tice with nearest-neighbor force constants. We find that
both odd and even localized modes are possible for all
values of the anharmonicity parameter, but the odd mode
is determined to be the fundamental intrinsic localized
excitation. %'ith a first-order correction to the rotating-
wave approximation, we also demonstrate that the fre-
quency of the odd mode at col as a function of the anhar-

monicity parameter is red-shifted by a few percent due to
the presence of a higher-frequency local mode at 3~I . In
all cases the amplitude at 3col is a small fraction of the
amplitude at coL so that the response from still-higher-
frequency components at 5cuL, etc. , can be ignored. Fi-
nally, we demonstrate that in larger dimensional lattices
it becomes increasingly dificult to produce an intrinsic
localized mode with realistic anharmonic parameters,
such as those for the alkali-metal halide crystals. For ex-
ample, with parameters appropriate to LiF, we find that,
within the framework of our model, sufficient thermal
motion does not exist to support these modes even near
the melting point; however, the vibrational amplitude in
the F-center excited state is found to be the right order of
magnitude to produce such modes in one and two dimen-
sions but is only marginal in three. The general con-
clusion is that solids with larger anharmonicity should be
examined to search for these new localized modes.

In the next section, general approximate analytical ex-
pressions are found for the odd and even local-mode fre-
quency and range in the lattice for one dimension and
then the results are extended to higher dimensions. The
section ends with a derivation of the small red shift for
the odd local mode produced by higher harmonics of the
local mode. In Sec. III the dependence of the square of
the local-mode frequency on anharmonicity parameter is
determined in all three dimensions: the dependence is
quadratic for small values and linear for large ones. Next
the connection between the size of the quartic potential
and existence of the modes is examined in some detail.
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Both thermal and nonthermal processes are considered.
The findings are summarized in Sec. IV.

II. DERIVATION OF LOCAL-MODE FREQUENCIES
An analogy has already been made between the eigen-

vectors of defect harmonic local modes and intrinsic
anharmonic local modes. ' To bring out the similarities
and differences in a direct manner, we demonstrate here
that the frequency of an intrinsic odd-symmetry anhar-
monic local mode can be obtained to a good approxima-
tion by combining the rotating-wave approximation to

linearize the nonlinear equations of motion and then ap-
ply essentially the same formalism that, in the past, has
been used to characterize defect modes in harmonic lat-
tices. We use a monatomic lattice (N atoms) with only
nearest-neighbor harmonic and anharmonic (quartic)
force constants that have equal transverse and longitudi-
nal components to identify, in the simplest manner, the
dependence of the local-mode frequency on anharmonici-
ty in one, two, and three dimensions. The resulting se-
parable potential energy for the three-dimensional system
is

o. 1, n, m

E2
linn I+1m n) +( Im n I m+1 n) +(ulm n Im n+1)

K4+ [(ul, m, n ul+1, m, n ) +(ul, m, n I m+1 n ) +(ul, m, n ul, m, n+1 )

Mco =2K2 g [1—cos(q a ) ] (2)

with real wave-vector components, q
When an anharmonic local mode exists, the full poten-

tial given by Eq. (1) must be employed. However, far
from the local-mode site, the excursion in that particular
mode is again small, so in this region of the crystal the
quartic term can be neglected when determining the
asymptotic properties of the solution. An inhomogene-
ous wave solution is characterized by a complex wave
vector with components

q* =q +iq' =(2j +1)~/a+iq'

where j is an integer and the sign of the second term on
the right is chosen so that the solution decays with in-
creasing distance from the local-mode center. The form
of the first term on the right comes from the requirement
that the inhomogeneous wave solution has a frequency
larger than the maximum plane-wave value

=4dK2/M, where d is the dimension of the lattice.
In general, new frequencies appear for complex wave vec-
tors, but the most confined modes, those localized in d di-
mensions in this cubic system (q„' =q'=q, '=q'), satisfy
the equation

where E2 and K4 are the harmonic and quartic potential
constants, respectively, and u&, identifies the a.th com-
ponent of the displacement at site (l, m, n).

The key idea that allows one to separate the coupled
harmonic problem into orthogonal homogeneous and in-
homogeneous wave solutions makes use of the very
different amplitudes of excursion in each kind of mode.
For a plane-wave mode the excursion of each atom is—O(X " ), with % a large number, whereas the excur-
sion of an atom for a localized mode is —O(1), with
X-1. In the former case the homogeneous plane-wave
solutions can be obtained by ignoring the K4 potential
term in Eq. (1) so that the dispersion relation simplifies to
the standard one,

2

=
—,
' [1+cosh(q'a ) ]

independent of dimension. We assume that far from the
mode center all anharmonic localized modes must obey
this expression. Because of the inversion symmetry of
the problem, the modes can be classified, in the electric-
dipole sense, as either odd (ul „=u
uppp=cz) ore en(ul „=—u I „,uppp=O).

A. Odd-symmetry local mode in one dimension

To identify q in Eq. (4) for the one-dimensional case,
we must introduce the equations of motion for the central
atom and its neighbors. Although we are only interested
in presenting enough constraints to specify the mode,
namely the n =0 and n =1 equations of motion, there is
some value in temporarily retaining the index n. The ac-
celeration equation becomes

un
M = —Kp(2u„—u„1—u„+1)

K~[(u„—u„,—) +(u„—u„+, ) j . (5)

set co =4K2/M and the lattice constant a = 1 to obtain
2

COO

k. = -.'(2k. —k. -1—k. +»
m

3%4
kn —1

)'+ (kn —k +1 )'
nj

2

For the conditions gp
=a, g„=g „,g„=a 2 ( —1)"e

for n )0, and with the anharmonicity parameter
A=K4a /K2, Eq. (7) becomes

To eliminate the time dependence, we introduce the
rotating-wave approximation

u„=g„cos(topt );
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8=—'(1+ Ae ~')+ (1+Ae q ) (8)

for the central atom (n =0) and
2

COp

Ae ~ = —,'(2Ae ~ +1+Ae ~ )

+ [(Ae ~+1)
16

+A e ~(1+e ~) ] (9)

for the nearest neighbor (n =1). Note that Ae i is the
amplitude of the nearest-neighbor atom with respect to
the center atom in this odd mode, and the amplitude a of
the center atom is defined by the particular excitation ex-
periment. We anticipate that this grafting together of the
close-in eigenvector of the anharmonic localized mode
with the farther out inhomogeneous wave appropriate to
a harmonic localized mode should provide a good
description both for strong and weak anharmonicity but
would be a less valid approximation for intermediate
values.

The three equations can be simplified by introducing
the definitions

COp
2

4
=—'(2+6, )+ (8+6 ) .

16
(14)

For the n =2 atom, the condition reduces to Eq. (13)
given above, since its nearest neighbors have the same
amplitude pattern. The far-field condition, Eq. (4) [or
(11)] remains unchanged for these modes. Again a dis-
cussion of the solution is deferred to Sec. III A.

adjacent sites. This even-symmetry mode has the dis-
placement pattern u„=u „where n & 0. The odd-
symmetry case (u„=u „) is uninteresting because there
is no relative displacement of the center two atoms. In
the strongly localized limit, the even mode corresponds
to the stretch-mode vibration of a diatomic molecule with
the next neighbors also having some small amplitude.
Here we find the necessary conditions for this type of
even mode, the analog of a force constant defect mode. '

Following the notation used in the preceding section,
the atom amplitudes of the even mode are labeled g+„,
where n )0, and the displacement pattern satisfies

With pi=a and g„=aA (
—1)" 'e

for n ) 1, the condition for the n = 1 atom becomes

v=e q and 5—1=Ae

Equation (4) then becomes
'2

Ct)p (1+a.)
4v

and Eq. (9) becomes

COp

b, +(b, —1)(1+~)1

4(h —1

Eq. (8) becomes
'2

p 6 3AA2'+4

(10)

(12)

C. Add and even modes in higher dimensions

Because of the simplicity of the potential given by Eq.
(1), higher-dimensional cases can be treated in the same
way as for the one-dimensional case, but with the one
added feature that more neighbors must be counted in
the mode. As we shall demonstrate in Sec. III 8, the in-
creased number of neighbors with increased dimension
plays an important role in defining the minimum anhar-
monicity value consistent with anharmonic local-mode
production.

For sma11 values of the anharrnonicity parameter A,
approximate analytic expressions can be found for the
local-mode frequency for both the odd- and even-mode
cases. We summarize the results below. Let d identify
the dimension of the lattice. Then for the odd-mode case

+ [b, +(5—1) (1+i') ]

2

=1+ 9(1+2d) A

[(2d —2)(&2—1)+1]

Hence for a given A, Eqs. (11)—(13) can be solved simul-
taneously for a, 6, and (coo/co ) . A complete discussion
of this solution is deferred to Sec. III A.

B. Even local mode in one dimension

An analysis similar to that given above can be carried
out for the even-mode case where u„=—u „; up =0
and although solutions are found, computer simulations'
show that such even modes are in fact unstable. This
even mode breaks up into pairs of odd modes that are
then repelled from each other. " These modes will not be
considered here.

Earlier simulations and analytical work have demon-
strated the stability of another type of localized vibration
which is symmetric about the point halfway between two

TABLE I. Local-mode parameters in the weak-
anharmonicity limit. For the odd mode ~g, /go~ =b —1= Ae
which is called NN here, while for the even mode this quantity
is equal to ~gz/g~~. The local-mode frequency dependence for
small A is {coo/co ) =1+{CA) .

Symmetry

ocld
Ocld

odd
even
even
even

Dimension NN

1-6A
1-6A
1-6A

1-12A
1-24A/3
1-36A/5

9
8.20
7.91

12
8.75
8.13

and the nearest-neighbor amplitude relative to the ampli-
tude of the central atom, ~g, /go~ =1—6A, independent of
dimension. For the even mode we find
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Symmetry Dimension NN Slope

TABLE II. Local-mode parameters in the strong-
anharinonicity limit. For the odd mode ~g, /go~ =6—1= Ae
which is called NN here, while for the even mode this quantity
is equal to ~(2/g&~. The limiting slope =(coo/co )'/A. As
d~ ~, all slopes ~0.375.

2d(b —1)b, =b +(2d —1)(A —1) (18)

The solution is inserted into Eq. (12) to obtain a linear re-
lation between (coo/ro ) and A. For the even mode
where ~$2/g, ~

=(b —1), the corresponding equation for
the relative displacement is

Qdd

Qdd

odd
even
even
even

0.520
0.256
0.169
0.166
0.114
0.090

1.317
0.744
0.599
1.797
1.139
0.904

(6—1)[8+(2d —1)b, ]=6, +(2d —1)(b,—1)3,

which together with
t' 2

I2+(2d —1)5+A[8+(2d —1)b, ]]
1

4d

(19)

'2
COO 9A

(&2—1)
(17)

with the relative amplitude in both the odd and even
modes becoming the same, namely 1 —6A. The appropri-
ate numerical coefficient for one, two, and three dimen-
sions are given in Table I.

For the large A limit the analytic expression for rela-
tive displacement of the nearest neighbor (b, —1) of the
odd mode in dimension d is

144d A

(2d —1) [(2d —2)(&2—1)+1]

and the relative amplitude ~gz/gi ~

= 1 —(12Ad )/(2d —1).
Note that as d~ ~, Eqs. (15) and (16) become degen-
erate, reducing to

defines the local-mode frequency dependence on the
anharmonicity parameter. The relative amplitude in
each mode and the limiting slopes for one, two, and three
dimensions are presented in Table II.

D. Correction to the rotating-wave approximation

u„=g„(1 P)c so( or, t)+g—„Pc o(s3 oc, t) (21)

using an obvious notation. Substitution of Eq. (21) into
the equation of motion yields

In developing the local-mode solution, it was assumed
above that the system only responded at the fundamental
driving frequency. Because of the quartic potential,
response at 3', 5', etc. , should also be present, and we
investigate here the inhuence of the 3' term on the value
of the fundamental local-mode frequency. To do this, we
generalize the rotating-wave approximation for the dis-
placements to

[(1—p)cos(co, t )+9p cos(3', t ) ] = [(1—p)cos(co, t )+p cos(3', r )]f(b„,lr )

+[—,'(1 —2p)cos(co, t)+ —,'(1-+3p)cos(3', t))Ag(h, lr)+0(p, 5', , . . . ), (22)

where f (b, Ir) and g(b„a. ) depend on the site, dimen-
sionality, and the type of excitation being considered.
Matching coefficients and keeping terms to 0 (p ) gives

and

Ag (h, lr)

32f (b„,~)+25Ag(b„, ~)

2

=f(b„lr)

(23)

32f (b., a)+23Ag(6, 1~)

32f (b„,a.)+24Ag (b„,l~)

2
COO0», —1& —,', .
67)

(25)

Equation (23) restricts the range of p to 0(p( —,', while
the correction factor for A is between 1 and —,'4. Since
this factor is less than or equal to unity, co& will be less
than the value predicted without the third-harmonic
term. The relative difFerence between the squares of these
two frequencies lies in the range

t

This difFerence is small, so the higher-order terms in Eqs.
(21) and (22) can be ignored. For values of A((1, the
correction to Eq. (24) is negligible, and the single-
frequency rotating-wave approximation given by Eq. (6)
is quite accurate.

III. DISCUSSION

A. Mode behavior versus anharmonicity parameter

By solving Eqs. (11)—(13) numerically, we can deter-
mine how the local-mode frequency coo and the nearest-
neighbor amplitude 6—1 vary with the anharmonicity
parameter A for the one-dimensional case. The results
are shown in Fig. 1. Over most of the interval the solid
line shows that (coo/co ) ~ A while the dashed line indi-
cates that the nearest-neighbor amplitude is the same as
the central atom for small A, but approaches roughly half
its value for large A. In the small-A limit, the mode is
delocalized since neighbors have nearly the same ampli-
tude, while for large A the second neighbor has extremely
small amplitude so the triatomic molecule results with
the central atom having amplitude 1 and the two neigh-
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6.0 1,5

4.0 1.0

3

3
2.0 0.5

0.0
0.0 1.0 2.0

I

3.0
0.0

4.0

FIG. 1. Local-mode frequency and nearest-neighbor ampli-
tude vs anharmonicity parameter A for the odd-symmetry case.
For one, two, and three dimensions the solid curves give the cal-
culated frequencies and the dashed curves show the relative am-

plitudes.

bors oppositely directed with amplitude —
—,'. ' (See

Table II for the precise values. ) The results for two and
three dimensions are also shown in Fig. 1. To obtain a
given local-mode frequency, a larger anharmonicity pa-
rameter is required with increased dimension. Although

the nearest-neighbor amplitude is smaller in the higher-
dimensional cases, there are more neighbors, so for a
fixed A the mode becomes less localized as the dimension
increases.

The frequency and amplitude dependences on A of the
even mode are shown in Fig. 2. Here the relative ampli-
tude b, —l=~g~/(, ~=He ~. Inspection of this figure
shows that the results are qualitatively similar to those
for the odd mode presented in Fig. 1. A quantitative
dN'erence is that for a given A the even-mode frequency
is higher than the odd mode in all three cases, even
though this mode involves more neighbors than the odd
one.

This mode, which does not obey the same symmetry as
the odd mode, can be viewed as a vibrational exciton. It
can be constructed, approximately, by superimposing two
odd modes (described in the preceding section) with op-
posite phase on next-neighbor sites. The phase is the
analogue of charge. Odd modes with opposite phase at-
tract while those with the same phase on near-neighbor
sites repel each other. Presumably, this low-symmetry
mode must actually move in the lattice to restore the
point symmetry of the crystal.

In Sec. II D we found the local odd mode frequency coo

is corrected to a new lower-frequency value co& if the
third-harmonic response is taken into account in the
solution. In Fig. 3 we show the magnitude of the shift on
the odd mode solution by plotting both the corrected and
uncorrected positions in all three dimensions. As might
be expected, the correction term grows with increasing
anharmonicity parameter but it remains a small contribu-

6.0 1.5 6.0

5.0

E3
3

4.0 1.0
cv 40

E
3
3~3.0

2.0 0.5

2.0

0.0
0.0

I

1.0
I

2.0

3D
i

3.0
0.0

4.0
1.0

0.0 2.0 4.0

FIG. 2. Local-mode frequency and nearest-neighbor ampli-
tude vs anharmonicity parameter A for the vibrational exciton-
like mode. For one, two, and three dimensions the solid curves
give the calculated frequencies and the dashed curves show the
relative amplitudes.

FIG. 3. Local-mode frequency vs A as calculated by two
different rotating-wave approximations. The dashed curve fol-
lows from the single-frequency rotating-wave approximation
while the solid curve includes an additional contribution from
the third-harmonic term.
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tion over the entire parameter range of interest. This
figure confirms the idea that the simple rotating-wave ap-
proximation [Eq. (6)] is a valid method for identifying
anharmonic localized modes.

terms of the model parameters

N, tr= 1+2[(A~) +(Atc ) +(Atc ) + ]

2( Atc)

1 K
(28)

B. Connection between the size
of the quartic potential and mode existence

It would appear from the figures presented so far,
which show mode existence at small values of the anhar-
monicity parameter, that anharmonic local modes could
exist for arbitrarily small quartic anharmonicity, but we
show here that this is not the case. Although A may ap-
pear to be a natural variable in this problem, the difhculty
in using results presented as a function of A is that this
variable involves both the quartic anharmonicity and the
mode amplitude. As ~p —+co, Figs. 1 and 2 show that in
all dimensions the mode becomes delocalized. The in-
volvement of more atoms ensures that the mean-square
amplitude at each site is smaller. Our derivation has al-
ready used the fact that if the mean-square amplitude is
small enough, then only the harmonic part of the poten-
tial is important and a plane-wave spectrum results. So
far the physical constraint expressed here is missing from
the model.

To introduce the connection between the number of
atoms in the mode and the mean-square amplitude per
atom, we make use of the virial theorem for a harmonic
oscillator, namely, 2U =E, where U is the potential ener-
gy and E is the total energy of the mode under considera-
tion. ' Since we are only interested in the fundamental
connection between the number of particles in a mode
and the mean-square amplitude, anharmonicity is not ex-
plicitly considered here. For the one-dimensional case
this energy expression can be written as

ACOp ACOp

mcoo g tt„=mcooN, &a = coth +SAco
2 2kT

(26)

where X,z is defined by the first equality and, on the far
right, the first term accounts for the thermal energy and
the second term describes energy introduced into the
mode by some external means. These two terms are as-
sumed to add incoherently. This second term, for exam-
ple, could arise from the recoil energy of the nucleus in a
Mossbauer transition. It is written as a multiple S of the
zone-boundary phonon energy for convenience. Multi-
plying both sides of Eq. (26) by K4/IC2 and using the
definition A=K4cx /K2 gives another condition for the
existence of a local mode, namely,

The values of 3, tc, (coo/co ), N, tr can all be calculated
for any given value of A, hence E4/Ez can be found for
specified values of A, T, and S.

For two and three dimensions, a value of X,~ has been
estimated by summing over a finite number of crystal
directions, making sure that all atoms within seven lattice
spacings of the central atom are included. Although this
approximation is not valid as A —+0, it is still accurate
down to A=0. 02, the lower limit to the extent of A that
we considered here.

For the even-mode calculation the N, z can be related
to that for the odd mode cases. We find the following re-
lations:

N, z(even, 1)=N,s(odd, 1)+1 (for 1D),

N, z(even, 2) =N, s(odd, 2)+N, z(odd, 1), (for2D),

(29)

and

N, z(even, 3)=N, fr(odd, 3)+N, fr(odd, 2) (for 3D),
hence the even modes are always more delocalized than
the odd ones and the first anharmonic mode to be allowed
as a function of increasing K4/K2 will be an odd one.

To obtain some idea of the magnitude of K4/K2 avail-
able in solids for the production of anharmonic localized
modes, we apply alkali-metal halide parameters appropri-
ate to a diatomic face-centered-cubic lattice to our one
atom per unit cell, simple cubic lattice with nearest-
neighbor force constants. Admittedly, this is a zeroth-
order approximation and only qualitative conclusions can
be obtained. We now demonstrate that the model im-
provements one might imagine are irrelevant since the
values of K4/Kz are so small for alkali-metal halide crys-
tals compared to what is required to produce anharmonic
local modes that such refinements cannot make up the
difference. The first row of Table III gives theoretical
values of K4/K2 for different alkali-metal halide crystals
with the potential parameters taken from Table 12 of

TABLE III. Some theoretical and experimental parameters
for alkali-metal halide crystals.

—,
' coth

Or) cop

2T corn

Parameter Lip

5.50
730
41

2.42
321
42

0.71
231

31

NaC1 KC1 KBr

0.95
173
51

0.09
131
54

+S
COp

(27)

where OD =A~ /kz.
To estimate X,z, the number of atoms with mean-

square amplitude a in one dimension, we note that in

'Reference 14.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,

Rinehart and Winston, New York, 1976), p. 549.
'B. Henderson and Cr. F. Imbush, Optical Spectroscopy of Inor
ganic Solids (Clarendon, Qxford, 1989), p. 323.
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provide the proper environment. It has already been
recognized that some ferroelectric materials show glass-
like thermal properties at low temperatures' and a linear
term in the specific heat of solid helium observed in early
measurements is still unexplained. A recent model indi-
cates that under the proper conditions diffusing localized
modes can produce such glasslike thermal properties. '

IV. SUMMARY

In this paper we have shown that when the nearest-
neighbor potentials include hard quartic anharmonicity,
localized modes can be generated in a perfect monatomic
lattice in any dimension for any anharmonicity parameter
A. The character of these modes undergoes a smooth
evolution from a homogeneous plane-wave state when
A=O to an inhomogeneous wave that has the vibrational
pattern of a small molecule for large A. The local sym-
metry around a particle dictates that both odd- and
even-symmetry modes may exist but our study shows that
even modes are unstable; hence, the fundamental building
block for describing anharmonic localized vibrational ex-
citations appears to be the odd-symmetry mode. An even
mode that does not satisfy the same site symmetry can be
constructed from two odd modes by placing them side by
side with opposite phase; the result is a vibrational exci-
ton.

The accuracy of the rotating-wave approximation has

been checked by calculating the inhuence of the oscilla-
tions at 3~& produced by the quartic potential. We have
shown that the amplitude of the particle displacement at
the third harmonic is a small fraction of the amplitude at
the fundamental for any A. The corrected fundamental
frequencies are reduced by at most a few percent so to a
good approximation this correction term can be ignored.

Although the equations of motion indicate that anhar-
monic localized modes can exist for any value of A in any
dimension, when real system parameters are introduced
the possibility is more restricted. With LiF-like parame-
ters it has been found that thermal energy alone is not
sufficient to produce localized anharmonic modes due to
the relatively small size of the quartic anharmonicity, but
these modes may be generated by an optical or other non-
thermal process that involves the equivalent of 40 or
more Debye phonons. Solids with extremely large anhar-
monicity would provide a more natural environment for
these localized excitations.
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