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Magnetic-field-induced resonant tunneling across a thick square barrier
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The spatial part of the wave function is calculated exactly for tunneling in a magnetic field,

confined within a thick square barrier. Due to the presence of the field perpendicular to the current
Bow, transmission is heavily reduced and a threshold is found, based on very general kinematical ar-

guments. However, magnetic-field-induced scattering states could be present, which have a high

probability density inside the barrier giving rise to resonant tunneling. They are responsible for a
strong dependence of the transmission on the energy and the angle of incidence of the incoming

beam. These resonances are analyzed as a function of an applied external bias and the possibility of
their appearance in the I-V characteristic is discussed. They certainly aftect any typical time for
tunneling, as shown in the limiting case of a totally rejecting magnetic barrier.

I. INTRODUCTIVE

Model calculations on single-electron tunneling across
a junction in the presence of a magnetic field were first
discussed in the context of the so-called "Larmor clock, "
to give an operative definition of the tunneling traversal
time. ' There have been great disputes on the subject,
starting from the evaluation of the expected value of the
spin under the inhuence of a magnetic field, restricted to
the barrier. Of course the magnetic fie1d also afFects the
spatial part of the wave function mainly when the barrier
is thick or the field is strong.

On the other hand, the production of high-quality het-
erostructures allows for reliable experimental tests of the
theory. ' The applications of these devices are growing
wider and wider, together with double-barrier hetero-
structures or superlattices, in which resonant tunneling
across the gate can give rise to sharp nonlinearities in the
I-V characteristics.

The efFect of the magnetic field on these structures is
currently under study: most of the experimental results
refer to thin insulating barriers.

We are concerned with magnetic fields parallel to the
barrier (in the z direction) and perpendicular to the
current Sow (y direction).

Because the magnetic field extends everywhere, the
single-particle stationary solutions of the Schrodinger
equation vanish asymptotically on both sides of the bar-
rier. These correspond to Landau level wave functions
centered at some point on the y axis which is fixed by

k~~ =k„ in the Landau gauge. Deep in the bulk each ei-
genvalue is degenerate because it does not depend on k .
Getting closer to the barrier the breaking of the transla-
tional invariance removes the degeneracy and each 1evel
gives rise to bands of states, which are still localized in
space and labeled by k . Transport in the presence of an
external bias needs scattering against impurities which al-
lows for the hopping between these states.

In discussing resonant tunneling across double barrier
structures, Helm et a/. relate features in the I-V charac-

teristic to states within the double we11 (,electric sub-
bands), which are sensitive to an increasing magnetic
field. These features eventually disappear and are super-
seded by magnetic ones related to Landau levels localized
at the barrier with an equal probability amplitude on
both sides of it. Often accumulation layers can be formed
on the side of the incoming current (1hs) at the inter-
face, ' ' what enhances the structures in the voltage
dependence of the current. In fact, the layer traps elec-
trons at the interface, so that a two-dimensional gas is
formed with subbands at discrete energy and little disper-
sion. Also in this case the conduction is due to an hop-
ping from one of the states in the accumulation layer to a
deformed Landau level corresponding to classical skip-
ping orbits.

In this work we are concerned with magnetotunneling
across much thicker square barriers. The efFects quoted
above are a consequence of the presence of the magnetic
field outside the barrier. Our aim is to show that in our
case the magnetic field inside the barrier itself can induce
extra features in addition to the ones just mentioned.
They mostly resemble to proper resonant states centered
inside the insulating layer.

Tunneling currents in thick barrier diodes have been
measured recently in good agreement with WKB calcula-
tions. " This approximation allows for a direct estimate
of the traversal time of tunneling, according to the
definition given by Buttiker and Landauer.

When the barrier is thick, the broadening of the Lan-
dau levels on both sides of the barrier is so large that they
can be viewed as a continuum of incoming and outgoing
states. However they are still localized states, so that
current continuity can only be assured by means of some
scattering process.

We have studied the extreme case of a magnetic field
localized strictly within the barrier, so that the Landau
levels outside of it are absent. This means that asymptot-
ic states are free waves in our picture and use can be
made of the usual definition of the transmission
coeKcient, within the conventiona1 transfer Hamiltonian
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formalism for the tunneling current. '

Our full calculation shows that, if the barrier is thick
enough, resonances appear centered within the barrier
and the tunneling acquires a strong dependence on the
energy and on the angle of incidence of the incoming Aux.
We also give arguments to show how the resonances
inhuence all kinds of times that could be defined in the
scattering process.

To characterize their effect on the incoming Aux fur-
ther, we discuss also the limiting case of an infinitely
thick magnetic barrier. The discussion is essentially illus-
trative: because the beam is totally reAected, no ambigui-
ty can arise in defining a peculiar time associated with the
scattering. We show that the phase delay time and
Smith's dwell time' coincide and they are found to de-
pend in a characteristic way on the resonances. In partic-
ular, when the energy of the incoming Aux matches one
of the values for a resonance, they become longer or
shorter than the time associated with the classical trajec-
tory, depending on the parity of the Landau level from
which the resonance originates.

Landau gauge is particularly suitable to describe the
magnetic field: the vector potential is a constant at the
right of the barrier, shifting the k vector perpendicular to
the barrier. It is interesting to note that for any given en-
ergy there is a corresponding angle of incidence which al-
lows for a description of the scattering as if it were one-
dimensional with an effective k~~ dependent scattering po-
tential.

In the next section we report the details of the calcula-
tion and show that the kinematics of the scattering imply
the occurrence of a voltage threshold for the conduc-
tance.

In Sec. III we describe the resonances induced by the
magnetic field and classify them according to their sym-
metry, having care for a realistic choice of the values of
the parameters which refer to junctions like GaAs/
Al„Ga, As/GaAs. Because our potential has an inver-
sion center, even and odd parities of the scattering ampli-
tudes can be decoupled and resonances can be classified
according to their parity. ' We also give qualitative argu-
ments inferring what happens to the resonances in case
the magnetic field is not strictly confined to the barrier.
In presence of a voltage bias we expect that the peaks of
the transmission are still present in the most favorable
condition, although they do no longer saturate to 1.

In Sec. IV the semi-infinite barrier case is analyzed to-
gether with the change of the reAection time when the en-
ergy of the incoming beam is close to that of a resonance.

Our results are collected and discussed in the last sec-
tion on the basis of the calculation of the I-V characteris-
tic that we are currently undertaking.

II. THE CURRENT DENSITY
AND SCATTERING KINEMATICS

In this section we derive the current density of a beam
of charged particles of spin- —, impinging on a magnetic
barrier. We call magnetic barrier a confined magnetic
field between the planes y =0 and y=l, and added to it
an external potential that is constant for y & l and y & l.

H= (p„—yBe/c) + (p +p, )
1 2 1

2m
'

2.
+U(y)+g*p~S, B, O~y ~$

H= (p lBe/c) +— (p +p )+ W, y) l
1 p 1

2m 2m

where m * is a suitable effective mass of the electron, g*
is the effective g factor, p~ is the Bohr magneton, and
S, =+—,'. A constant energy shift 8'has been a11owed for
at the rhs of the barrier, to mimic a difference in the
chemical potentials of two metals, when thinking of a real
heterojunction with an applied voltage. The choice of the
Landau gauge permits separation of the motion along the
three axis. The eigenfunction of H belonging to the ei-
genvalue E of the continuous part of the spectrum has
the form

expi(k x+k z) .+( )

y —(y) x z

The x and z components of the momentum are constants
of motion. On the left and right sides of the barrier we
have

x+(y)
x-(y)

x+(y)
x-(y)

nA+
exp(ik y)+ p~ exp( ik y), y—(0

o,a+
pD exp(ik'y ), y ) l

where a and P fix the spin polarization of the incoming
particles. The wave vector k' satisfies the equation

p2E= (k, +k +k, )2m*
2

1

2m
A'k — +A' (k' +k, ) + W . (4)

This equation has consequences on the kinematics, as we

The results presented here are well known and can be
found in textbooks. However we collect them here, both
to fix notations and to stress the three-dimensional nature
of the problem studied. Because the magnetic field is
confined and the barrier potential has finite width, it is
straightforward to define the transmission and reAection
coefficients for the particle beam, which is asymptotically
plane-wave-like.

We consider an uniform magnetic field directed along
the z axis. In the Landau gauge the vector potential has
an x component only, which is given by

=0, y (0
= —y8, O~y ~l
= —l8, y) I

where 8 is the intensity of magnetic field. The Hamil-
tonian of a particle of charge —e (with e &0) has the
form

H= (p, +p +p, ), y(01
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discuss later in this section. The constants 3 and D are
fixed by the specific behavior of U(y) in the inside of the
barrier. The coupling of the spin to the magnetic field
rises and lowers the barrier by the value g p&B/2 and
we label by + the coefficients depending on the spin po-
larization.

The expression of current density J in a magnetic field
is

J= A P* —V+ —A it + V X (Q*SQ),
m l C 2m pl

where S=u/2 and o. ,a,o, are the three Pauli's ma-
trices. If the particle moves in the x —y plane (k, =0) we
obtain for y &0

haik„

; [ lal'(I+
I

A I')+ IPI'(I+
I

A

+2&[(lal'A++ IPI'A* )exp(2ik y)]]

29'[(Ial A+ —
IPI A * )exp(2ik y)],

the packet during the reAection and its penetration in the
forbidden region. It makes sense to define the transmis-
sion and the reAection coefficients t and r only with
respect to the motion along the y axis. In particular,
denoting by J"the y component of the incoming Aux:

Ak
„' & Ial'+ IPI') .

r is defined as the ratio of Jy Jy for y &0 and J"itself,
while the transmission t is the ratio of J for y ) I with
respect to J".That is,

lal'I A+ I'+ IPI'I A

I
al'+ IPI'

I'+ IPI'ID

I
a I'+ IPI'

when k' is real. For a purely imaginary k' we have t =0
and r = 1. The flux conservation t + r = 1 requires that

k'
ID+ I

=
I A+ I

for k' real,

„' [Ial'(I —
I A+ I')+ IPI'& I —

I
A I')],

J, = 2oc[(a*PA + +P*aA * )exp(2ik~y )] .

Ak'
„'-(lal'ID+ I'+ IPI'ID

J, =O .

If k'( =i g) is purely imaginary the wave function decays
to the right and

mk„—eat/~
& la I'ID ~ I'+ IPI'ID I')exp& —2&y )

J =0,
& I

a I'ID+ I' —IPI'ID I')exp& —2' ),
gyes m PFl

2%(a*PD D+ )exp( —2/y ) .
g* m*

pyz
* 2 m

On the left-hand side of the barrier, the x and z com-
ponents of J depend on the y coordinate, due to the in-
terference between the incoming and the reflected wave.
On the other hand, at the right-hand side of the barrier
(y ) l ) we have to distinguish between two cases. If k' is
real and the wave propagates, then is VX(Q*Stij)=0 so
that

Ak —eBl /c
(Ial'ID+ '+ IPI'ID '), —&E «k, «&E, —k&k &k,

where k =QE —k, is the modulus of the momentum of
the incoming wave in the x —y plane. Then

k =(k —k )'
y X

k,
' = [k' —k,'+L. (k„—L /4) —W]'" .

Here L is the width of the barrier l in units of k. The
reality of k' defines the region in the k —k„plane in
which the solution is propagative at the rhs of the bar-
rier. For —W & L /4 this occurs when

—+k —W +L/2 k„k for k ~L/4+ W/L,

while if —W) L /4 the range is

—k &k &k for 0&k —L/4 —W/L

= I for k~ imaginary .

These conditions are satisfied by the proper solution of
Schrodinger equation and are implied by the Wronskian
theorem. ' This scheme is independent of the actual
shape of the potential and the variable separation permits
us to discuss an effectively one-dimensional scattering
problem parametrized by k .

We now discuss how Eq. (4) determines the kinematic
of scattering process. Here and in the following we use
magnetic units, measuring the energies in units of
fico, and the lengths in units of A, =(iii/2m *co, )'~

(co, =e8 /m *c is the cyclotron frequency).
For a given value E of the energy we have

In this case J is directed perpendicularly to the y axis
and J and J, have an exponential decay. If we take into
account a wave packet that is totally reflected, this
current parallel to the barrier describes the lateral shift of

—+k —W'+L/2«k «k for k ~ L/4 —W/L . —
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I=2Io f dE[f(E) f(E+eu )]—

X f f dk dk, t(QE —k„k„), (10)

We note that, no matter what 8' is, it is found that
k =k' when k =ko=L, /4+8 /L, and for k ) ko
(k„&ko) is k~ ) k~ (k~ &k~). Figure 1 shows these re-
gions in the k —k„plane. The points (k, k„) laying below
the curve k = —(k —8 )'~ +L/2 and over k = —k
correspond to an imaginary k ', and there is r = 1.

Our aim is to discuss the inhuence of a transverse mag-
netic field on tunneling through GaAs/Al Gai As/
GaAs heterostructures, " for which it is m*/m =0.067
and g = —0.44. The height of the barrier is of the order
of 100 meV. At the maximum field intensity of the exper-
iment described in Ref. 11 (B=4 T), ha~, is of 10 meV.
The particles with spin up or down see a barrier which is
0.1 meV lower or higher, respectively. Because we do not
focus on the effect of the magnetic field on the particle
spin in this work, we take advantage of the expected
smallness of the spin-dependent part of the current and
we neglect it.

In the theory of tunneling the link between the calcu-
lated transmission coefficient t(k, k ) and the measured
current is given within the transfer Hamiltonian formal-
ism' by the equation

ko

FIG. 1. The domain of definition of the transmission
coefficient t as a function of k and k . The three cases (a) —(c)
refer to the three diA'erent ranges of values of W (the constant
external potential on the right-hand side of both the barrier and
the magnetic field): (a) W) 0, (b) —L /4 & W & 0, (c)
W & —L'/4.

where I is the tunneling current for unit area, v is the ap-
plied voltage, Io=em, /8~ P. is a reference current, and

f is the Fermi distribution. The domain 2), on which
k„,k, must be integrated, is given by Eqs. (7) and (9) with
8'= —ev = —V. If the temperature is so low that
EF ))ks T (e.g. , compare with Ref. 11, in which EF —12
meV and T=4.2 K), then

I=2Io f dE f f dk dk, t(QE k„k, ) . (1—1)
F

The shape of 2), discussed before, implies that if

L VE
4 L

then t =0 and 5=0. Thus, the application of a magnetic
field to the barrier introduces a threshold voltage V, in

the I-V characteristic of the device. When the barrier is

so thick or the magnetic field so strong that

III. LANDAU LEVELS APPEARING AS RESONANCES
IN THE TRANSMISSION

Here we analyze the transmission coen.cient of a single
barrier

U(y)=UO —,0&y &L .Vy (13)

dition (12) is not fulfilled and no threshold is found. At
8=4 T and EF=12 meV the threshold would appear
when the insulating layer thickness l is larger than 480 A
(note that the maximum value of Ref. 11 is i=430 A).
We stress that the shape of the potential barrier U(y) for
0&y &l does not play any role in the argument. The
domain 2) in which t is nonzero remains the same when

changing U(y) while the values of t vary.

L 2

EF &
16

this threshold is given by

L 2

V, = LQEF . —

(12)
We have included, in addition to the magnetic field, an
electric field V/I. , parallel to direction of current Aow,

biasing the junction (Uo) 0). If we neglect the effect of
the spin y+(y) becomes indistinguishable. They satisfy
the Schrodinger equation for 0 ~ y ~ L:

(14)

l2 2+2
V =

2f1'

leB +2EF
for EF &

V'm" c gm*c

In the samples taken into account by Gueret et al." con-

The dependence on the intensity of the magnetic field is
more explicit if we leave the magnetic units for the mo-
ment

in which

yo=2(k„+ V/L), a = U, —k' —V'/L' —2k„V!L .

Even and odd solutions of this differential equation
are the parabolic cylinder functions' Y& (a,y —yo ),
l'2(a, y —yo ), respectively, whose power series are
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a & 1 y 3 7 yY(a,y)=1+ + a +— + a +—a +
2! 2 4! 2 6!

a3' 2 3 3'
Yz(a, y)=y+ + a2+—

Uo+L /4

0

13 y+ Q + Q +
2 7!

k„=ko—L/4

in which the prefactors of y'/n!, appearing in both the
series, a„which are nonzero, are connected by

a„+,=a a„+,'n(—n —1)a„

k„=ko

In terms of these independent solutions, whose Wronski-
an is 1, we have

Uo —L /4
k„=ko+ L//4

y{y) BY&( y yo)+CY2(a y yo) .

The matching of y and y' at y =0 and l gives a linear sys-
tem for A, B,C,D. We have

w, —
ky ky' w 4

—l ( ky w ~ + ky' w 3 )

w, +k~k~w4+i(k w2 —k'w3)

Zik
D =exp( —ik'L )

w, +k k'w~+i(k w2
—k~w3)

in which

w, = Y&(a, —yo)Y2(a, L —yo)
—Y2(a, —yo)Y', (a,L —yo),

w2 Yl(a yo) Yz(a, L yo)
—Y~(a, —

yo ) Y', (a,L —
yo ),

w3 = Y'&(a, —yo) Y2(a, L —yo)
—Yz(a, —yo)Y, (a, L —yo),

w~= Y, (a, —yo) Yz( La—yo)

—Y, (a, yo) Y, (a, L ——yo) .

The transmission coeKcient is given by

4k k'

The behavior of t as a function of Uo, L, V, E,k„,k,
can be analyzed more easily by observing that it is the
same as that arising from an equivalent one-dimensional
scattering problem. In fact, the diff'erential equation (14)
for y(y) can be rewritten as

—X"+ u (y)X= k,'X,
in which a particle of energy k is scattered by the poten-
tial u(y) given by

u(y)=0, y &0

u (y) = —(y L)—y(k„—ko )+ Uo, 0 ~—y ~ L
4

u(y)= —L(k„—ko), y &L .

FIG. 2. The eftective one-dimensional potential u(y) along
the y axis, for k = ko (the most favorable condition for the reso-
nances to appear) and for k =ko+L/4. Note that the reso-
nances can only be found inside this k -vector interval.

The equivalent potential u(y) is an explicit function of
Uo, L,k„and depends on V via

ko =L /4 —V /L . (17)
The values of E and k, fix the range of values of k„ac-
cording to what was discussed in the preceding section.
The effect of the magnetic and the electric fields appears
as a deformation of the barrier, whose shape changes
with k . When k„=ko the barrier becomes symmetric
around y =L /2, and a parabolic attractive potential adds
to Uo, for 0 ~y ~ L, giving a minimum at L /2, in which
u (y) = Uo —L /16. This minimum appears at y =0 when
k =ko L/4 and disa—ppears at y =L when k„=ko
+I /4. Figure 2 shows this behavior. Therefore, when
Uo and L are large enough, the effective potential allows
for resonances which appear around k =ko. At this
value of k, in fact, the potential is attractive at its
center. Because the shape of the potential is parabolic,
these resonances fall roughly at k values given by

L 1
k =U — +n+—

and there is a finite number of them because the non-
negative integer n must satisfy the condition

L 1n(
16 2

which follows from the requirement that is ky ( U{).
These resonances show up in the direct calculation of t
given by Eq. (16) which is plotted in Fig. 3 as a function
of k at k„=ko. Here and in the following we have
chosen k, =0. The lowest resonance is roughly located at

k —Uo —V/2+(V/L ) + —,
'

It is very sharp and saturates to 1, as it is expected due to
the parity symmetry of the effective potential. There are
four resonances appearing in Fig. 3 up to the energy
k = Uo +k o. The resonances which are higher in energy
become broader and broader the more the confining of
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0.8— 5,2.05

0.6— p.6—

04 Up
5,2. 15

0.2—

0
2 3

k„=Up

7 8 9 10

energy

0
5.49 5.495

energy

5.505 5.5 1

FIG. 3. Peaks of totaotal transmission due to resonant tunneling
as a function of the energy (units of A'co ) for k =k and k, =0.
The

s o co, or —k0 and k, —0.
o e repu sive barrier, i.e.,e dashed line indicates the edge of th l

'

t e beginning of the classical transmission (k = U )y 0 ~

FIG. 5. The stron reg uction of the resonance peak in the
ecause volt-transmission when we move away from k =k . Be

age is zero the maximum of the resonanc
'

lce is a ways centered at
the same energy (units of fico, ).

the effective potential is reduced. At hi he . ig er energies
ransmission is also allowed classicall and t"e

tions, which a, w ic appear in the picture, are due to the usual
quantum interference. The prese f thnce o e magnetic field
does not change their shape, but their
va ue o as been chosen in Fig. 3 large enough to show
various resonances, for the sake of demonstration. Th

o e transmission using the param t
ons ra ion. e

arne ers given in
Ref. 11 is reported in Fig. 4. H I, lere is smaller; just one
resonance can be found, and this is rather broad

According to Eq. (19) the effect of increasing the volt-
age is to shift the position of the peaks. %'hen k„=ko
the effective potential u (g) no longer depends on k and
the value o

n s on 0 an
e o ~ or which the resonance ex' t

'
dis s is in epen-

ent o o too. The total energy, being the sum of k and
k, reaches its minimum value when k =0 tho=, at is, w' en
the voltage V=L l4 [see Eq. (17)]. This minimum is ex-
pecte to be found close to the value U + —,

' —L /160

which corresponds to the untrun t d h
~

l

nca e armonic poten-
tia . Due to the presence of the repulsive barrier th te rue

that.
f k for the resonance is just a bit higher than

This is relevante ant because a nonlinearity in the I-V
characteristic could appear whe f hen one o t e resonances is

evice a en into account innear the Fermi level. The device t k

at 4.8 m
e . is EI; =1.7. On the other hand, the minimum

'
mum is

so that
magnetic units for a voltage of V=5. 8 hin t at case,

so at t ese eA'ects are absent, no matter h la er ow arge the
o age is. o let them appear, higher Fermi levels and

thicker barriers are needed. The
vaue o" L is 4 U —E +—'1 L' e minimum required

f L ' Q p
—

F —,. For the values of parame-
ters quoted previously the first resonance falls at the Fer-

course the condi-mi energy when I =8.5 and V= 18. Of
tion is even less favorable when incidence is not in the
plane, because one has to add k t th
onance.

o e energy of the res-

The transmission coefficient integrated over k„and k,
is needed for the evaluation of the current. Therefore let
us now discuss the k dependence of these resonances.
At zero voltage, Fig. 5 shows that the hei ht of the k
in the res

~ ~ ~

'g o epea s
rama ica y insonant transmission is lowered dram t

moving o the value of kp, while their location in k is

0,8—
U =5,L=8

V=8,kp=1

p.6—

0.4—
V= j. .43,kp=0. 896

Up =5.7 1,L=4.78

p 4—

0.2—

2
y =Up

0 I

2

energy

2 4

energy
8

FIG. 4. The same as Fig. 3 with the choice of the~ ' o p

10 FIG.G. . The first resonance peak of Fi . 3 iso ig. is plotted as a func-
ion o energy (units of Ace, ) for various values of k ranging

from 1.2 to 0.8 with a step of 0.05. Th
ig er energies due to the presence of the voltage bias
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unaffected. On the contrary their location is also moved
when a voltage is applied, as appears in Fig. 6. Their
width remains rather small when moving k away from
ko. These features imply that resonant transmission, in-
duced by the magnetic field, is strongly directional, in the
sense that only particles impinging with definite values of
k and k given by Eqs. (17) and (18) are totally transmit-
ted, while t drops heavily outside of this direction. As al-
ready stated in Sec. I this is just the k value at which the
plane wave emerging from the barrier keeps the same k
vector as the incoming one. This does not mean, howev-
er, that the particle beam crosses the barrier without be-
ing deflected. In fact, the components of the velocity are
what matters to fix the direction of the outcoming beam
semiclassically.

To better characterize the properties of the transmis-
sion and the nature of its resonances we move on to dis-
cuss the phases of the amplitudes of transmitted and
reflected waves D and /I given by Eq. (15) which we label
with the subscripts T and R, respectively:

8 p,

0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

2 3 4 5 6 7 B 9
energy

k = 0.75

kyw2 kyw3
4&T =——arctan (mod vr)

w i +kykyw4

ky wp+ kyw3
CIz =—+AT —arctan (mod n) .

w) +kykyw4

(20)

(b)

In Figs. 7(a) and 7(b) the phases are plotted versus energy
for the two cases of k equal to or different from ko, re-
spectively. They show a jump at the resonances each
time the transmission goes through a maximum. As seen
from the picture, when k =ko they differ for a constant.
In fact, in this case w3 = —w2, so that the last contribu-
tion in NR vanishes, and we have

7T
C~ =—=&IT (mod ~) (k, =k0) . (21)

Because, in this case, the effective potential is even for
parity around L /2, this and other features of the scatter-
ing can be easily justified if one uses eigenfunctions of
definite parity. ' Out of the potential barrier an S matrix
can be defined which is labeled by the index l referring to
even (i =0) and odd parity (l= 1) in terms of scattering
amplitudes. Using the definitions given in Ref. 14 we find
that

Q
I I I I I I I I I I I I I I l I I I I 1 I I I I I I I I I I I I I I I I I I I

2 3 4 5 6 B 9 10
energy

FIG. 7. (a) Phases of the reAected and the transmitted beam
corresponding to the transmission of Fig. 3 at k =k0=1.0 as a
function of energy (units of Ace, ). They differ exactly by 77./2.
(b) The same as (a) for k =0.75. Because in this case is k Wk0,
transmission is no longer total at the resonances. The effective
barrier is not symmetric and the difference between the phases
increases with the energy.

S0, 1 — y (r1 2 /+ 1/2 R
)

—ik I iW i4
(22)

S'=exp(2i5') (k, =k0) . (23)

where the upper (lower) sign refers to even (odd) parity.
It is immediately seen that, due to Eq. (21), both S and
S' are of unitary modulus, and the flux is conserved.
This was expected because, being the effective potential
of a given well-defined parity when k =ko, the parities
of scattering eigenfunctions do not mix. The determina-
tion of the inverse tangent, which fixes the relationship of
Nz with respect to NT in Eq. (21) has to be chosen care-
fully, in such a way that S,S' are continuous when the
energy passes across a value of total transmission.

It follows that it is useful to define phase shifts 5' for
the two parities according to

0 I I I

2
I f I I I I t I I I I I I I I I I I I I I

3 4 5 6 7 B 9 10
energy

FIG. 8. Even and odd phase shifts as defined by Eq. (23) for
k = k0, as a function of the energy (units of %co, ). They cross at
the resonance values: the parity of the resonant state is that of
the phase shift that undergoes the larger variation around a
multiple of ~/2. The parameters are those of Fig. 3 and the first
resonance is an even parity one.
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Phase shifts cross at the energy values for which the total
transmission takes place. Only one of the two varies
strongly in energy in a resonance, jumping by m, thus al-
lowing for the identification of the parity of the resonant
state. This can be seen in Fig. 8, which reports four reso-
nances under the classical transmission threshold. The
jumps in the phases are alternatively in the even and odd
channels, corresponding to even and odd metastable lev-

els in the parabolic well within the barrier.
We close this section with a brief discussion of what is

going to happen if we relax the assumption that the mag-
netic field is contained entirely into the square barrier.
The magnetic field spans a region of width L larger than
that of the barrier Lo. If the latter is located just in the
middle of the field region the effective potential u(y) for
the motion along the y axis becomes

0, y&0
Lo

y /4 —yk, 0(y (——
2 2

U L Lo L Lo L Lo
u (y)= .y /4 —yk + Uo ——y ——+; —— (y (—+

2 2 2 '
2 2 2 2

L Lo
y /4 —yk„—V, y) —+

2 2

L /4 —Lk —V, y)L .

We have again included a voltage bias V across the bar-
rier. Due to the presence of the magnetic field this poten-
tial depends on k as before. The barrier is symmetrical-
ly deformed around its center at k„=ko=L/4 V/Lo.
The parabolic potential y /4 —yk has the effect of shift-
ing down the barrier and digging a well in the middle of
it. The minimum value of the potential, which is located
at L /2 when k =ko, is

L V L
u —=Uo +— —1

2 16 2 Lo

in the transmission with true resonances of the potential.
This is strictly true only at zero bias, when k =ko is
k'=k and the maxima of transmission saturate to 1.
Applying a bias, a step of height V(L /Lo —I) arises at
the right-hand side of the barrier. Changing k the step
can be eliminated (k =ko=L/4 —V/L). This makes
the barrier unsymmetrical, however, and the transmission
is never 1. We expect our considerations to hold and the
maxima to t to be found for ko ~k ~ko. Within this in-
terpretation at any value of L and Lo the nth level is a
resonance when

while at the edges of the square barrier we have V L
o

—1 —n ——'
2

Lo
u

2 2

Lo—u —+
2 2

Lo—u +
2 16

Bound states or resonances can appear in this well. Lim-
iting ourselves to a qualitative discussion, we neglect the
effect of the attractive wells that the magnetic field pro-
duces on the two sides of the barrier. We also approxi-
mate the levels (bound states or resonances) in the barrier
with the corresponding values given by an untruncated
harmonic potential k =u(L/2)+n+ —,'. The condition
for a maximum in the transmission at these energies is

L 1 L Lo
V —1 &u —+n+ —&u —+

Lo 2 2 2 2

Lo & 2&4%—2 .

Thus the only quantity that fixes the total number of lev-
els is the width of the barrier independent of the exten-
sion of the magnetic field. Above we identify the maxima

It is apparent from this inequality that if the number of
levels to be present is 1V, the width of the barrier Lo has
to be

Therefore a magnetic field leaking out of the barrier re-
quires the latter to be higher if structures have to be
found in the transmission. The calculation in this work is
only concerned in the case of L =Lo. This is just for the
sake of simplicity. On the other hand a confined magnet-
ic field is needed in this picture to take advantage of the
gauge chosen. In fact, the gauge used here [Eq. (2)] al-
lows for separation of the coordinates and makes the
analytical discussion of the scattering feasible. Only free
waves in the asymptotic regions guarantee a well-defined
transmission coefficient, in the direction of the current
flow. However, within the gauge chosen this only hap-
pens if the magnetic field is limited to a finite region of
space.

IV. SEMI-INFINITE BARRIER: REFLECTION TIME

It is interesting to discuss the case when a particle
beam impinges on a semi-infinite magnetic barrier occu-
pying the region y ~0. In this case the flux is totally
reflected no matter what its incoming k vector is. We
consider the simplest situation assuming that U(y) is a
potential step Uo in the y +0 half-space. We show that
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the Landau levels also play a role in the backscattering.
We now put in Eq. (14) yo equal to 2k„a equal to

Uo —k, and y(y) is the standard solution of the parabol-
ic cylinder equation Y(a,y ) going to zero when y ~ oo

Its asymptotic behavior for y )) a
~

is

Y(a,y)-exp( —y /4)y

1 a . 1 aY(a,y ) =cosn —+ — Y —sinn —+ —Y
4 2 ' 4 2

Because r =1, the amplitude of the rejected wave is of
unitary modulus and is given by

Y'( Uo —k, —2k„)—i Qk —k Y( Uo —k, —2k, );q,
A

Y'(Uo —k, —2k )+iQk k—Y( Uo —k, —2k )

so that its phase is

Y(UO —k, —2k )
C&~ =~—2 arctanQk —k,

Y'( Uo —k, —2k„)
(24) 2 +'m!&7r 10

(2m —1)!!&4m+1 ~,
(28)

even (odd) as even (odd) times and label them with 0(1).
If n =2m then o.= —m and the even time is given by

All the physical information about the scattering is em-
bodied in this phase and in its energy dependence. The
phase delay time 7 is obtained by deriving N~ with
respect to the energy E=k, that is,

because of the identity

4( —m)
( )r( —m)

7$ (25)
If n =2m + 1 the singularity arises from p= —m and the
odd time is

We analyze r in the case of normal incidence (k =0),
when Y can be expressed in terms of the I function'

&4m+32 m!&~ 1

(2m —1)!!(2m+1)co,
(29)

Y(a, O) =
2 /2+1/4I.

4 2
1

m 1— 1

4(2m+1)0
7m

The odd and even times are related by the equations
1/2

Y'(a, O) =—
2«2 —1/4I-

4 2

1
7m

0
7m +1

1

4(2m +2)

1/2

which yields

~co, = — — [E(4(a)—4(P) ) —1 j,r(a)r(p)
2' r'(p)+ —'r'(a)

2

(26)

where

Upa= —+ —E, p= —'+a
2

and 4' is the logarithmic derivative of the I function (p
function). ' Increasing the energy, the arguments of the
I and p functions go through values which are negative
integers and diverge there. This happens when the ener-
gy crosses a Landau level shifted by the value of the step
Up.

E=n+ —,'+ Up .

Odd (even) n implies a(p) being a negative integer. For
these values of the energy the limit of Eq. (26) has to be
handled analytically.

Let us study the case Up=0 first. We indicate the
phase delay times corresponding to the energies with n

The recurrence relation
1/2

p p m+1 4m+1=7
Pl+ — 4Pl +5

2

gives the sequence of the even times, which decreases,
starting from

TOCK'~
—2+77'

Figure 9 shows the values of these sequences. We note
that any even time is greater than all the odd ones. The
even and odd times converge to the same limit from
above and below, respectively. This limit can be evalu-
ated making use of Wallis's formula'

2m+1 t m ~oo
I ( —,') — 2&m ~,

(2m —1)!!

which implies

11m 7mSc lim 7mSe

This is just the time spent by a classical charged particle
in the semi-infinite magnetic field, whatever its incoming
momentum is. When the energy goes to infinity, the clas-
sical description of the motion is recovered, as expected.
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When a potential step Uo is superimposed to the mag-
netic field the time sequences rescale becoming

1/2
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When Uo&0 we have

s &1, s' &1.
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FIG. 9. The ratio between the reAection time and the classi-
cal time vs the energy (k ) (units of fico, ). Here the particle
beam impinges normally on a magnetic field occupying the
right-hand side half-space.

For Uo large enough the role of even and odd channels
interchange. The even channels become the fast ones,
while the odd channels become slower and slower the
higher the barrier grows. This is shown in Figs. 10(a) and
10(b). When Uo (0 the scattering states require

fm r 1 ~ » I
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Uo= 10
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FIG. 10. The ratio between the reflection time and the classi-
cal time vs the energy (k ) (units of Ace, ) when a repulsive step
barrier is added on top of the magnetic field: (a) Uo =10, (b)

Uo =100
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FIG. 11. The same as Fig. 10 except for the step barrier
which is attractive here: (a) Uo = —10, (b) Uo = —100.
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that is, their energy has to be positive. Denoting by mo
the integer part of

~ Uo ~
/2 —

—,', we have, for m ~ mo,

In other words, an attractive potential step makes the
even channels faster and the odd ones slower than the
corresponding channels when only the magnetic field is
present. The increasing of the well depth enhances this
effect as can be seen in Figs. 11(a) and 11(b).

In conclusion the analysis of the phase delay time em-
phasizes that in correspondence of the energies of the
Landau levels the dilation or shortening of the time of
backscattering is at a maximum, with respect to the clas-

sical traversal time. In this sense, due to the quantum
resonance, the energies of the Landau levels are the
fastest or slowest channels f~r a particle to be backscat-
tered, depending on their parity. On the contrary classi-
cal particles employ the same time to emerge from the
barrier whatever the incoming energy is.

The same results can be found when calculating the
dwell time introduced by Smith' as the ratio of the num-
ber of particles in the barrier to the incoming Aux of the
particles:

Ak o

In our case we have

2 k' k, —
Y (Uo —k, y

—2k )dy .
Y' (Uo —k —2k )+(k —k )Y' (Uo —k —2k )

As before, we restrict ourselves to the normal incidence
case, that is k„=O. When the energy c=k is equal to
Uo+n+ —,', the Ybecomes a Hermite polynomial:

Y( —n —
—,',y ) =2 " e H„(y/V'2)

so that the dwell time becomes

+2' 2"+' !QnUo+n+ —,
'

~c H„' (0)+2(U +on+ —,')H„(0)

Because'

H2 (0)=(—1) 2 (2m —1)!!, H2 + &
(0):0

H2 (0)=0, H2 ~i (0)=2(2m + 1)H2 (0),
choosing n even or odd we get

&2'(2m )! 0

Q Uo +2m + —,
' [(2m —1 )!!j

&2~(2m + 1 )!Q Uo+ 2m + —,
'

(2m+1) [(2m+1)!!]
1=+m

so that the dwell time and the phase delay time exactly
coincide.

V. CONCLUSIONS

When magnetic fields are involved, the three-
dimensional nature of the tunneling has to be retained if
one wants to give a sensible estimate of the tunneling
current. The theoretical description of the tunneling in
the presence of a magnetic field immediately comes
across the difhculty, how the incoming and the outgoing
Aux of particles can be defined properly. In the case of
thin barriers, the dynamics of the tunneling process can
be described by means of localized wave packets, whose
motion is numerically simulated. It has been shown, ' '

that quantum interference effects constitute just a small
correction to the results obtained by application of the

Ehrenfest theorem and can be interpreted in terms of
classical concepts as trajectories, skipping orbits and so
on. When thicker barriers are considered, this method is
unsatisfactory, because the wave packet undergoes a
strong deformation in tunneling across the barrier and
numerical results are less transparent. On the other hand
square barriers which are thick and low can be easily de-
scribed by means of a one-dimensional WKB approxima-
tion for the transmission and reAection coefficients and
this picture should be reliable in describing a steady-state
tunneling current. This amounts to confining the mag-
netic field inside a finite region of space and taking free
waves as the asymptotics of the scattering states.

Here we solve the Schrodinger problem of tunneling
across a square barrier with uniform magnetic field local-
ized just in the barrier region and orthogonal to the
current How, possibly in the presence of an applied volt-
age. This is to show that extra features can be contained
in the full transmission, which are lost when a semiclassi-
cal picture is adopted. At the end of Sec. III the condi-
tions have been discussed under which the peaks in the
transmission can survive when the magnetic field extends
outside the barrier. Nonetheless effects such as band
bending, inversion layers, and tunneling from and to Lan-
dau levels are not included in our model. These are often
invoked as the cause for structures in the I-V characteris-
tics.

In the case of a thick barrier the tunneling current is
expected to be heavily reduced by the presence of a mag-
netic field. However careful investigation of the
transmission as a function of the energy, k vector, and
applied voltage, shows that the simultaneous presence of
both the repulsive barrier of the insulating layer and the
magnetic field can give rise to resonances in the spectrum
which are ignored in the semiclassical picture. These are
remnants of Landau levels localized in the barrier and
show up as very sharp peaks with strong dependence on

k!! (the wave vector parallel to the barrier which is con-
served in the tunneling). Their location in energy is not
far from that of Landau levels of an uniform magnetic
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field shifted by the height of the barrier according to Eq.
(19). The effects of the resonances on the transmission
are striking only in a very small (E,k~~) domain. There-
fore the total current as a function of the applied voltage,
being an integrated quantity, is most likely insensitive to
these, except when their energy is close to the Fermi lev-
el. Obviously, they can be moved to lower energies by in-
creasing the voltage. But, as we have shown in Sec. III,
the values of the parameters corresponding to real de-
vices require a very high bias to make the lowest reso-
nance close to the Fermi level.

We have undertaken the full calculation of the current
relative to this geometry, to check whether these effects
can originate special features in the conductivity. Our re-
sults show that this can happen, as we will report in a
forthcoming publication. Anyway, these resonances are
not expected to be able to give rise to negative differentia
resistance in the characteristic. The latter is the better
signature of tunneling via lower-energy resonant states,
which would be present if double-barrier heterostructures
could localize states in the insulating region.

The full three-dimensional problem reduces a one-
dimensional scattering by means of an effective potential
parametrized by k~~. This allows us to recover some
peculiar features of scattering in one dimension. It can
be seen that, for a particular bias-dependent angle of in-
cidence, the effective potential becomes symmetric
around its center. In this case the resonance can be
classified according to its parity using the odd or even

phase shifts along the lines proposed in Ref. 14.
In Sec. IV we discuss the case of an uniform magnetic

field located in the halfspace on the rhs with a particle
fIux incoming from the lhs. Although the beam of parti-
cles is totally refIected, some effects of the Landau reso-
nances are still present. In the particular configuration
studied, no ambiguity arises in defining a time for the
scattering because all possible definitions reduce to the
reAection time. For instance, we have checked that
Smith's dwell time' and the phase delay time coincide.
The time spent in the barrier by the particles oscillates
around the classical value: the maxima and the minima
are located just at the Landau resonances. With no bar-
rier present, the maxima correspond to the even levels
and the odd ones to the minima. The addition of an at-
tractive step barrier on top of the magnetic field does not
change the picture. On the contrary, if the barrier is
repulsive the even and odd resonances interchange their
role of fast and slow channels. In both cases the higher is
the barrier the 1arger are the deviations from the classical
time.

When the barrier has a finite width the definition of a
tunneling time is a subtle question. ' ' However, we
infer that in a thick barrier the deformation due to the
magnetic field allows resonant tunneling across it and the
Landau resonances localized at the barrier could have
some infIuence on the traversal time of tunneling, what-
ever its definition is.
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