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A formalism for phenomenologically including the effects of nearest-neighbor lattice relaxation
on deep levels associated with substitutional impurities in semiconductors is outlined and used to in-
vestigate such effects in GaP and Si. This approach is an extension of the theory of Hjalmarson
et al. [Phys. Rev. Lett. 44, 810 (1980)]. Lattice relaxation is accounted for by characterizing the
nearest-neighbor off-diagonal matrix elements of the defect potential by parameters that depend on
the impurity- and host-atom bond lengths. For symmetric, “breathing-mode” relaxations, only two
parameters are needed, one each for the A4,-symmetric and the T,-symmetric deep levels. By com-
puting the A,- or T,-symmetric levels as a function of the appropriate parameter, the effects of
varying amounts of lattice relaxation can be systematically explored. To determine these parame-
ters for a specific impurity-host system, a variation of the inverse bond-length-squared scaling law is
used. The results of applying this formalism to several impurities in GaP and Si are presented and
compared with experimental data and with other theories.

I. INTRODUCTION

The properties of a semiconductor are influenced by
defects which produce deep levels' % in the band gap.
Unlike shallow levels,” which primarily control the type
and magnitude of the conductivity, and which are pro-
duced by the long-ranged Coulomb potential of a defect,
deep levels primarily control the charge-carrier lifetime
and are produced by the central-cell, atomiclike potential
associated with a defect. Shallow levels are well de-
scribed by effective-mass theory.” On the other hand,
there have been many theories of deep levels in semicon-
ductors! 7® and they are of varying levels of sophistica-
tion and accuracy. Furthermore, many of these theories
cannot be rigorously compared with experiment because
of various simplifying assumptions. For example, the
effect of lattice relaxation has often been neglected.® In
this paper, we outline a simple phenomenological theory
of this effect and use it to show how the deep levels of a
substitutional impurity are changed by lattice relaxation.

A simple, yet widely used® !* deep-level theory was
developed several years ago by Hjalmarson et al.® These
workers have shown that the chemical trends in the deep
levels of substitutional impurities can be understood us-
ing a Koster-Slater!* model where only the central-cell
part of the defect potential is treated and where this po-
tential is modeled by the assumption that it is proportion-
al to the atomic-energy differences of the defect and host
atoms. This theory was designed to be a global theory
capable of easily predicting trends in deep levels as a
function of defect or host. Generalizations of the theory
of Hjalmarson et al.® to treat various types of defects in
the bulk and on the surface have been successful in their
predictions of such chemical trends in the defect-related
properties of numerous materials® ~'* and have often pro-
duced results which are in semiquantitative agreement
with both experiment® ¥ and more sophisticated
theories.'® Nevertheless, this theory suffers from the
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drawback that it neglects the effects of lattice relaxation.
Thus, while it is useful for predicting chemical trends, its
quantitative accuracy is limited.

In the present work, we generalize the theory of Hjal-
marson et al.® to include lattice-relaxation effects. A
rigorous treatment of these effects would require a total-
energy calculation. However, the necessity to perform
such a calculation would destroy the simplicity and
universality of the theory of Hjalmarson.® Our theory
circumvents this problem by treating lattice relaxation
phenomenologically. It thus requires that the amount of
lattice relaxation be either guessed or easily computed
from a simple model. The rigor of a total-energy calcula-
tion is sacrificed in this manner. In exchange, however,
much of the complication of such a calculation is also el-
iminated. In fact, our formalism retains much of the sim-
plicity and universality of the approach of Hjalmarson
et al.,® while considerably improving its quantitative ac-
curacy. It retains the ability to easily predict chemical
trends by treating the diagonal matrix elements of the de-
fect potential using the assumption of the Hjalmarson
et al.® of proportionality to atomic-energy differences.
The effects of lattice relaxation are included by character-
izing the nearest-neighbor off-diagonal matrix elements of
this potential by two phenomenological parameters, one
for the A,-symmetric states and one for the T,-
symmetric states. These parameters depend on the bond
lengths of the impurity and host atoms. By computing
deep levels of a particular symmetry as a function of the
appropriate parameter, trends with varying amounts of
lattice relaxation can be systematically explored. To
determine these parameters for specific impurities, our
formalism uses a generalization of Harrison’s'” inverse
bond-length-squared scaling law for off-diagonal tight-
binding matrix elements.

We compare the results of our theory to experimental
data for the deep levels produced by N and O substitu-
tional for P in GaP and for the S, Se, and Te deep levels
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in Si. We find that the inclusion of lattice-relaxation
effects considerably improves the agreement between
theory and experiment in comparison with the results ob-
tained by the theory without lattice-relaxation included.®

Ideas, similar to those presented here, for incorporat-
ing lattice-relaxation effects into their theory were dis-
cussed by Hjalmarson et al.® in their original work. Fur-
ther, they used these ideas to estimate such effects on the
deep levels of a few impurities in a few hosts. In the
present paper, these ideas are used to develop a general
phenomenological theory of lattice-relaxation effects on
deep levels and to systematically explore such effects for
deep levels in GaP and Si.

A previous generalization of the theory of Hjalmarson
et al.® to include lattice-relaxation effects was made by
Talwar, Suh, and Tang'® by combining ideas similar to
those outlined here with a theory of total energies.!” As
just mentioned, inclusion of a total-energy calculation in
the problem necessarily makes the theory of Ref. 18 more
complicated than that outlined here. We note, however,
that despite this fact and despite the fact that second-
nearest-neighbor relaxation was included in the more so-
phisticated theory of Ref. 18, the resulting deep levels fail
to improve on the results of Ref. 6 in comparison with ex-
periment.'

II. THEORY

A. Background

Following previous work based on the theory of Hjal-
marson et al.,®® % we describe the perfect-crystal host
Hamiltonian H, by using the Vogl et al.?® sp3s* sem-
iempirical, nearest-neighbor, tight-binding band-structure
model. This Hamiltonian has five states per atom (the
four sp? states and an excited s* state) with 13 parame-
ters which were obtained by a fit to pseudopotential band
structures.?! These parameters may be found in Ref. 20.
The use of an excited s* state enables a description of the
conduction band which can treat both direct- and
indirect-band-gap semiconductors. This model repro-
duces the principal features of the Si and GaP
conduction-band structures, particularly near the I and
X points of the Brillouin zone. We note in passing that
the band structures employed by Talwar, Suh, and Tang!®
were different than those used here.

Here we consider the problem of the calculation of the
deep levels produced by neutral, sp3-bonded, substitu-
tional impurities only. In principle, our formalism could
be generalized to treat lattice-relaxation effects for more
complicated defects such as pairs® and complexes.’ Also,
a generalization to calculate the deep levels due to
charged defects and the associated charge-state split-
tings'®?? is possible but tedious.

In its original form, the deep-level theory of Hjalmar-
son et al.® makes the following approximations concern-
ing the form of the localized, central-cell defect potential.
(1) The on-site matrix elements are proportional to the
atomic-energy differences of the impurity and the host
atoms. (2) Only the nearest-neighbor host atoms around
a substitutional impurity are affected by the potential.
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(3) The effects of lattice relaxation are usually small. As
will be discussed in detail below, the off-diagonal matrix
elements of the defect potential are a direct measure of
this relaxation. This last assumption thus allowed Hjal-
marson et al.® to neglect these matrix elements so that
the defect potential became diagonal in the tight-binding
basis. In this manner, a simple, global theory of deep lev-
els which could be applied to a large number of defect-
host systems and which was capable of predicting a wide
variety of chemical trends was constructed. As men-
tioned above, this theory and its extensions have been
successful in such predictions in numerous applica-
tions.® %16 Hjalmarson et al.® estimated that the
neglected lattice-relaxation effects should shift their pre-
dicted deep levels by a few tenths of an electron volt. The
accuracy of their predictions for deep levels of specific
defects was thus estimated to be in this range. In the re-
sults presented below, we show that lattice-relaxation
effects indeed produce shifts in the predicted A4;-
symmetric deep levels which are of this order of magni-
tude. (We also show that such effects are much smaller
for T,-symmetric levels.) Thus, in this sense, the results
of the present theory show that the third assumption of
the theory of Hjalmarson et al.® was justified in the con-
text of the development of a global theory. We show
below, however, that by treating the off-diagonal matrix
elements of the defect potential with a generalization of
Harrison’s!” inverse bond-length-squared scaling law
combined with a simple covalent radius model,? the
theory of Hjalmarson et al.® can be straightforwardly
generalized to include lattice-relaxation effects. Further,
we also show that the resulting theory retains much of
the simplicity and universality of the Hjalmarson et al.®
approach, while considerably improving its accuracy.

The theory of Hjalmarson et al.® also neglects the
splittings produced by the different charge states of a de-
fect. It has been generalized to include such charge-state
splitting effects, which have also been found to be on the
order of 0.1 eV for the impurities and host materials
which have been studied.!®?? Since we only consider
neutral impurities here, such effects will not be con-
sidered further. Instead, we focus our attention on
lattice-relaxation effects.

When a defect is added to a semiconductor, it will in-
teract with the host, the lattice stability around it will be
altered, and the surrounding host atoms will be dis-
placed.?* Because deep levels are produced by a short-
ranged defect potential,‘*6 the distortion of the lattice
around a defect will strongly affect them. For a realistic
calculation, the effects of lattice relaxation clearly have to
be included.

Such effects have been considered in previous tight-
binding-based deep-level theories. In particular, as men-
tioned above, Talwar, Suh, and Tang18 have generalized
the theory of Ref. 6 using a similar approach to that out-
lined here. In their theory, the off-diagonal matrix ele-
ments of the defect potential, and thus the lattice distor-
tions, are determined using a theory of total energies.!’
However, the results of this approach fail to improve
upon those of Ref. 6 in comparison with experiment for
deep levels in Si and Ge. As we discuss below, our ap-
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proach uses a simpler method than that of Ref. 18 to
determine the defect-potential off-diagonal matrix ele-
ments, yet it obtains considerable improvement upon the
results of Ref. 6 for predicted deep levels in comparison
with experiment. We also note that Singh and Madhu-
kar?® have developed a tight-binding-based deep-level
theory with which one can include lattice-relaxation
effects. This theory combines a transfer-matrix technique
with ideas similar to those used here to treat the lattice
relaxation. Singh and Madhukar? have studied the deep
levels produced by the arsenic antisite defect in GaAs
and by O on the anion site in GaAs;_ P, using their
method, and have found reasonable agreement with data
for these cases.

Lattice-relaxation effects have also been included in
several self-consistent pseudopotential calculations of
deep levels and other defect properties.?® This approach,
while certainly more accurate than that outlined here,
has the disadvantage that it requires considerably more
computational effort than our formalism. In addition, it
is difficult to predict trends with this type of theory. Our
approach requires only slightly more computational
effort than the original theory of Hjalmarson et al.,® so
that it retains much of its simplicity and ability to predict
global chemical trends. To treat substitutional impuri-
ties, the computational labor required to implement our
theory is comparable to that which is necessary for the
treatment of paired defects without lattice relaxation®
and is less than that required for triplet defects® in the
same approximation.

B. Deep levels with lattice relaxation

In order to generalize the theory of Hjalmarson et al.®
to include lattice relaxation, we modify their third ap-
proximation and allow for nonzero off-diagonal matrix
elements of the defect potential. The other two approxi-
mations of the theory of Ref. 6 are retained. Since only
nearest-neighbor coupling is included in this way, our
theory can only account for the relaxation of the nearest
neighbors of an impurity. The relaxation of second and
higher neighbors could, in principle, be included by a
generalization of the present approach to allow for
higher-neighbor matrix elements of the defect potential.
In a tight-binding picture, where the defect potential for-
mally corresponds to a difference between the matrix ele-
ments of the defect containing and perfect host crystals,
the nearest-neighbor off-diagonal matrix elements of that
potential correspond to differences in the transfer-matrix
elements of these two Hamiltonians. Our method ex-
ploits this fact to phenomenologically determine the off-
diagonal matrix elements of this potential.

For an impurity on the anion site at the origin in a
zinc-blende crystal, the defect potential, including the
off-diagonal matrix elements which can be used to de-
scribe the lattice relaxation, can formally be written as

V=31ia0>Uf<ia0l+ 3 [lia0> Vic<jed|+H.c.],
i ij,d

(1)

where a and ¢ refer to the anion and cation, R=0 is the
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unit cell at the origin, / and j label the orbitals, the sum
on d is taken over the four nearest-neighbor cations, U/
is the diagonal matrix element of the potential at the
anion site for orbital i, Vl-‘}” is the off-diagonal matrix ele-
ment of the defect potential which couples the oribital i
at the anion site to orbital j at the cation site, and H.c.
denotes the Hermitian conjugate. Formally, U/ is a
difference in the on-site matrix elements of the Hamil-
tonians for the defect containing and perfect crystals and
V¢ is a difference in transfer matrix elements. For a
similar impurity on the cation site, the labels a and ¢ are
interchanged in Eq. (1). In Eq. (1), the sums on i and j
are taken only over the s, p,, p,, and p, orbitals following
previous work.*®71* Also following previous work, we
assume that all orientations of the p orbitals have the
same defect-potential energies. In the case of a
diamond-structure semiconductor like Si, the labels ¢ and
¢ lose their meanings except to denote the atom at the
origin and its nearest neighbor.

The Koster-Slater theory!® is a convenient method for
determining the bound-state energies E of the impurity
which are produced by the defect potential of Eq. (1). In
this method, these energies are given by the solutions to
the determinantal equation

det[I—G%E)V]=0, 2)
where
GUE)=(E—H,) ! 3)

is the perfect-crystal Green’s function, H, is the sp’s*
host Hamiltonian, and I is the identity matrix. The ad-
vantage of the Koster-Slater!> method is that the deter-
minant of Eq. (2) only needs to be evaluated in the sub-
space of the defect potential. In the present case, this (in
general) yields a 20X 20 determinant (five atoms and four
orbitals, one s and three p, per atom).

This determinant can be simplified by symmetry con-
siderations. The point group for an isolated point defect
in a zinc-blende-structure semiconductor is 7;. Point de-
fects with sp® hybrid bonding can thus have defect states
with either nondegenerate A4, (s-like) or triply degenerate
T, (p-like) symmetry. In this paper, we consider only the
effects of symmetry conserving, ‘“‘breathing mode” distor-
tions of the host lattice around the impurity. That is, we
assume that the four nearest neighbors to the impurity
atom relax either inward or outward in a symmetric
fashion so that the 7; symmetry is preserved. In this
case, it is easy to show?’ that the block diagonalization of
the host Green’s function and the subsequent factoring of
Eq. (2) into smaller determinants can be done in a manner
identical to the procedure for a point defect in the ab-
sence of relaxation.® The results of this manipulation are
that Eq. (2) becomes

det[I, —GXE)V,]{det[I,—GXE)V,]}*=0, )

where for i =s and p, GX(E), V; and I, are, respectively,
the Green’s-function submatrix, the defect-potential sub-
matrix, and the unit matrix in the subspace i that results
from these operations. In writing Eq. (4) and in what fol-

lows, the labels s and p are, respectively, shorthand nota-
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tion for the A,- and the T,-symmetric states. Equation
(4) enables one to calculate the deep levels for the 4, and
T, states separately. It can also be shown?’ that the
defect-potential submatrix of symmetry i has the form

V,=|ia0> U, <iaO|
+2[|ia0>a,.<icd|+H.c.], (5

where ¢; is a linear combination of the V,‘jc” and U, is a
shorthand notation for U/. For impurities on the cation
site, the labels a and ¢ are interchanged in Eq. (5).

By combining Egs. (4) and (5) and treating U; and «; as
parameters, the deep-level energies for a substitutional
impurity can be computed as a function of these quanti-
ties. For example, for a; =0, which corresponds to the
case of the theory of Hjalmarson et al.® with no lattice
relaxation, one can use Eq. (4) to generate the deep-level
energy E versus diagonal defect-potential energy U, dia-
grams which are one of the common results of this
theory. For fixed a;70, such a diagram can also be gen-
erated. Similarly, for fixed U;, one can generate deep-
level energy versus a; diagrams using Eq. (4). As is dis-
cussed below, the parameters a; represent the effects of
lattice relaxation on the defect potential. Thus, the gen-
eration of such diagrams allows, as is the case with the
theory of Hjalmarson et al. ,% the exploration of chemical
trends in the deep levels (by varying U; for fixed «;).
However, it also allows one to explore the trends in the
deep levels with varying amounts of lattice relaxation (by
varying «; for fixed U,).

C. Deep levels for specific impurities

In order to calculate the deep levels of a particular im-
purity, the parameters U; and «; must be specified. For
the diagonal-matrix elements, we use the empirical rule
developed by Hjalmarson et al.® that these quantities are
proportional to the atomic-energy differences of the im-

purity atom and the replaced host atom. That is,
U;=Bi(ej—ey) , (6)

where i=s and p, €} and €); are the atomic energies of
the impurity atom and the host atom for orbital i and 3;
is a constant determined for orbital i by a fit to experi-
mental data.® In Ref. 6 it is shown that B,=0.8 and
B,=0.6.

Our model for the off-diagonal matrix elements of the
defect potential is based upon Harrison’s'” model for the
nearest-neighbor transfer-matrix elements of the host
Hamiltonian. In this model, it is shown that these scale
approximately as the inverse bond-length squared.!” The
transfer-matrix elements in the sp*s* model which we use
to characterize the host crystal also have this property.?
We assume that this same scaling rule holds for the
transfer-matrix elements of both the defect containing
and the perfect crystal. Since the off-diagonal matrix ele-
ments of the defect potential are differences in such
transfer matrix elements, this allows them to be written
as

=—GC[(d;)"

—(dy)7?], (7
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where d; and dj; are the bond lengths of the impurity and
the host atoms, respectively, and the first minus sign has
been chosen for convenience. A similar form for the off-
diagonal matrix elements was assumed by Talwar, Suh,
and Tang.!® Following Vogl, Hjalmarson, and Dow,* C;
is a proportionality constant which depends on i but
which is independent of the material. We assume that
this quantity is the same for the imperfect and perfect
crystals. The values of C;, have been determined empiri-
cally in Ref. 20 to be C,=10.5 eV A% and C,=—3 eV A%

It is clear from Eq. (7) that the off- dlagonal matrix ele-
ment «; is a measure of the lattice relaxation produced in
a state of symmetry i by an impurity. From that equation
and the numerical values of the C,, it can be seen that for
outward relaxation (dy <d;), a, (a,) is positive (negative)
while for inward relaxation (dy >d,) a; (a,) is negative
(positive). Lattice relaxation can thus be completely
characterized in both magnitude and direction by the two
parameters o and «,,.

In order to calculate a; for a particular impurity, the
bond lengths d; and dy must be specified. The host bond
length dj; is well known for all of the common semicon-
ductors!” and experimental data can thus be used for this
purpose. Our model for the impurity bond length d; uti-
lizes the concept of covalent radius,!”?* originally pro-
posed by Pauling.?® We assume that

di=r;+ry, (8)

where r; and ry are, respectively, the covalent radii of
the impurity atom and the nearest-neighbor host atom.
Such radii are tabulated for most atoms.!”?* We believe
that Eq. (8) is a reasonable assumption for a number of
reasons. First, a similar assumption for the host yields
bond lengths within 1% of the experimental values. In
addition, the d, computed via Eq. (8) are within 1% of
the experimental values for the appropriate solid (if it ex-
ists) formed from the impurity atom-host atom molecular
unit. Furthermore, molecular-dynamics calculations, dis-
cussed elsewhere,?® which use forces obtained from the
electronic  structure via the Hellmann-Feynman
theorem®® yield relaxed impurity bond lengths which are
within 10% of those predicted by Eq. (8) for the
impurity-host systems considered here. Finally, the
values of d; obtained from Eq. (8) are also within 5% of
those obtained in the valence force model of Martins and
Zunger.3!

The special case of oxygen substitutional for P in GaP
needs to be discussed. For this case, Eq. (8) gives
d;=1.92 A, similar to the Ga—O bond length in
GazO3,32 which corresponds to inward relaxation of the
nearest-neighbor Ga atoms. However, several years ago,
Morgan®® argued that because of the weakness of the
Ga—O bond in GaP:0, the Ga atoms relax away from
the oxygen impurity. A similar model was proposed ear-
lier by Jaros’? and later given a semiquantitative
justification by Baraff, Kane and Schliiter.>* If the relax-
ation for GaP:O is indeed outward, one would clearly ex-
pect d; for this impurity-host system to be greater than
the simple covalent radii the model predlcts Morgan has
estimated that the Ga—O bond in GaP:O is about 0.85 A
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TABLE I. Bond lengths, covalent radii, and parameters « for various impurities in GaP and Si.

Host-impurity

system dy (A) ru (A r (AP d; (A) a, (V) a, (V)
GaP:N 2.36 1.26 0.70 1.96 —0.85 0.24
GaP:C 0.77 2.03 —0.66 0.19
GaP:Sb 1.36 2.62 0.36 —0.10
GaP:0° 0.66 1.92 —0.96 0.27
GaP:04 0.66 2.77 0.52 —0.15
Si:S 2.35 1.17 1.04 2.21 —0.25 0.07
Si:Se 1.14 2.31 —0.07 0.02
Si:Te 1.32 2.49 0.21 —0.06
Si:N 0.70 1.87 —1.10 0.31
Si:C 0.77 1.94 —0.89 0.25

#Reference 17.

"Refernece 23.

‘Without correction from Ref. 33.
dWith correction from Ref. 33.

larger than in Ga,0;, or d;=2.77 A, which corresponds
to outward relaxation. We have calculated deep levels
for GaP:O using both the covalent radius model for d;
and the d; with Morgan’s®® correction. As shown below,
we find that the corrected bond length gives much better
agreement with experiment. The molecular-dynamics
calculations,” mentioned above, yield d;=2.78 A, which
also tends to support Morgan’s model.>

In Table I, we show the values of the host and impurity
bond lengths we have used and the resulting values for a;
and a, for various impurities substitutional for P in GaP
and for various impurities in Si. It can be seen, either
from Table I or merely by noticing the relative sizes of C
and C,, that |a,| <<|a,| for all impurity-host systems
considered. Since the a; are a measure of the effect of lat-
tice relaxation on deep levels, this effect should thus be
much more important for s-like (A ;) states than for p-like
(T,) states. Due to this fact, only the results of the calcu-
lation of A ,-symmetric deep levels are discussed below
and the T, states will not be discussed further.

III. RESULTS

A. Chemical trends and trends with varying amounts
of relaxation

We have used the model described above to calculate
the effects of lattice relaxation on the A4 ,-symmetric deep
levels produced by substitutional impurities in GaP and
Si. Typical results are shown in Figs. 1-4. Figures 1 and
2 display results for deep levels in GaP, while Figs. 3 and
4 show results for Si. In all figures, we have used the
symbol a as an abbreviation for the parameter a; dis-
cussed in Sec. II.

Figures 1-3 show diagrams for the deep-level energy E
versus the diagonal impurity s potential U, for the deep
levels produced by impurities substitutional for the ap-
propriate host atom. Such results for impurities on the
anion site (substitutional for P) in GaP, for impurities on

the cation site (substitutional for Ga) in GaP, and for im-
purities in Si are shown in Figs. 1, 2, and 3, respectively.
The various curves in these figures correspond to results
obtained for the various values of the parameter a shown
in the labels. In Figs. 1-3, the zero of energy corre-
sponds to the top of the valence band, and the horizontal
scale and the labeled impurities on the top of the figures
correspond to the appropriate values of U, calculated
from atomic-energy differences via Eq. (6). Chemical
trends (variation in E, for fixed a, as the impurity is
changed) can thus be obtained from these figures as is
usual in the Hjalmarson et al.® approach. Since the pa-
rameter @ is a measure of lattice relaxation, trends for
varying amounts of relaxation (variation in E for fixed
U;, as a is changed) can also be extracted from the figures
by comparing the E versus U, curves for different values
of a. The curves in Figs. 1-3 for a=0, which corre-
spond to the case of no lattice relaxation, are the same as
the results obtained in Ref. 6.

The deep levels for a particular impurity with a partic-
ular value of a can be obtained from Figs. 1-3 by finding
the intersection with the curve for that value of a of a
vertical line drawn from the label for that impurity at the
top of the figure. If there is no intersection for a particu-
lar case, no A ,-symmetric deep level is predicted in the
band gap for that impurity with that value of a.

Inspection of Figs. 1-3 reveals the qualitative effects of
lattice relaxation on A ,-symmetric deep levels. First, it
can be seen that the <0 curves all have chemical trends
which are similar to the a=0 (no lattice relaxation)
curves. However, it can also be seen that the deep levels
for a fixed U, are shifted upward towards the
conduction-band edge as a becomes increasingly negative
and downward towards the valence-band edge as a be-
comes more positive. As was noted above [see Eq. (7)],
for A, states, negative a corresponds to inward relaxa-
tion (dy >d;) and positive a corresponds to outward re-
laxation (dy <d;). These results thus show that inward
relaxation about an impurity moves its A4,-symmetric
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deep level toward the conduction band, while outward re-
laxation moves it towards the valence band.

It is worth noting that one-dimensional model calcula-
tions for A4,symmetric antibonding states®’ yield similar
results. In particular, in these model calculations, it was
also found that such states are pushed towards the con-
duction band (valence band) for inward (outward) relaxa-
tion. Since Hjalmarson et al.® and others®> have shown
that the A ,-symmetric states associated with substitu-
tional impurities are conduction-band derived, antibond-
ing hostlike states, this simple model result lends support
to the results of the present calculations. We note that

3
o
<
O
% GaP
(% o IMPURITY ON P SITE
z
&
o — - a=-10
% 0 —— a=-05
e o=0.0
.................. O<=O5
"""""" o=10
slve ‘ ‘ ‘
-30.0 -20.0 -10.0 0.0 10.0
P-SITE IMPURITY s POTENTIAL (eV)
FIG. 1. Energy levels of 4, symmetry produced by an im-

purity substitutional for P in GaP. The abscissa is the diagonal
part of the s-orbital defect potential U;. The ordinate is the
band-gap energy with the zero equal to the top of the valence
band. The sp*-bonded impurities are shown at the top of the
figure at the values of U, obtained from atomic-energy
differences. Results are shown for various values of the parame-
ter a, which characterizes the off-diagonal matrix element of the
defect potential. Since this parameter is a measure of the mag-
nitude and direction of the nearest-neighbor lattice relaxation
around the impurity, the dependence of the deep levels on this
relaxation can be obtained by comparing curves for different a.
The a=1.0-, 0.5-, 0.0-, —0.5-, and — 1.0-eV results are shown,
respectively, as dashed, dotted, solid, dotted-dashed, and
chained curves. These values of a correspond to impurity-
bond-length to host-bond-length ratios d;/dy of 1.45, 1.17,
1.00, 0.89, and 0.81, respectively. The abbreviations CB and VB
indicate the conduction-band and valence-band edges, respec-
tively.
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the opposite trend has been predicted by Talwar, Suh,
and Tang,'® who included both first- and second-neighbor
relaxation in their theory. It is possible that such
higher-neighbor relaxation, neglected here, might reverse
our predicted trend. However, we believe this is to be un-
likely based on results obtained in molecular-dynamics
simulations where second-neighbor relaxation was includ-
ed.” Further, as is discussed below, the agreement of the
present model with experimental data also tends to
confirm our predicted trend.

This trend can be illustrated by discussing a few
specific cases in detail. For example, consider the N im-
purity, substitutional for P in GaP. From Fig. 1 it can be
seen that this impurity is predicted to have a deep level
which changes from about 1.88 eV above the valence
band for a=1.0 eV (corresponding to an outward relaxa-
tion with d;=1.46dy), to about 2.10 eV for «=0.0 (no
relaxation or d;=dy). Similarly, this deep level moves
further toward the conduction band as a is decreased
below zero, occurring in Fig. 1 at about 2.21 eV for
a=—0.5 eV (corresponding to an inward relaxation with
d;=0.89dy;) and becoming conduction-band resonant for
a<—0.9 eV (d; <0.82dy). Using our covalent radius
model for d; for this impurity (see Table I), we obtain
d;=0.83dy, which yields a=—0.85 eV. From Fig. 1,
this predicts the N deep level at 2.27 eV, which compares
quite favorably with the experimental value of 2.34 eV, or

F

ENERGY IN BAND GAP (eV)

2lve
-30.0

-20.0 -10.0 00 10.0
Ga-SITE IMPURITY s POTENTIAL (eV)
FIG. 2. Energy levels of 4, symmetry produced by an im-

purity substitutional for Ga in GaP. The remainder of the in-
terpretation is as in Fig. 1.
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FIG. 3. Energy levels of 4, symmetry produced by a substi-
tutional impurity in Si. The a=0.6-, 0.3-, 0.0-, —0.3-, and
—0.6-eV results are shown, respectively, as dashed, dotted,
solid, chained, and dotted-dashed curves. These values of a cor-
respond to impurity-bond-length to host-bond-length ratios
d;/dy of 1.21, 1.09, 1.00, 0.93, and 0.87, respectively. The
remainder of the interpretation is as in Fig. 1.

just below the conduction-band edge.***’

Similar trends can be obtained for Ga-site impurities in
GaP by examination of Fig. 2. For example, consider the
P on Ga antisite defect “impurity.” From Fig. 2 it can be
seen that a large variation in the associated deep level is
predicted, depending on the amount of lattice relaxation.
In fact, by varying «, this level can be made to move
across a significant fraction of the band gap. Specifically,
this level changes from about 0.71 eV for a=1.0 eV (out-
ward relaxation with d;=1.46dy) to about 1.10 eV for
a=0.0 (no relaxation, d;=dy), to about 1.63 eV for
a=—1.0 eV (inward relaxation with d; =0.81dy). Using
the covalent radius model (see Ref. 23) yields a predicted
inward relaxation with d; =0.93d;. This gives a=—0.3
eV, which, from Fig. 2, predicts a deep level at about 1.24
eV. To our knowledge, no data exist with which to com-
pare this prediction.

Similar trends for deep levels due to various impurities
in Si can be obtained from Fig. 3. These trends are also
illustrated in Fig. 4 for the A4 ,-symmetric deep levels pro-
duced by the S, Se, and Te impurities in Si. In that
figure, the ordinate is the energy in the band gap, mea-
sured from the top of the valence band and the abscissa is
the ratio d;/dy. The dependence of the deep levels on
this ratio is shown for the impurities mentioned. As can
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FIG. 4. Energy levels of A4, symmetry produced by Te
(dashed curve), Se (solid curve), and S (dotted curve) in Si. The
abscissa is the ratio of d; /dy between the impurity and the host
bond lengths. The ordinate is the band-gap energy with the
zero of energy equal to the top of the valence band. Since
d;/dy is a measure of the nearest-neighbor lattice relaxation
around the impurity, this figure gives the dependence of the
deep levels of the impurities mentioned on this relaxation. The
abbreviations CB and VB indicate the conduction-band and
valence-band edges, respectively.

0.0

be seen from the figure, this dependence is nearly linear
for all cases considered. Further, these deep levels move
towards the conduction band for inward relaxation and
deeper into the band gap for outward relaxation, in
agreement with the above-discussed trend. We note that
this almost linear dependence of the deep levels on d; /dy,
differs from the results one would obtain from perturba-
tion theory, which would, to lowest order, predict a
linear dependence of the deep levels on a.

B. Specific impurities; comparisons with experiment
and other theories

We have used our theory to compute the A;-
symmetric deep levels produced by several impurities in
GaP and Si. These results are summarized in Table II.
In the second column of that table, we display the results
of these calculations for N, C, Sb, and O substitutional
for P in GaP and for S, Se, Te, N, and C in Si. For the
case of GaP:O, results obtained using both the covalent
radius model for d; and using Morgan’s correction to this
model** are shown. Shown for comparison in the third
and fourth columns of Table II are the experimental deep
levels (where data exists) for the same impurities, along
with the predictions of the theory of Hjalmarson et al.®
(no relaxation). For the impurities in Si considered in
Ref. 18, the predictions of the Talwar, Suh, and Tangl8
theory both with and without lattice relaxation are
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TABLE II. Deep energy levels for various impurities in GaP and Si. (All energies are in eV, CB means conduction-band reso-

nant.)

Host-impurity Present theory

b

Hjalmarson Talwar® Talwar®

system (With relaxation) Experiment® (No relaxation) (With relaxation) (No relaxation)
GaP:N 2.27 2.34 2.10
GaP:C CB CB
GaP:Sb CB CB
GaP:0¢ 2.08 1.46 1.85
GaP:0O°¢ 1.75 1.46 1.85
Si:S 0.66 0.85 0.57 0.46 0.51
Si:Se 0.70 0.86 0.65 0.59 0.64
Si:Te 1.09 1.01 1.18 1.18 1.18
Si:N 0.79 0.44
Si:C CB 1.09

“References 36 and 37.

*Reference 6.

‘Reference 18.

dQur prediction without the correction of Ref. 33.
°Our prediction with the correction of Ref. 33.

shown in the fifth and sixth columns of that table, respec-
tively.

As can be seen from Table II, in all cases considered,
the present theory improves the results of the theory of
Hjalmarson et al.® in comparison with the experimental
results. Further, for deep levels in Si, it does better in
this regard than the model of Talwar, Suh, and Tang.'®
It can also be seen that the change in the predicted deep
levels from those predicted by the theory of Hjalmarson
et al.® with no relaxation is usually of the order of
10-15 9% (with the exception of Si:N).

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a formalism for phe-
nomenologically including the effects of nearest-neighbor
lattice relaxation on deep levels associated with substitu-
tional impurities in semiconductors. Our formalism is an
extension of the theory of Hjalmarson et al.® to include
such effects. Lattice relaxation is accounted for by
characterizing the off-diagonal matrix elements of the de-
fect potential by two parameters, one for A, states and
one for T, states. Further, the bond-length dependence
of these parameters is obtained by combining
Harrison’s'” inverse bond-length-squared scaling rule for
the host with a covalent radius model for the impurity.
With this formalism, both chemical trends in the
impurity-associated deep levels and trends with varying
amounts of lattice relaxation can be explored.

We have applied this theory to 4 ,-symmetric deep lev-
els in both GaP and Si. Among the interesting results
predicted are that such levels move closer to the
conduction-band edge for inward relaxation around the
impurity, while they move deeper into the band gap for

outward relaxation. Further, we find that the depen-
dence of the deep-level energy on the impurity bond
length is almost linear. For specific impurities we find
that lattice-relaxation effects, as included in the present
model, considerably improve the predictions of the
theory of Hjalmarson et al.® in comparison with experi-
ment and move the deep levels on the order of 10-15 %.

The remaining discrepancies between theory and ex-
periment may be due to a number of factors. Among
these are charge-state splittings,'® inaccuracies in the
band structures used in the calculations,?® second-
neighbor relaxation effects, and breakdown of the co-
valent radius model.

As mentioned in the Introduction, a rigorous theory of
lattice-relaxation effects clearly requires a total-energy
calculation. From such a calculation, one can take
derivatives of the total energy with respect to atomic po-
sitions to determine interatomic forces. These, in turn,
can be used to compute the lattice relaxation. The ap-
proach outlined above sacrifices this rigor in exchange for
computational simplicity by treating the relaxation phe-
nomenologically. It thus retains much of the simplicity
and universality of the theory of Hjalmarson et al.® Re-
cently, we have combined the formalism of Sec. II with a
molecular-dynamics calculation of lattice relaxation.?’ In
this scheme, the forces which enter the molecular-
dynamics simulation are obtained from the electronic
structure using the Hellmann-Feynman theorem.® This
calculation obtains a relaxed impurity-host bond length
that differs by about 109% from the covalent radius model
results. The resulting values obtained for a yield deep
levels in even better agreement between theory and exper-
iment than the present theory. These calculations will be
discussed elsewhere.?’
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