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Resonant tunneling in small current-biased Josephson junctions
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We investigate the theory of resonant tunneling of the phase difference P in current-biased,
small-capacitance Josephson junctions. Tunneling of P occurs between states localized in adjacent
wells of the tilted cosine ("washboard" ) potential when the states are nearly degenerate, and leads to
unique junction behavior. Most notable are the presence of voltage spikes along the supercurrent
branch of the current-voltage characteristic, the reduction of the bias current at which the junction
switches to the free-running state to a value well below the thermodynamic value, and peaks in the
distribution of rates at which this switching occurs as a function of bias current. For a range of
junction parameters, we estimate the magnitude and width of the first (lowest bias current) voltage
spike and the rate of switching to the free-running state in the zero temperature, low damping limit.
Experimentally, the most readily observable signature of resonant tunneling should be the charac-
teristic peaks in the switching distribution.

I. INTRODUCTION

In exploring the validity of the application of quantum
mechanics to macroscopic systems, ' one often chooses
the current-biased Josephson junction as a system to
study, both theoretically and experimentally. The phase
difference P between the superconducting condensates in
the electrodes obeys an equation of motion identical to
that of a particle moving in a cosine potential that is tilt-
ed in proportion to the bias current. For bias currents
below the critical current of the junction, this "tilted
washboard" potential consists of a set of wells in which
the particle can be trapped, whereas above the critical
current the particle can move freely down the potential.
Treating this macroscopic system quantum mechanically,
we expect to find distinctly nonclassical features, two of
which already have been verified experimentally. One is
the existence of quasibound states in the wells with
discrete energy levels, demonstrated with microwave-
spectroscopy techniques. The other is the macroscopic
quantum tunneling of the particle from one of these
bound states into the continuous spectrum of free-
running states.

The possibility of a third quantum-mechanical process
occurring within this system has been suggested, ' name-
ly the quantum tunneling from one of the bound states of
a potential well into another bound state in an adjacent
well. This process, called resonant tunneling, occurs
when the bias current is such that the ground-state ener-

gy of one well is equal to the energy of an excited state in
the adjacent well. The tunneling between the two states
is coherent; when the system is prepared in one of the
states which are not eigenstates of the Hamiltonian, it
will oscillate in time between the two. This is analogous
to the well-known ammonia molecule resonance and to
the predicted macroscopic quantum coherent superposi-
tion of states of an rf superconducting quantum interfer-
ence device (SQUID). ' One important distinction be-

tween the case of the SQUID and the problem at hand is
that in the former case the resonance studied is between
two local ground states, whereas in the latter case one of
the states is excited.

Once the system has undergone a resonant tunneling
transition to an excited state, it can either decay to a
lower state or continue to tunnel. These competing pro-
cesses each lead to observably distinct results in the be-
havior of the junction. If, after tunneling to the excited
state, the system decays to the local ground state, the en-
tire process may repeat, resulting in the movement of the
particle from well to well down the potential (path A in
Fig. l). Because this motion corresponds to a nonzero
voltage across the junction, we expect that the resonant
tunneling process will be rejected in the supercurrent
portion of the current-voltage characteristics as a series
of voltage spikes [Fig. 2(a)], each spike corresponding to
an aligned pair of states. This structure is unusual in that
it can occur for bias currents which are much less than

P=B

FIG. 1. Two possible transition paths for the particle started
in a ground state. Motion along path 2, an alternating se-
quence of resonant tunneling and decay transitions, results in
steady phase slips. Motion along path B, which is a sequence of
successive resonant tunneling transitions, results in escape to
the free-running state.
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Ic

FIG. 2. Schematic representations of the current-voltage
characteristic: (a) steady phase slips (path A in Fig. 1) result in
voltage peaks along the supercurrent branch which correspond
to the alignment of energy levels; (b) escape (path B in Fig. 1) re-
sults in a switching current greatly reduced from the
Ambegaokar-BaratofF C,

'Ref. 15) critical current I&. These
features are indicated by arrows.

the critical current. This macroscopic process is similar
to that occurring in semiconductor superlattices at the
microscopic level, ' where increases in conductivity are
observed when a strong electric field brings electronic en-
ergy levels of adjacent wells into alignment. In contrast
to the process of sequential tunneling and decay, addi-
tional resonant tunneling events occurring before the de-
cay to the ground state could lead eventually to the tran-
sition of the system to the free running state (path B in
Fig. 1), thereby destroying the spike structure. Here one
should instead observe a switching of the junction from
the supercurrent branch to the quasiparticle branch at a
value of bias current below the thermodynamic critical
current [Fig. 2(b) j.

Resonant tunneling in a Josephson junction is of in-
terest not only as a novel phenomenon in its own right,
but also because of its possible effect on the coherent
Bloch oscillations predicted to occur in small capacitance
junctions. " It has been suggested' that for values of
bias current in the vicinity of the resonances the resonant
tunneling transition to excited states will break the coher-
ence of the Bloch oscillations. The importance of the res-
onant tunneling transition was also noted by Kondo, '

who, in order to examine the suppression of Bloch oscil-
lations by Zener tunneling, numerically integrated the
Schrodinger equation for this system. The wave func-
tions he obtained explicitly show the resonance, although
the dynamics of the resonant transition were not investi-
gated in that work.

Other authors have undertaken theoretical studies of
the resonant tunneling phenomenon in Josephson junc-
tions. However, the early studies ' had not comprehen-
sively taken into account all the features of the problem
which we believe to be important. Most notable among

these are the coherence of the tunneling, and the com-
petition between decay and successive tunneling. The
coherence of the transition from one bound state to
another must be included because the probability of re-
turn tunneling is not necessarily negligible, implying that
Fermi's golden rule may be invalid in some situations.
Although decay and successive tunneling rates are direct-
ly compared in Ref. 14, we believe that these quantities
require a more detailed consideration within the context
of the dynamics of the system. During the completion of
this work we became aware of the recent results of
Zhuravlev and Zorin, ' who employed a similar ap-
proach to ours that includes the coherence of the reso-
nant tunneling transition. However, they did not esti-
mate the energies of the states in the wells beyond a har-
monic approximation, and the corrections for the anhar-
monicity of the potential have important implications for
the dynamics.

The purpose of the present work is to carry out an in-
vestigation in order to determine which effects due to res-
onant tunneling are observable experimentally, if any.
We estimate the magnitude, width, and duration of the
voltage peak developed before the junction switches to
the normal state, and the rate at which this switching
occurs. These quantities are computed for a range of
junction parameters. From our results we conclude that
the most readily observable signature of resonant tunnel-
ing in a Josephson junction is not the voltage peaks, but
rather the unique distribution of rates at which the junc-
tion switches to the normal state. This distribution is
nonmonotonic in the bias current, exhibiting peaks at
values of current corresponding to resonances.

Our approach is as follows. The analysis is for zero
temperature, and we consider the effects of dissipation
only to supply a decay mechanism, neglecting its effect on
tunneling rates. ' Using a perturbative technique, we
calculate the energy levels of the quasibound states, start-
ing with a harmonic approximation in each well. We use
the WKB method to estimate the coupling between states
in adjacent wells and the tunneling rate to the free run-
ning states. We then use a density-matrix approach to in-
vestigate the motion of the system when the junction is
biased at or near resonance. In this way we are able to
include both coherent and incoherent transitions in a
comprehensive manner.

II. HARMONIC-OSCILLATOR APPROXIMATION
AND PERTURBATIVE SOLUTIONS

A. Multiple harmonic wells approximation

The Hamiltonian describing the resistively shunted
junction model of a Josephson junction in the limit of
infinite resistance is given by

H = —4EC EJcosg EJP—, —d I

where Ec=e /2C is the charging energy for a junction
of capacitance C, I is the bias current, IC is the critical
current given by the Ambegaokar and Baratoff relation, '

and EJ=RI~/2e is the Josephson coupling energy. This
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is also the Hamiltonian for a particle moving in the tilted
washboard potential. Focusing on the well located at the
origin, one can separate H into harmonic and anharmon-
ic parts by writing

H=HsHQ+~H ~ (2)

where Hs» is the Hamiltonian for the simple harmonic
oscillator,

—0 d2 EJ
HsHo = 4EC— + P EJ, —

dP
(3)

and b,H contains the term linear in P together with quar-
tic and higher-order terms. If the eigenfunctions of H$HQ
are su%ciently localized, the harmonic Hamiltonian will
allow us to obtain approximate solutions for the energies
of the states localized in this well of the washboard po-
tential, and we may consider AH as a perturbation to

0H $HQo

For ease of algebraic manipulation we define the pa-
rameter v=+EJ/2Ec and let /=x&2/v. Physically, v
corresponds roughly to the number of levels in the well.
In addition, we choose the energy unit to be the zero-
point energy of the oscillator +2ECEJ =fico& /2 (co& is 2m

times the plasma frequency). We thus obtain (dropping
the tilde in these units)

multiple. For example, at I =I"', F„+, =F„+2 2 in
addition to the degeneracy given by Eq. (8), and so on.
This implies that successive resonant tunneling events
may be an important transition sequence, and we must
investigate to what extent these additional degeneracies
are removed by the inclusion of corrections to F„

B. Energy-level corrections

H =H sHQ +H& +Ha (10a)

We wish to calculate the corrections AE =E —E
for the energy levels which appear upon inclusion of the
anharmonic perturbation AH. These corrections can be
obtained using time-independent perturbation theory
with harmonic-oscillator eigenfunctions as a basis, and
the results expanded as a power series in 1/v. This as-
sumes that the coupling to the states in adjacent wells is
negligible, which we shall see later is justified.

To obtain corrections of order v one must carry the
linear term in AH to fourth order in a perturbation ex-
pansion, noting that s is of order v at resonance. This
is unnecessarily tedious; instead we expand the potential
about the minimum of the 0th well, which is located at
xo=v'v/2sin 's. Letting x =xo+bx, we can write Eq.
(6) as

0 Gj
H$HQ 2

+ 2

X

which has the energy spectrum

E = —v+2m +1, m =0, 1,2, . . . .

(4)
where

2

HsHo= —
2

+(1—s )' [ —v+(bx) ]—svsin 's,
(lob)

In these units, the full Hamiltonian (1) is given by
H, =(l —s )'i [v—(Ax) —vcos(Ex&2/v)], (10c)

d2 + V(x),
dx

(6a)
and

H, =sv[sin(Ax&2/v) —bx&2/v] . (10d)

where V(x) is the potential

V(x) = —vcos(x&2/v) —sx&2v, (6b)

Fn, 0 Fn +1, m

when

m eI"'=IC- =m —m
~v

and s =I/Ic. The energy spectrum of H forms a
Wannier-Stark ladder. Thus, given the levels E located
in a particular well, we can generate the full set of levels

F„=E —2~s vn,

where n is the integer which labels the nth well. If we
take E as an approximation to the actual levels E, we
see that at particular values of bias current I =I"' the
ground state of the nth well is degenerate with the mth
state of the (n + 1)th well; that is,

Since H, is of order v, it must be carried to second or-
der. On the other hand, H, is of order v and need
only be retained to first order, and its contribution van-
ishes by parity. We can now recombine HsHQ and H„'
the resulting Schrodinger equation takes the form of
Mathieu s differential equation. Using the asymptotic ex-
pansion for the characteristic values of this equation, '

we obtain to second order in 1/v
2 2

~E vs ws

2 4
w +1

16v
w +3w
256v

where w =2m +1.
The dependence of AE on m shows the levels E are

not evenly spaced, which means degeneracies only occur
in pairs for a given bias current. This will have impor-
tant consequences for the dynamics for it will tend to
suppress sequential resonant tunneling events, as we will
see later. By including this correction to the energy lev-
els and using Eq. (8) we can obtain the value of the bias
current at resonance to second order in 1/v,

This is the condition for resonance obtained previous-
ly. ' ' Note that in this approximation the resonance
peaks will be equally spaced along the current axis. Also,
we see the degeneracies which occur at resonance are

e m+1
Im —m co 1

8v
m

4~ v

2m +3m +3
128v

(12)
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We note that because of the anharmonicity of the poten-
tial the resonance peaks are not evenly spaced along the
current axis.

C. Coupling between wells

Next we consider the coupling between states of
different wells. We estimate the matrix elements
H„„~ when the states are degenerate, that isF„=F„.We assume nearest-neighbor coupling only,
so that H„„. .=O for ~n n'~ )—1. For n' n= 1,—we
use the WKB method to extend the harmonic-oscillator
wave functions into the region under the barrier. With
these semiclassical wave functions we obtain estimates of
the matrix elements, which are independent of n and are
given by

0=3

FIG. 3. Subsystems for l,„=3 (three states per subsystem).
The subsystems for k =0 and 1 are each enclosed by the dashed
oval.

Ho, ~
=—&6 (m )G (m ')exp( I ), —1

(13)

where
X +

I = f [V(x') E]' —dx' .
"m

The limits of the integral are the classica1 turning points
where the integrand is zero, and V and E are evaluated
at the bias current where Fo ~ =Fj . The dimension-
less parameter G (m) is of order unity and depends weak-
ly on the level index m,

1/2
G(m)=

2 mf

m +1/2

We note that the coupling decreases exponentially with
the barrier height. The coupling is quite small for values
of v of interest (v 2), which justifies our earlier assump-
tion that the interwell coupling is weak.

III. DYNAMICS

A. General considerations

Having determined the matrix elements of the Hamil-
tonian in the basis of states localized in the wells, we are
now equipped to study the motion of the system. In par-
ticular, we wish to answer two questions: What is the
average rate of motion of the particle down the wash-
board, and how long will this motion persist before the
particle undergoes a transition to a free running state?
The average rate of motion determines the voltage across
the junction before it switches to the normal state, and
the lifetime of the process determines the time during
which we have to measure this voltage and the distribu-
tion of rates at which the junction switches.

We restrict our analysis to the case of the bias current
I set at or near its first resonance value I',". Here the sys-
tem consists of a set of bound states which can be subdi-
vided into groups of l,„degenerate or nearly degenerate
states, where l „is the number of bound states in a well,
and each state in a group is from a different weH. For
convenience, we label states in the kth group, or subsys-
tem, as 'P&&, where k =n —m and l =m +1 with k =. . . ,—2, —1,0, 1,2, . . . and 1=1,2, . . . , l,„(see Fig. 3).

Within one of these subsystems the states 4k& are no
longer eigenstates, but are mixed because of the nonzero
coupling between them. This results in coherent motion
among states 4k& with the same k when the subsystem is
started in one of them. In addition to this coherent
motion within a subsystem, two types of incoherent tran-
sitions out of the subsystem are possible. One is the de-
cay to a state in a lower subsystem leading to motion
down the washboard, and the other is the tunneling from
a state 4&& to the continuum of free running states, re-

max

suiting in the junction switching into the normal state.
As we perform this calculation in the zero-temperature
limit, we do not consider thermally induced transitions.

In light of the above, we adopt the following general
method of solution: We associate with each subsystem k
its density matrix p, which is of dimension l,„Xl,„,
and examine the equations of motion for the entire set of
density matrices. Each of these contains terms associated
with the coherent motion within that subsystem, and
terms representing the incoherent coupling to other sub-
systems and the set of free running states.

B. Resonant tunneling peak magnitude and shape

First we investigate the motion of the system which
leads to peak structure on the supercurrent branch of the
current-voltage characteristic, shows as path A in Fig. 1.
The states involved in this motion are %'&& and Okz with
k =0, 1,2, . . . . Here we exclude the effects of additional
states %'k~ with l )2, and ignore the possibility of escape.
We shall see later that in the cases where the peak struc-
ture has a significant lifetime these result only in a small
perturbation to the overall motion down the potential; in
addition the general method is most clearly illustrated in
this simple case and can be extended to include escape in
a straightforward way.

Coherent motion within the kth subsystem is described
by the matrix representation Ho of the Hamiltonian in
the basis [%k&,4kzJ. Before being coupled, these states
differ in energy by an amount o., which to lowest order in
1/v depends on the bias current as

o. =2m.v(I I' )IC . —
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Taking the reference energy to be halfway between these
energies, we have

transpose. The system of Eqs. (19) and (20) then be-
comes

0
2

Hp=
1

2
and

p p

d1-
-0 g-0 (21a)

2 2

0 0
r= or„ (18)

where we have defined b, ~/2:Ho p, , for brevity in nota-
tion.

The decay of a state 'Pkz to %'k+1 1 is induced by terms
which are not included in the present Hamiltonian.
However, we may include the decay phenomenologically
by adding an imaginary term i I—d /2 (again in units of
%co~ /2) to the energy of state Vk2,' this results in a charac-
teristic decay rate of co~I z/2. To obtain an order-of-
magnitude estimate of rd we apply the results of Esteve,
Devoret, and Martinis, ' who calculated the complex en-
ergy shifts for a Josephson junction with a parallel exter-
nal circuit consisting of an ohmic resistor R. They found
that I d is given roughly by I d

=—2/Q, where Q =RCco~
is the classical quality factor, assumed to be much larger
than unity. The imaginary terms representing decay can
be added to the representation of the Hamiltonian as the
matrix —i I /2, where

with

and

k —kp"=Ap "+Bp" ' (k &0),
d7-

—r d +l0
2

0

0 0 0 Id
0 0 0 0
0 0 0 0
0 0 0 0

ih1
2

—r d

(21b)

(21c)

(21d)

Now suppose that the particle is localized in state %01
at time t =0. The usual equation of motion for the densi-
ty matrix p of dimension 2X2 of the k =0 subsystem is
modified by the presence of imaginary energy terms; it is
now

pp'= t (HO p'l —,'tI p')+-—
d~

(19)

where the differentiation is carried out with respect to the
dimensionless time variable ~=co t/2 Equation .(19) can
be solved analytically. The result shows the trace of p is
not conserved: probability density leaves the k =0 sub-
system because of the imaginary energy terms.

Consider next the subsystems with k &0. The proba-
bility density leaving a particular subsystem k —1 enters
the subsystem k incoherently in the state Ilk 1, where it
again begins coherent motion and further decay. We
thus include a source term in each of the equations of
motion for these subsystems, which become

These equations can be solved for any finite number of
subsystems since a given subsystem is coupled only to
subsystems above it. The result for eight subsystems with
o =0 (on resonance) and 6,= I"d, computed numerically,
is shown in Fig. 4. Plotting the trace of the density ma-
trix for each subsystem, one can follow the propagation
of probability density down the washboard, noting that
there is a distribution of rates of motion due to the sto-
chastic nature of the decay process. This distribution ap-

1.0

Ct.
w 05

k [~ kj ~[1 kj

with

0
+ 0 0 1 —g Trp'

i=0
(20) 0

10 20

1C

30 40

p"(r=0)=0 (k )0) .

These equations can be written in a much simpler form
by replacing each of the 2X2 density matrices p by a
vector p"=(p"»,p",2,p"z„p"22), where T indicates the

FIG. 4. Propagation of probability density through the first
eight subsystems (k =0 through k =7). Shown is the time
dependence of the traces of the density matrix in each subsys-
tem for 5,= I d. The time dependence scales inversely with 5&
and is thus plotted as a function of A&v..
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pears as a spreading of the quantities Trp"(r) in r as k in-
creases.

We are now in a position to estimate the expectation
value of the rate of motion down the potential. The ex-
pectation value for the phase ( P ) is given by

= g k(p"„+p ' ).2' k =1
(22)

We find that, after an initial transient on the order of the
transition time out of the k =0 subsystem, (P) is linear
in r. We define y as the slope of (P)/2m in this region,
that is, (d/dr)(P)/Zrr~y as r~ ~. We take y to be
the rate of the steady motion down the potential, as the
initial deviation from this steady motion is simply an ar-
tifact of the somewhat artificial initial conditions. The
time derivative of ( P ) /2' is

FIG. 5. Schematic representation of the reduced system forl,„=2. The reduced system consists of states A and 8, which
are coupled by the coherent transition (1). Probability density
leaves state 8 by decay (2) to state C of the full system. In the
reduced system this density is incoherently reintroduced at state
3, as shown by the dotted arrow (3).

d. 2. k=1 k=0

( g —k+g —k —1)+ g pk
k1 kod

oo
k d

rdP 22+ X d P22&
k

k=0 k=0
(23)

lim p"'= 1

7-~oo I /+2']+4O'
'r'„+a', +4~' b, ,(i+2~)

'

X '

b, , ( i +2cr—) b, ,
2

giving

(26)

-tot y -k
k=0

(24)

which is the sum of all the subsystem density matrices (in
vector form), and summing the system of Eqs. (21) over
all k, we can write

where the inner product g p of g=(1,0,0, 1) and a vector
p produces the trace of the associated matrix p.

Rather than solve the entire system of Eqs. (21) to
evaluate this expression, we find that the quantity (23)
can be extracted from the following simple construction.
Defining

I ~61y=
r'„+2S', +4~' (27)

This result for the overall rate y is plotted at resonance
(o =0) as a function of I & in Fig. 6. This expression can
be explained intuitively for I z/b, , much less than or
much greater than unity. When I z/b, , ((1, the limiting
process is the decay, and we expect a subsystem to under-
go many oscillations between its two states before decay-
ing, spending half its time in the excited state. As the de-
cay rate of this excited state is I &, we obtain y = I z/2 in
this limit. In the opposite limit, I z/b, i )& 1, the resonant
tunneling is the limiting process. Decay occurs shortly

3=3+8,
p'"(0)=( l, o, o,o)'.

(25)

10

This system, which we refer to as the reduced system, is
shown schematically in Fig. 5. Physically it corresponds
to taking the probability density as it leaves a subsystem
and returning it incoherently to the ground state of the
same subsystem. It is in fact the linear superposition of
the subsystems, which obey the same equation of motion
with the exception of the source terms. Because g A =0
the trace is conserved in the reduced system; the con-
straint that the particle remain within the set of ground
states and first excited states corresponds to probability
density remaining in the two states of the reduced system.

The reduced system has the steady-state solution (in
matrix form)

10
10 10 10' 10

FIG. 6. Rate of motion y down the washboard at resonance
as a function of the decay rate I z for typical interwell couplings
of 6& =10,10,and 10
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FIG. 7. Maximum voltage developed across the junction by
resonant tunneling on the first resonance, plotted as a function
of v for several values of R/R& and a plasma frequency
co~/2+=10' Hz. The curves for R /R& =100 and 1000 are cut
o8'where y~&;&,

= 1 (see text).

after the particle tunnels into the excited state, which is
lifetime broadened into a continuous density of states
D(o )=(I d/2m)/(o +I d/4), and the possibility of
tunneling back to the ground state is negligible.
Fermi's golden rule then applies, giving
y=2~IS /2I'D(0) =~'/I

The voltage developed across the junction at or near
resonance due to this steady motion is then simply

particle in one of the states other than 4k& and +kz, and
in particular, in one of the states 4'&& that is separated

max

from the set of free running states by a single barrier, al-
lowing escape of the particle to these states via tunneling.
These additional states and the tunneling process can be
included by a simple extension of the method used above.
The additional states are included in the basis for the sub-
systern. The tunneling, which is an incoherent process
characterized by a constant rate, is added as an imagi-
nary energy term in the energy of the states 4k& analo-

max

gous to the treatment of decay.
This treatment, unfortunately, cannot be continuously

applied over the entire range of v, as it is based on the as-
sumption of the existence of an integral number of dis-
tinct bound states in a subsystem, and this is not always a
very sharply defined quantity. Using Eqs. (5), (7), and
(11) for the energy levels, we estimate that near resonance
there are two bound states in a subsystem for v roughly
between 1.7 and 2.6, and three states for v between 2.6
and 3.5. More realistically, however, for v=2. 6 the
"third state" is actually a continuous density of states
which are hybrids combining a localized state and the
free running states. In this region of v the present treat-
ment is not applicable. However, we may apply the
method with confidence for the intermediate values of v
in the two ranges 1.7&v&2.6 and 2.6&v&3.5 and extra-
polate these results into the intermediate region v=2. 6.

In each of these two ranges of v we estimate the tunnel-
ing rate from the state 4'k& into the continuum of free

max

states using the WKB method. The expression for this
rate, expressed in units of co /2 and denoted by I &, is

V=@oco y/2, (28)

where @O=h/2e =2.07X 10 ' Wb is the fiux quantum.
Using the dependence (16) of cr on bias current I and
treating 5& as a constant, we find that V is Lorentzian-
shaged as a function of I, with half width at half max-
imum

( I 2 +2g2)1/2
EI — co

4
(29)

We note that AI scales with the lifetime broadening
width I d /2 of the excited state when I d ))b, „and with
the coupling b, , /2 when I d «b, We can evaluate the
voltage (28) at resonance in terms of the junction parame-
ters co, v, and R. Using the expression I d=2/(RCco )

and writing the capacitance as C =mv/co„R(2, where
R& =M/2e =6.45 kA is the quantum of resistance, we
obtain I d =2R& /mvR. Taking this result along with our
estimate for b

&
and m /2m =10' Hz, we obtain the peak

voltage as a function of v for several ratios of R/R&,
plotted in Fig. 7.

I i
=—G (l,„)exp( 2Ii ), —WKB

max max
(30)

0 0
0 I +I wKB (31)

In the case of three states per subsystem (2.6& v&3.5),
we include in the subsystem basis the state 0'k3, which
has energy c, relative to the average of the energies of
states %'k& and 0'kz. This energy is given by

where I and G are given by Eqs. (14) and (15), respective-
ly.

The terms representing coherence in the equations of
motion (19) and (20) remain unchanged in form. Howev-
er, the matrices Ho and I appearing in these terms must
be modified to include the additional states and tun-
neling rates. For the case of two states per subsystem
(1.7 & v & 2.6), Ho is as before, while I becomes

C. Lifetime of the peak and switching distributions

Next we consider the consequences of additional states
in the subsystem and the escape to the free running
states. The mixing of the states within a subsystem im-
plies that there is a nonzero probability of finding the

3$6=3 3&SV
15

32v2
(32)

to second order in 1/v. Defining hz/2=Ho &, z, we ob-
tain
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We note that o ~+ E~))b.„b,2, which implies that at
most two of the states are strongly mixed at a given bias
current. This tends to suppress the escape rate by reduc-
ing the probability of several resonant tunneling events
occurring in succession. Also we point out that we have
taken the decay from 0'k3 to Ilk+& 2 to have twice the
rate as that from %'k2 to 0'k+, , This is exactly true in
the case of the harmonic oscillator' and we expect it to
be a reasonable approximation in the present case.

The source terms in Eq. (20) must be modified to in-
clude only the contributions of the decay process. This is
most easily done after the transformation from matrices
to column vectors has been performed. For example, in
the case of two states per well, the source matrix B given
in Eq. (21d) remains unchanged, whereas in matrix A,
given by Eq. (21c), I d is replaced by 1 d +1 2wKB.

Again we can transform the coupled equations of
motion for the entire set of subsystems to the equation of
motion

(34)

for a single reduced system, which is identical in form to
Eq. (25) except that now A is either a 4X4 or 9X9 ma-
trix.

The reduced system (34) can be solved numerically. As
asserted previously, we find that the motion studied in
part B of this section is only weakly perturbed, except
when v is small and the resistance R is large. For short
times the elements of the density matrix reach approxi-
mately the same steady-state values as they had before
the inclusion of escape. For longer times, however, we
find that each of the elements undergoes a slow exponen-
tial decay, and the trace is no longer conserved. This de-
cay of the trace corresponds to the escape of probability
density via tunneling into the free running states.

The full solution of Eq. (34) is a linear combination of
solutions, each containing a factor exp(A. r) in the time
dependence, where A, is one of the eigenvalues of A.
When escape is not included p"' has a steady-state solu-
tion, which corresponds to the eigenvalue 0. When es-
cape is included, this eigenvalue is shifted slightly in the
negative direction along the real axis, and is associated
with the slow exponential decay of the trace. It is the
negative value of this eigenvalue that we take as the
overall escape rate, and the reciprocal of this rate ~I;f,
gives the (dimensionless) lifetime of the resonant peak

I

2.0
I

2.5
I

3.0
I

3.5

FIG. 8. Lifetime thf, of the first voltage peak on resonance
I=I'," before escape occurs, computed with the same set of
junction parameters as in Fig. 7.

structure. We note that one obtains meaningful results
from this method only when the product y~&;f, is greater
than unity. This quantity is an estimate of the number of
interwell transitions the particle makes before escaping,
and when this number is less than one the coupling to the
continuum is so strong that the bound-state approxima-
tion becomes invalid and an alternative approach must be
Used.

We have calculated both the lifetime thf, =2m&;f, /co at
the resonance I =I&" and the escape rate t&;z,

' as a func-
tion of bias current near the resonance, in each case using
the same set of parameters as we used in calculating the
magnitude of the voltage peak. The lifetimes are shown
in Fig. 8, and the escape rates are shown in Figs. 9 and
10. In both the lifetime and the escape rates we find
small discontinuities at v=2. 6 which arise between the
two and three-state treatments. This is not alarming con-

10

R/R = 1Q

10

0.08 0.12 0.16 0.20

FIG. 9. Distribution of rates at which the junction switches
to the normal state as a function of bias current for the case of
two states per well, plotted for v=1.7, 2.0, 2.3, and 2.6 and
R /R~ = 1 and 10.
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FIG. 10. Distribution of rates at which the junction switches
to the normal state as a function of bias current for the case of
three states per we11, plotted for v=2.6, 2.9, 3.2, and 3.5, and
R/R& =1 and 1000.

sidering the discontinuity inherent in the two methods.
The match is in fact remarkably good when we note that
small changes in h„hz, I z, and I ~ can greatly in-
crease or decrease the discontinuities, and perhaps better
estimates of these quantities would further smooth the
transition.

IV. DISCUSSION AND CONCLUSIONS

We have investigated the phenomenon of resonant tun-
neling that occurs in small Josephson junctions. In this
section we discuss the prospects of experimental observa-
tion of the primary signatures of resonant tunneling,
namely voltage peaks on the supercurrent branch of the
current-voltage characteristic and the distinctive distri-
bution of rates at which the junction switches to the nor-
mal state.

We focus our attention first on the voltage peaks. In
Fig. 7 we see that the magnitude of the voltage is on the
order of 1 pV for v = 1.7 and decreases exponentially
with increasing v, becoming rather small (10 ' to 10
V) for v=3. 5. On the other hand, the lifetime of the
voltage peak ranges from 10 to 10 sec, as we see in
Fig. 8. Evidently, in choosing values of v and R one must
balance between measuring an extremely small signal of
lengthy duration and a larger signal of extremely short
duration. In order to analyze this apparent trade-off, we
construct a figure of merit g which is the estimated volt-
age signal at resonance divided by the square root of a
measurement bandwidth that we take to be the inverse of
the estimated lifetime. We obtain values for g between
10 ' and 10 ' V Hz ' for the entire range
1.7(v(3.5 and 1(R/R& (1000. Since the quietest
semiconductor amplifiers have a typical voltage noise of
10 VHz ' this result implies that the use of such
amplifiers for the direct observation of the voltage peaks
is most certainly ruled out. However, a more sophisticat-
ed method exploiting signal averaging techniques may re-
veal this structure.

Thus, it appears that the most readily observable effect
arising from resonant tunneling is the distribution of
rates at which the junction switches to the normal state,
shown in Figs. 9 and 10. The most unusual feature of
these distributions is that they are nonmonotonic in the
bias current, in contrast to those where switching is
caused by thermal activation or macroscopic quantum
tunneling. Peaks occur in the escape rate for bias
currents at the resonance values. In the case of two
states per well (Fig. 9) a single peak appears, correspond-
ing to resonance between states 0'k, and 0'k2. In the case
of three states per well (Fig. 10), additional smaller peaks
appear for slightly smaller bias currents, corresponding
to resonances between states '0k, and Vk3 and states Vk2
and +k3. The former is almost as pronounced as the pri-
mary resonance peak, while the latter is very small and
cannot be seen on the scale of Fig. 10. With the excep-
tion of this small peak, which is largest for R /R& =100,
we find in general these peaks are most pronounced for
the cases of low damping (high resistance) because the
particle spends more time in the excited states Oker and

max

therefore has a higher probability of escaping through the
final barrier to the free states. The observation of these
peaks in the distribution of switching rates would be a
direct confirmation of the existence of resonant tunneling
in Josephson junction dynamics. Measurement of the
distribution should be experimentally realizable using ex-
isting techniques, although construction of a junction
in an environment presenting an impedence R ))R& at
the plasma frequency may present a difhculty.

It should be noted that measurements already per-
formed on small capacitance junctions ' have shown
switching currents lower than the value I& deduced from
the Ambegaokar-Baratoff prediction; this reduction may
be related to resonant tunneling between localized states.
Before making quantitative comparisons, however, one
must consider the effects of current noise and construct
an experimental configuration in which the effects of
external circuitry can either be minimized or quantita-
tively taken into account.

Finally, it is also apparent from our results that in the
region where v is small and the resistance is large, the es-
cape rate is rather high and the particle makes no more
than a few transitions to lower subsystems before escap-
ing. Thus, as one reduces the value of v, for bias currents
corresponding to the resonance condition we expect
Bloch oscillations to be suppressed because of escape to
the voltage state.
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