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Nonlinear dielectric response to a point-donor impurity of an electron-gas-model semiconductor
that includes the effect of the Dirac-Slater exchange correlation
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The Thomas-Fermi statistical theory, including the Dirac-Slater local-density treatment of ex-

change correlation, has been applied to the problem of nonlinear screening of a donor point charge
embedded in an electron-gas-model semiconductor. The nonlinear screening equation is solved nu-

merically, giving spatial dielectric functions and screening radii with exchange-correlation strength
and ion-charge state as parameters. Illustrations and tabulations of these results are given for five

semiconductors, four ion charges, and two nonzero values of the exchange-correlation strength cor-
responding to the Kohn-Sham and Slater exchange potentials. A variational principle equivalent of
the nonlinear equation leads to approximate analytical expressions for the spatial dielectric func-
tions which are in close agreement with the exact results. Variational parameters are given for a
subset of the semiconductors and charge states. Dielectric functions of silicon are used to illustrate
typical comparisons between the two methods of solution.

I. INTRODUCTION

This paper is concerned with nonlinear screening of an
ionized point donor embedded in an electron-gas model
semiconductor involving exchange and correlation in the
Dirac-Slater Xcx approximation. Two familiar pro-
cedures for developing the associated nonlinear equation
for dielectric screening of the impurity have been out-
lined in a previous paper. ' One of these is based on the
original Thomas-Fermi statistical theory but modified to
include exchange and correlation. This approach, due to
Mott, starts from the uniform-electron-gas relation be-
tween the electron density n and the Fermi momentum
kF and applies it locally at r to the inhomogeneous sys-
tem that results when the point charge is introduced into
the semiconductor. A local Fermi energy EF(r) is ex-
pressed in terms of kF(r) in the same way that the
uniform-gas Fermi energy EI; is written in terms of kF.
In the present instance, EF contains kinetic- and
potential-energy terms proportional to kF and k~, respec-
tively. It then remains to set up the classical equation for
the fastest electron moving in the common screened po-
tential V(r) with local kinetic and exchange-correlation
energy EF(r). This equation is a statement of the con-
stancy of the Fermi energy Ez (chemical potential at ab-
solute zero) throughout the system, and includes the
boundary condition, n(R)=n, on the screening charge
density, where R is the finite radius of incomplete screen-
ing. The basic nonlinear relation between n (r) and V(r)
is given by this classical equation. Self-consistency re-
quires that V(r) satisfy Poisson's equation with a charge
distribution given in terms of the displacement of n (r)
from the unperturbed electron density. This nonlinear
differential equation is the fundamental Thomas-Fermi-
Dirac screening equation in the Xa approximation. In
the following, TF, TFD, and TFDS shall denote
Thomas-Fermi (no exchange and correlation), Thomas-

Fermi-Dirac (pure exchange), and Thomas-Fermi Dirac-
Slater (exchange and correlation in the Xa approxima-
tion), respectively.

The nonlinear TFDS screening equation may also be
obtained from an equivalent variational principle of the
modified TF theory, as outlined by March. Minimiza-
tion of the total ground-state energy of the system of
valence electrons (plus any external potentials) with
respect to n (r), and with a constraint on the total num-
ber of electrons, leads to an Euler equation which
expresses the constancy of the chemical potential and the
boundary condition on the screening charge. The latter
is incorporated in the theory by using a Lagrange multi-
plier (related to the fixed number of electrons) of the form
EF+ V(R). The Euler equation embodies the nonlinear
relation between n (r) and V(r) as before.

The spatial dielectric function F(r) is defined as the ra-
tio of the bare Coulomb potential, —Z/r, to the screened
potential, V(r), set up around the impurity point charge.
Its properties include F(0)=1 and e(r) =e(0), where e(0) is
the macroscopic dielectric constant for r ~ R. Lineariza-
tion of the TFDS screening equation yields the simple
analytical form of F(r) previously derived in the linear-
ized TF context. In this approximation, exchange-
correlation effects enter the potential V(r) through a pa-
rameter, called q [see Eq. (12)j, which reduces to the usu-
al TF screening length when exchange and correlation
are absent. Reference 1 employed the linearized screen-
ing function in a variational calculation of donor ioniza-
tion energy with ion charge state Z and exchange-
correlation strength a as parameters. It is of interest to
extend this application and others to the nonlinear re-
gime. The present paper makes a first step in that direc-
tion by developing numerical and approximate analytical
solutions of the nonlinear screening equation in the Xe
scheme. The former is taken up in Sec. II for the poten-
tials of donor point charges in diamond, silicon, germani-
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um, gallium arsenide, and gallium phosphide. Four posi-
tive charges Z=+1,+2,+3,+4 and three values of a,
namely, a =0.0 (no exchange interaction), a =0.67
(Kohn-Sham exchange potential), and a= 1.0 (Slater ex-
change potential) are used in illustrating numerical re-
sults for screening radii and spatial dielectric functions.
The effect of exchange and correlation on these quantities
is seen Uis-a-Uis predictions of the TF screening theory.

A variational principle equivalent of the nonlinear
TFDS screening equation is devised in Sec. III. This ap-
proach gives approximate analytical expressions for e(r)
containing three variational parameters. Spatial dielec-
tric functions of silicon for two positive charges
(Z= + 1,+ 3) and three values of a are shown in graphi-
cal form to be in very close agreement with the numerical
results. Except for the time-consuming work involved in
the numerical search for extrema, the ease with which
the e(r) are secured in the variational method surpasses
the exact approach, which calls for a tedious numerical
matching of the potential and the electric field at r =R.
This paper employs the atomic system of units in which
the unit of length is the first bohr orbit (ao) and the unit
of energy is the hartree (twice the rydberg). The electron-
ic charge (e), mass (I), and action (iri) are set equal to
unity.

II. NUMERICAL SOLUTIONS
OF THE NONLINEAR SCREENING EQUATION

FOR POSITIVE CHARGES

Numerical solutions of the nonlinear TFD screening
equation for positive charges have been obtained in an
earlier paper. Corresponding spatial dielectric functions
and screening radii for diamond, silicon, and germanium

are recorded there in graphical and tabular forms, respec-
tively. Reference 6 also includes a graphical comparison
of the TF and TFD spatial dielectric functions for the
same semiconductors in the nonlinear regime. That ap-
plication led to the conclusion that exchange causes a fur-
ther contraction of the TF screening radius of a positive
point-charge impurity. This effect is already evident in
the linearized TF and TFD screening theories where the
spatial dielectric functions are obtained in simple analyti-
cal form. The nonlinear TFDS scheme provides a frame-
work for investigating the behavior of R and e(r) as con-
tinuous functions of the exchange-correlation strength
for various positive charges Z. This program is carried
out in this section for the five semiconductors mentioned
above. In the present work, site dependency of the
dielectric functions of the compound semiconductors is
not considered. It may be taken into account by employ-
ing effective donor charges due to the partial ionicity of
the chemical bonds on one site (Cia) or the other (As or
P).

There are two distinct regions of interest in the space
around a donor impurity. One of these contains the
dispersive dielectric response of the semiconductor, and
extends from the point probe located at the origin (r=0)
to the screening distance R. The second region is the rest
of space from R to infinity, at each point of which the
bare Coulomb potential is screened by the static macro-
scopic dielectric constant. Thus

In the screening region, the impurity potential satisfies
the nonlinear differential equation

27/2
V V(r)=

3n

23a 9a
23/2 8 2

1/2 3
3(x

23/2
+E~+ V(R) —V(r)

8n

1/2 3

r~R .

kFE (3)

With given input parameters and a starting value for
R, Eq. (2) is solved numerically inward, matching the po-
tential and its derivative at r =R. The screening radius is
varied until the solution has the correct behavior at the
origin. This procedure was implemented with a Runge-

The desired solution of Eq. (2) approaches —Z/re(0) and—Z/r as r approaches R and the origin, respectively.
Continuity of the potential and the electric field at r =R
completes the definition of the donor problem. Equation
(2) is the TFDS generalization of previous nonlinear
equations for the screened impurity potential, including
the TF and TFD theories as special cases. Input parame-
ters, for a given semiconductor, are the Fermi momen-
tum kF, the dielectric constant e(0), the point-ion charge
Z, and the exchange-correlation strength cx. The Fermi
energy EI; is expressed in terms of kF and e by the
uniform-electron-gas relation

Kutta-Vernier fifth- and sixth-order routine. Matching
of dependent variables to satisfy required behavior at the
origin or continuity at r =R was rigorously enforced to
within 10 . Screening radii found for each semiconduc-
tor are listed in Table I. Monovalent, divalent, trivalent,
and tetravalent donor ions, and three values of the
exchange-correlation parameter corresponding to no ex-
change and correlation (a=0.0), the Kohn-Sham poten-
tial (a=0.67), and the Slater potential (a=1.0) are con-
sidered. Results for GaAs and Gap are in excellent
agreement with recent numerical calculations which also
neglect partial ionicity of the chemical bonds on a site. It
is clear from Eqs. (2) and (3) that in order to solve the TF
and TFD problems it is only necessary to set a=0.0 and
0.67, respectively, in the input data file of the computer
program for the TFDS case. For some inscrutable
reason, the authors of Ref. 8 fail to see that F.F, in the
TFD case of Ref. 6, may be expressed as
&F =(kF2/2) ykF&2 where the —exchange parameter y is
an abbreviation for (I /sr&2), and that merely setting
y =0 in the computer program for the TFD case recovers
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FIG. 1. Exact spatial dielectric functions for (a) silicon, (b) germanium, (c) diamond, (d) gallium arsenide, and (e) gallium phos-
phide with exchange-correlation strength as parameter, for the monovalent ion-charge state in the nonlinear regime of TFDS screen-
ing.
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FICx. 2. Exact spatial dielectric functions for (a) silicon, (b) germanium, (c) diamond, (d) gallium arsenide, and (e) gallium phos-
phide with exchange-correlation strength as parameter, for the tetravalent ion-charge state in the nonlinear regime of TFDS screen-
1ng.
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the TF form of E„.
Spatial dielectric functions for all five semiconductors

have been generated numerically and graphically, but for
economy of presentation, only the monovalent and tetra-
valent results are shown in Figs. 1 and 2, respectively.
The divalent and trivalent curves for each value of o, lie
between the area bordered by the Z =+ 1 and +4
curves. It has already been established in the TFD
theory of screening that nonlinearity and exchange are
more effective at reducing attractive potentials than the
former acting alone. In other words, the screening elec-
trons in the nonlinear TFD and TF theories are closer to
the point-donor ion in the former case. In the present
TFDS application, it is found that a continuous increase
in a causes a steady decrease in the screening radius,
meaning that the screening electrons more closely ap-
proach the impurity. It may be considered that correla-
tion energy between electrons of para11e1 spin effectively
increases the numerical coefficient of k+ in the TFD ex-
pression for EJ;. The Dirac-Slater method is a relatively
practical way to account for correlation within the local
exchange-correlation approximation. The results in
Table I and Figs. 1 and 2 show the effect of exchange
correlation on the dielectric response of the semiconduc-
tors. The inclusion of this feature and its numerical out-
come represent a generalization of earlier calculations

l

TABLE I. Screening radii R for Si, Ge, diamond, GaAs, and
Gap in the nonlinear regime of TFDS screening for four ion-
charge states, Z, and three values of the exchange-correlation
strength, n.

z
Semiconductor

performed in the TF (Ref. 9) and TFD (Refs. 6 and 8)
frameworks.

III. VARIATIONAL METHOD
AND APPROXIMATE ANALYTICAL SOLUTIONS
OF THE NONI. INEAR SCREENING EQUATION

FOR DONOR POINT CHARGES

This section is concerned with the development of ap-
proximate analytical solutions of the nonlinear TFDS
equation for positive point charges embedded in various
semiconductors. A variational principle of the variable-
domain type is used for this purpose. The procedure in-
volves finding a function F which provides an Euler-
Lagrange equation equivalent of the nonlinear TFDS
equation, and also a quantity 6 which accounts for the
variation of the domain. It then remains to choose a con-
venient trial wave function and to secure the extremum
of a functional J with respect to the parameters in the tri-
al function. The functional J is the quantity 6 plus the
integral of F over the independent variable r between the
fixed lower limit, r=0, and a variable upper limit, r =R.
The aim is to obtain the potential and spatial dielectric
function in closed analytical form. These expressions
may then be used in considering other semiconductor
problems, such as ionized impurity scattering and
shallow-donor ionization energy. Applications of the
variational technique in this context have been concerned
with the nonlinear TF equation for positive and negative
point charges in elemental' and compound semiconduc-
tors.

In the interest of finding the function F, it is useful to
redefine the mathematical problem posed by the equa-
tions for V(r), in the two regions under consideration,
and their boundary and matching conditions. Equation
(1) implies that V(r) satisfies Laplace's equation beyond
the screening radius, while inside that radius V(r) is de-
scribed by Eq. (2). Consider the function

g(r) = r t,V (r) V(R ) ] . —

It follows from Eqs. (1) and (4) that

(4)

z rP(r)= — 1 ——,r ~R .
e(0) R

In this region, the second derivative (double prime) of
P(r) with respect to r vanishes, as expected. It is also
seen that the matching condition on the potential at
r =R becomes simply g(R)=0. Equations (2) and (4)
readily show that the nonlinear differential equation
satisfied by g(r) inside the screening radius is given by

2 rg"(r)— 3o. 9a
23/2 8 2

1/2 3 1/2 3
3a 9a g(r)

23/2 8 2
-=0, r~R . (6)
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The boundary condition on V(r) as r approaches the origin demands that P(r) approach —Z in that limit.

The function F =F(P, f', r) may now be found by writing it as the sum of two parts, one given simply by —
—,'(it ),

and the other involving r and g. In the Euler-Lagrange equation for F, namely,

d BF
dr Bit '

aF
Bg

The first part of F will give the second derivative term in Eq. (6). The partial derivative of the second part of F with
respect to g must equal the remaining terms in Eq. (6). Integration of this relation yields the second part of F. The final
result for F may be expressed as

27/2
F = ——'(itj')'—

2 3'
23a 9o.'

2 7T 8'
1/2 3

9a
23/2

12m'+E q,
8n

2'"r 3 3a, 9a'
+2r

3m
~

2r 23/2~ 8~2

3/2

8~2

5/2
2r 9a
5 8 2 r

It is easy to verify that F given by Eq. (8) satisfies Eq. (7)
and, indeed, the resulting equation is Eq. (6), as expected.
In view of the validity of Eq. (7), the first variation of the
integral of F contained in the functional J yields two
nonzero terms due to the variation of the domain. The
quantity 66 is defined as the negative of these terms,
namely,

The above considerations suggest that the trial function
may be expressed as the product of two factors, one em-
bodying the form of the solution of the linear TFD equa-
tion, while the other modifies this form for small r in the
region 0& r & r, . With this motivation, the trial function
is written as

(9) @(r)= [(1—k)+le '] —Z sinh[q(R —r)]
sinh(qR )

Thus the variational principle can be stated as 6J=O.
The right-hand side of Eq. (9) is evaluated with expres-
sions for 1(, g', and 5$, provided by Eq. (5), at the bound-
ary point r =R. It then remains to recognize that the re-
sulting form of the right-hand side of Eq. (9) may be
rewritten as a variation of the desired quantity

where A. and r, are variational parameters, and q is given
by

4kF

1 ZG=—
2 E(0)

2 27/2+—
3 3'

2

1 9(x

8~2

9o. 9o.'

8m 8~

' 5/2

3/2

R (10)

3'
2~ . ,

Note that the boundary condition at the origin and the
matching condition at R are satisfied by Eq. (11). For
A, =O, this trial function formally reduces to the solution
of the linear TFD equation. When Eqs. (5) and (11) are
used in the matching condition of P' at r =R, the three
quantities k, r„and R are joined in the relationship

The next step involves the choice of the trial function
g. The adopted g must satisfy the boundary condition at
the origin and the matching condition at R given, respec-
tively, by f(0)= —Z and itt(R) =0. It has been shown in
Ref. 6 that the linearized form of the nonlinear TFD
equation is invalid for values of r less than a critical
value, say, r, . To visualize the meaning of r„ it may be
compared with R and the nearest-neighbor distance a.
For example, when Z = + 1 in the case of silicon,
r, /R =0.31 and r, /a =0.24. The corresponding ratios in
the linearized TF theory are r, /R =0.20 and r, /a=0. 19.

1 —sinh(qR ) (1— ~ ')
e(0)qR

(13)

In view of this result, R and r, may now be taken as the
variational parameters with respect to which J is an ex-
tremum.

As mentioned before, J is the sum of 6 and the integral
of F over the region 0&r &R. In order to avoid the
singularity in F at the origin, it is convenient to introduce
the new variable p =&r . In that case J takes on the form
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27/2
J(R, r, )= —j (@') du —2

0 377

3(x + 9A
23/2 8 2

1/2 3
9o,'

23/2
12'
8m

f 'u'qdu

27/2
+3 3'

902 &R
0

8~2
9 2

+EF u
8~

3/2

dQ

4 2''
5 3~ ~0

2
1

R

27/2
+

3 3'
9e 9(x

8~ 8m

9 2

+E~ u —g] ~ du+—
8~' 2 e(0)

5/2 3/2

R (14)

This completes the formulation of a variational principle
equivalent for obtaining approximate analytical solutions
of the nonlinear TFDS equation for positive point
charges. Given the exchange-correlation value o, , the
point impurity charge Z, and the semiconductor, charac-
terized by e(0) and kF, values of the variational parame-
ters R and r, are sought for which J (R, r, ) is an ex-
tremum. Subsequently, these values of R and r, are fed
into the expression for the spatial dielectric function

R, r„and A, for silicon and germanium are listed in Table
II for two point charges (for Si, Z= + 1,+3; for Ge,
Z=+1,+2) and three values (a=0.0,0.67, 1.0) of the
exchange-correlation strength. The spatial dielectric

+
E(0)R

which follows when its definition, e(r)= —Z/rV(r), is
combined with Eqs. (4) and (11). In the absence of ex-
change correlation (a=0), the above mathematical for-
malism reduces in toto to the variational principle
equivalent of the nonlinear TF screening equation.

The program of calculation described above for finding
e(r) has been implemented for some of the semiconduc-
tors involved in this investigation. A11 integrals appear-
ing in Eq. (14) have been evaluated by a 20-point Gauss
quadrature routine. The resulting variational parameters

Q
Q

C.
CO

0.00

Q
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lU

0.Gti 1.28 1.92 2.56 3.20 3.8Q

r (a.u. j
t1.&18 5.12

TABLE II. Variational parameters R, r„and A, for Si and Ge
in the nonlinear regime of TFDS screening for two ion-charge
states, Z, and three values of the exchange-correlation strength
a.

Z
QQ
CQ

+3

0.00
0.67
1.00
0.00
0.67
1.00

0.00
0.67
1.00
0.00
0.67
1.00

Silicon
4.11
3.37
2.95
3.92
3.23
2.86

Germanium
4.36
3.53
3.09
4.22
3.47
3.04

0.22
0.20
0.17
0.24
0.23
0.19
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0.17
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FIG. 3. Comparison of exact (solid lines) and approximate
(dashed lines) spatial dielectric functions for silicon with
exchange-correlation strength as parameter for (a) monovalent
(Z= + 1) and (b) trivalent (Z= +3) ion-charge states in the
nonlinear regime of TFDS screening.
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functions of silicon are plotted in Fig. 3, together with
the numerical curves of Sec. II, shown as the dashed lines
in the figures. The close agreement between the exact
and approximate curves for e(r) lends credence to the
variational method of solution. Five semiconductors,
four charge states, and various values of the exchange-
correlation parameter corresponds to a large number of
e(r) versus r curves. Prudence dictates that specific ap-
plications be handled on an individual basis. However,
the curves shown in Fig. 3 for silicon are typical of the re-
sults found in this investigation for some of the other
semiconductors.

IV. SUMMARY

The Dirac-Slater local-density treatment of exchange
correlation provides a practical way to include this effect
in the TF theory of impurity screening in semiconductors
and metals. ' The ensuing nonlinear screening equation
represents a generalization of the TF (Ref. 9) case of no
exchange correlation and the TFD (Refs. 6 and 8) case of
pure exchange. In the linear regime, ' the TFDS model

yields closed analytical expressions for the potentials set

up around the point probe in these materials. Boundary
conditions related to incomplete (semiconductor) and
complete (metal) screening lead, respectively, to Resta-
and Mott-type potentials. Exchange correlation enters
the linearized theory through the parameter that appears
as the screening length in the case of a metal. A Resta-
type potential has been used in a previous paper' to inves-

tigate the effect of exchange correlation on shallow-donor
impurity ionization. With the numerical and approxi-
mate analytical solutions of the full TFDS screening
equation at hand, it is now possible to study corrections
to the linear theory due to nonlinearity and exchange
correlation. In particular, calculation of shallow-donor
ionization energy and ionized impurity scattering are ap-
plications of basic interest in this context.
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