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Pseudopotential plane-+rave calculations for ZnS
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We calculate the structural and electronic properties of cubic ZnS using a pseudopotential
plane-wave method and compare the results with an all-electron linearized-augmented-plane-
wave calculation. The agreement between the two electronic structure methods is excellent,
and the calculated structural properties are in good agreement with the experimental results.
We find that in both calculations the fundamental band gap is underestimated and that the Zn

d band is less bound than in experiment. Both eKects are due to the use of the local-density
approximation.

I. INTRODUCTION

Plane-wave basis sets are very popular for the cal-
culation of the electronic structure of crystals because
the mathematical simplicity of the exponential function
permits a simpler implementation of the numerical com-
puter codes. In particular, the calculation of quantum-
mechanical forces, quasiparticle excitations, and the
application of electronic-structure calculations to molec-
ular dynamics4 is much simpler to do with a plane-wave
basis set. Of course, electronic wave functions in real
crystals are not smooth functions, and for practical ap-
plications the core wave functions and the wiggles of the
valence wave functions in the core region have to be
removed by using the pseudopotential approximation.
Even with the pseudopotential approach, the valence d
wave functions of transition metals are so localized that
electronic-structure calculations for crystals containing
transition-metal elements have been considered impracti-
cal with a plane-wave basis set, and have been performed
with basis sets containing more complicated functions.

With the development of eFicient iterative methods for
the diagonalization of large Hamiltonian matrices repre-
sented by a plane-wave basis set, and with the de-
velopment of particularly smooth pseudopotentials,
it is now possible to calculate the electronic structure
of crystals containing transition-metal elements with a
plane-wave basis set. We present here a pseudopoten-
tial calculation of the electronic structure of cubic ZnS
using a plane-wave basis set. Zinc blende was chosen be-
cause Zn has the most tightly bound valence d electrons
and is therefore the most stringent test for the use of
plane waves for transition metals. We compare the pseu-
dopotential plane-wave (PPPW) results with a calcula-
tion for the same crystal using the all-electron linearized-
augmented-plane-wave (LAP W) method, which is one

of the most accurate methods traditionally used in cal-
culations for transition metals. Special care was taken in
both calculations to reduce and quantify their numerical
inaccuracy. The excellent agreement obtained between
the two calculations indicates the high numerical accu-
racy of both methods.

The calculated structural properties are in good agree-
ment with the experimental results, but we And in both
calculations that the fundamental band gap is underes-
timated by 2 eV and that the Zn d band is less bound
by 3.5 eV. These discrepancies in the band structure are
due to the use of the local-density approximation.

II. COMPUTATIONAL METHOD

The basic procedure used to diagonalize large pseu-
dopotential matrices has been discussed previously, but
there are some changes and improvements that should
be noticed. We will therefore give a short description of
the procedure used in the present work, emphasizing the
improvements with respect to the previous work.

The most important aspect of the procedure is that
the Hamiltonian matrix H is never explicitly calculated;
what is calculated is the result Hg, of operating with the
Hamiltonian on a wave vector @.4 7 Let us consider the
three contributions to the Hamiltonian: the kinetic en-

ergy I~, the non-local pseudopotential VNL, and the local
potential UL„which includes both the local part of the
pseudopotential and the screening potential. It is trivial
to operate with the kinetic energy in a plane-wave ex-
pansion because the kinetic-energy operator is diagonal
in that basis set. For the nonlocal pseudopotential we

use the separable form of Kleinman and Bylander. In
a plane-wave expansion such an operator can be written
as UNg ——A*BA, where B is a diagonal matrix and A
is a rectangular matrix with one of the dimensions equal
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to the number of projection operators in the Ikleinman-
Bylander pseudopotential. Since there is a small number
of these operators, eight per atom in. the present calcula-
tions, the matrix A is much smaller than the matrix VNI„
and therefore the calculation of A'BA@ is much faster
and requires less memory storage than the calculation of
VNLg. The local potential Vl, is diagonal in the posi-
tion representation, or equivalently, it is a convolution
in the momentum representation. The product Vl, g can
therefore be efFiciently calculated with the fast-Fourier
transform (FFT) algorithm. Both the local pseudopo-
tential and the wave function are Fourier transformed
from their momentum representation to a. grid ir, ) in
real space (position representation),

V~(&~): V~(") @(&~):@(")
and now we trivially operate with VI, on g and transform
back to the momentum representation,

V~@('*) = V~('*)@("):V~&(G~)

Mathematically this procedure is exact if the size of the
FFT mesh includes all the plane waves up to a maxi-
murn momentum of 2G „, where G „ is the largest
reciprocal-lattice vector included in the expansion of the
wave function,

g(r;) = ) g(Cz) exp[i(k+ Gz) . r;] . (1)
Cx~

However, in practice we can include only all the plane
waves with momentum smaller than G „ in the FFT,
and still obtain accurate results. This procedure can be
justified if we consider @(Gz) and g(r;) as the two sides
of a dual representation of the wave vector g. Notice
that the local potential is still calculated up to a maxi-
mum momentum of 2G~ „, and that these large momen-
tum components are included in the FFT by wrapping
them into the smaller mesh. Contrary to the previous
suggestion we have found that reducing the mesh size
for the calculation of the charge density using FFT's,
although justifiable in principle, and exact for large val-
ues of G~ is not always numerically accurate, and we

therefore keep a cutoff' of 2G ~ in the calculation of the
charge density.

We use a simultaneous iteration diagonalization
method that is similar to the ritzi$ procedure, but
which was modified to take advantage of the special prop-
erties of pseudopotential matrices without compromising
its robust, ness. The iterative algorithm improves an ini-
tial guess of the eigensolutions by the repeated applica-
tion of several relaxation steps followed by a Ritz step
until a specified number of eigensolutions with the low-
est energy have been determined within the desired ac-
curacy. The relaxation step is designed to yield a fast
convergence to the eigensolutions, while the Ritz step as-
sures the orthogonality of the eigensolutions and the fact
that we are 'obtaining those with the lowest eigenvalues.
The initial guess is obtained either from the diagonal-
ization of a small submatrix of the Hamiltonian (with a
typical size of three times the number of desired eigen-

solutions) or from the eigensolutions of a previous self-
consistent iteration. The relaxation step is the modified
8 acobi procedure,

D i(H —A)y+ y,
where y and A are the current estimates of an eigen-
solution, D is the quasidiagonal matrix with diagonal
elements D;; = II,;, and all the off-diagonal elements
are null except for those with indices i, j & M where

D;&
——II;&. This modified 3acobi relaxation requires

the diagonalization of a small, M x M matrix, whereI is typically three times the number of desired eigen-
solutions, and therefore much smaller than the original
Hamiltonian. The relaxation step is repeated as long as
it keeps improving the current estimate of the eigenso-
lutions, and then it is followed by the Ritz step. For
the Ritz step we diagonalize the Hamiltonian in the sub-
space spanned by (i) the initial guesses for the eigensolu-
tions, (ii) the estimations of the eigensolutions obtained
from the previous Ritz step (these are obviously absent
for the first Ritz step), and (iii) the current estimate for
the eigensolutions from the last relaxation step. Further-
more, a random vector is added to the first Ritz step, or
when a problem (e.g. , two vectors converging to the same
eigensolution) occurs in the relaxation step. A Gram-
Schmidt orthogonalization is performed before each Ritz
step, and linearly dependent vectors are discarded. Fi-
nally vectors that are considered to have converged to an
eigensolution are spared from further relaxation steps.

This modified ritzit procedure is very efFicient for the
diagonalization of pseudopotential matrices, requiring
typically 5 to 15 matrix vector multiplications, but is still
very robust. We have tried some of the ill-conditioned
matrices that have been proposed in the literature as
tough tests for diagonalization procedures, and found
out that our procedure could successfully diagonalize
those matrices. A big advantage of the robustness is that
we can reduce the size of the small matrix used for the
relaxation step to one, and still converge to the correct
solution. The iterative procedure previously described
by one of us could miss some of the eigensolutions if t,he
size of the matrix used in the relaxation step were too
small.

We generated first-principles pseudopotentials for Zn
and S using a new pseudopotential generation methodii
that gives a very fast convergence of the total energy
with respect to basis-set size. We used the core radii of
2.17 bohr for the 4s, 4p, and 3d wave functions of Zn
and the core radii of 1.78 bohr for the 3s, 3p, and 3d
wave functions of S, and the reference configuration was
the ground state of the non-spin-polarized atom. The
atomic all-electron a,nd pseudopotential wave functions
for Zn are shown in Fig. 1. The maximum of the 3d wave
function is significantly displaced to a larger radius, but
since this occurs well inside the core region it should not
affect the quality of the pseudopotential. For compu-
tational efIiciency the pseudopotential was transformed
into the separable Kleinman-Bylander form, with the s
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FIG. 1. Comparison of the pseudopotential (dotted line)
and all-electron (solid line) radial wave functions for atomic
Zn.

pseudopotential chosen as the local component to avoid
the appearence of ghost states. The transferability of
the pseudopotential in its separable form was checked by
calculating the logarithmic derivatives of the all-electron
and pseudopotential wave functions. The pseudopoten-
tial curves track the all-electron curves for a large range
of energies, see Fig. 2, indicating that the transferabil-

4.0

3.0—

2.0—

1.0
C$

ity of the pseudopotential is excellent. Furthermore,
since the calculations were performed with the separa-
ble Kleinman-Bylander pseudopotential, Fig. 2 confirms
that "ghost states" are not present.

Both the LAPW and pseudopotential calculations for
cubic ZnS were performed in the framework of the local-
density approximation (LDA) of the density-functional
formalism. We used the Ceperley-Adler correlation as
parametrized by Perdew and Zunger, and two special
k points in the irreducible wedge of the Brillouin zone. ~

Increasing the number of k points to 10 decreased the
calculated lattice constant by 0.0065 A, and the total
energy by 0.05 eV. The pseudopotential calculations in-
cluded all plane waves with kinetic energy up to 121 Ry,
corresponding to a basis-set sizes of 6000. Increasing
the energy cutoH' until full convergence was obtained de-
creased the total energy by only 0.056 eV. The LAPW
calculations use 400 wave functions and the total en-
ergy was estimated to be converged within 0.01 eV. Ti.e
muKn-tin radii used in the LAPW calculations were 1.80
and 2.31 bohr radii for S and Zn, respectively. Both cal-
culations were done semirelativistically, a fully relativis-
tic LAPW calculation increased the binding energy by
0.076 eV.

III. RESULTS

The structural properties of cubic ZnS calculated with
the PPPW and LAPW methods are in excellent agree-
ment with each other. The calculated binding energy as
a function of volume is shown in Fig. 3 and the two curves
agree with each other within a few hundredths of an
eV. The structural properties derived from a Murnaghan
equation-of-state fit to the calculated data points are
compared in Table I to the experimental values. 3 The
lattice constant and binding energies calculated with the
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FIG. 2. The logarithmic derivatives of the all-electron

(solid line) and pseudopotential (dotted line) radial wavefunc-
tions for atomic Zn are shown at the radius of r=2.2 bohr.
The atomic eigenvalues are indicated by the small arrows.
The agreement between the two sets of curves displays the
high transferability of the pseudopotentials, and the absence
of "ghost states" in the Kleinman-Bylander form of the pseu-
dopotential.
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FIG. 3. The calculated equations of state are shown for
cubic ZnS. The solid squares and circles are the calculated
points with the pseudopotential and I APW methods, respec-
tively. The solid lines are Murnaghan equation-of-state inter-

polationsns.
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ap (A.)
Bo (GPa)
&o
E, (eV)

PPPW

5.349
82
4.6
7.22

LAPW

5.353
87
4.9
7.25

Experiment

5.4041
76.9
4.91
6.33

See Ref. 23.

TABLE I. The structural parameters of cubic ZnS calcu-
lated with the pseudopotential (PPPW) and LAPW methods
are compared with experiment. The theoretical values of the
lattice constant ao, bulk modulus Bo, pressure derivative of
the bulk modulus Bo and cohesive energy E, are obtained
with a At to the Murnaghan equation of state.
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two methods are in excellent agreement with each other
and are correspondingly I%%uo smaller than the experimen-
tal lattice constant and 14% larger than the experimen-
tal binding energy. This slight underestimate of the lat-
tice constant and overestimate of the binding energy are
typical of well-converged local-density calculations. The
agreement between the calculated values of the bulk mod-
uli and its pressure derivative is not perfect, but these are
high derivatives of the total energy versus volume and are
therefore very sensitive to small numerical difFerences.

The agreement between the two computational meth-
ods for the electronic properties is also excellent. The
density of states calculated with a tetrahedron method

PPPW
—13.07
—6.63
—6.16

0
1.839
6.15

LAPW
—13.11
—6.55
—6.09

0
1.814
6.19

Experiment

—13.5
~ —10

—10
0
3.80
8.35

Xg
X3„
Xg
Xl c
X3,

—11.77
—4.74
—2.29

3.19
3.87

—11.84
—4.70
—2.25

3.18
3.87

—12.0
—5.5
—2.5

4.9

Ig„
I.g„
I3„
Lg,
L3~

—12.10
—5.43
—0.90

3.05
6.75

—12.16
—5.38
—0.88

3.05
6.76

—12.4
—5.5
—1.4

See Ref. 23.

TABLE II. The electronic eigenvalues (eV) of cubic ZnS
at some high-symmetry points calculated with the pseudopo-
tential (PPPW) and LAPW methods are compared with
experiment. Both calculations were performed with the
Ceperley-Adler correlation for a lattice constant of a=5.41
A, and the charge density was converged with two special /;

points. The number of basis functions used are 6000 and
400 for the PPPW and LAPW calculations.

FIG. 4. Densities of states for ZnS calculated with the
pseudopotential (solid line) and LAP W (dashed line) are com-
pared. Notice the change of scale for the d band of Zn. The
density of states is given in states per eV and per unit cell.

and a mesh of 512 points in the Brillouin zone is shown
in Fig. 4 and the eigenvalues calculated at a few high
symmetry points and a lattice constant of 10.225 bohr
are compared in Table II with experiment. The band
structure of ZnS was calculated previously with nonrel-
ativistic methods. We verify that the pseudopoten-
tial and band-structure calculations agree within 0.04
eV. Most noticeable is the excellent agreement for the
3d bands of Zn, showing that the use of a large core ra-
dius for these states is justifiable. The agreement of the
local-density band structure with experiment is good ex-
cept for the band gap and position of the Zn d bands.
The fundamental band gap is underestimated by 2.0 eV

( 50Fo), and the Zn d bands are at the top of the het-
eropolar gap instead of the bottom, a diA'erence of 3.5
eV. The problems with the fundamental band gap have
been discussed extensively in the literature, but less at-
tention has been given to the position of the d bands. We
find that the problem is not with the local density per se,
but with the interpretation of the eigenvalues as quasi-
particle excitation energies. The one-electron picture
neglects core-hole relaxation efFects and other many-body
correlation efFects. The problem is less severe for more
extended states, as evidenced in Table II.

We also generated a pseudopotential for Zn which
treats the jd electrons as part of the core and therefore
has only two valence electrons. We found that the calcu-
lated structural properties were incorrect, with the pre-
dicted equilibrium lattice constant being 4.84 A, show-
ing that the repulsion of the 3d closed shell is crucial for
determining the equilibrium geometry. 2 The density
of states calculated with that pseudopotential also show
that including the 3d electrons in the core has an inhu-
ence on the band structure similar to that found for other
II-VI systems. 7
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IV. CONCLUSIONS

Our study of cubic Zns shows that it is now practi-
cal to perform pseudopotential plane-wave calculations
of the total energy and electronic structure of crystals
containing transition-metal elements with tightly bound
d electrons. The excellent numerical agreement obtained
b etween the pseudopotential calculation and the all-
electron LAPW calculation illustrates the high degree of

accuracy that is obtained with modern methods of elec-
tronic structure theory.
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