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Coupled tunneling plasmon excitations in a planar array of quantum dots
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We present a quantum-mechanical calculation of the plasmon excitations in a planar array of tun-

neling quantum dots. The dispersion relations of these modes are derived within the framework of
the tight-binding approximation between adjacent dots and the random-phase approximation. In
the presence of tunneling, both the depolarization shifts and the splitting between the longitudinal
and transverse modes are greatly enhanced and are well above the experimental resolution. This
makes the detection of these modes possible in Raman-scattering experiments. The present model
also predicts that the gap position of the transverse mode is at the I point.

The great advances in semiconductor microfabrication
have enabled researchers to begin intense investigations
of electronic structures in specially quantized systems.
The examples of such studies include the physics of quan-
tum confinement of the so-called quantum-well, '

quantum-wire, and quantum-dot superlattices. It is ex-
pected that the realization of relatively clean semiconduc-
tor heterostructures with quantum confinement to zero
dimensions, i.e., the quantum dot, will yield many intri-
guing electronic properties. Both the Aharonov-
Bohm-type oscillation in the longitudinal and Hall con-
ductance and the anticrossing of positive and negative
edge-magnetoplasmonlike B dispersions' in a planar ar-
ray of quantum dots have recently been observed in the
experiments. Grecu" first proposed a theory of tunneling
plasmon in a layered structure in the absence of magnetic
field. Que et al 'genera. lized this model to the non-
zero-field case. Later, Que et al. and Huang et al. '

worked out the quantum theories of inter subb and
plasrnon in a planar array of quantum dots and intrasub-
band and intersubband tunneling plasmons in a
quantum-dot superlattice, respectively. However, these
studies were restricted to the cases in which there was no
tunneling or tunneling in only one direction. ' ' In
this paper, we present a calculation of plasmon excita-
tions in the presence of tunneling in a planar array of
quantum dots and compare our results to some features
in related experiments. These features are not explained
in the absence of tunneling.

The present paper may be viewed as an extension of
Ref. 8, however, in which tunneling between quantum
dots is included. In Ref. 8, the authors employed the
tight-binding expansion method. Due to the neglect of
electron tunneling, their model is equivalent to an electri-
cally insulated model' ' ' which was presented in a to-
tally different formalism. The tight-binding expansion
method, however, can be used to include the tunneling
effect. Generally, the effects due to tunneling are
reflected in two aspects: the overlap of wave functions
coming from different quantum dots, and the energy
dispersion in the proper polarizability tensor. The princi-
pal effect due to tunneling is included in the polarizability
tensor, therefore as a first-order approximation we

neglected the overlap of wave functions from different
quantum dots. This approximation can be easily justified
if the ratio of the lateral dimension of quantum dots L
to the barrier width Ltt between them is not too large (the
relative error is less than 6% if we take Lti/L ) ~).
Thus the main correction is still retained in the proper
polarizability tensor. In a symmetric array structure, the
tunneling in two lateral directions is expected to be
strongly coupled to each other in the proper polarizabili-
ty tensor, and will cause significant changes in the excita-
tion spectrum.

For an array of semiconductor quantum dots with
large lateral dimension or with thin and finite-height bar-
riers between them, tunneling between two adjacent
quantum dots can play an important role. The following
points are the results of our calculations.

(i) Including the tunneling eft'ects, we predict that the
gap position of the transverse mode is at the I point. If
the tunneling effect is not included, the predicted gap po-
sition of the transverse mode is at the 6 point, along with
a negative slope for the dispersion curve along the k„
direction near the I point as was first shown in Ref. 8.
An experimental result, ' in an analog to the anisotropic
planar quantum-dot system, shows a minimum at the I
point and a positive slope along the k direction and is
consistent with our results including anisotropic tunnel-
ing. We should emphasize that a positive slope and a sat-
uration feature in the dispersion curve observed in this
experiment cannot be explained by a quasi-one-
dimensional electron-gas model. However, a zero-
dirnensional tunneling two-dimensional (2D) quantum-
dot array model with anisotropic tunneling intensities in
the x and y directions can successfully reproduce these
features.

(ii) We predict that a small tunneling between quantum
dots (the ratio of the bandwidth to the energy-level spac-
ing is 0.1) increases the depolarization shift from 0.23 to
2.60 meV, along with an increase of the splitting between
longitudinal and transverse modes from 0.11 to 0.45 meV
(see Fig. 2). This significant increase of the splitting be-
tween longitudinal and transverse modes makes the
detection of these modes in Raman-scattering experi-
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ments possible. To show the e6'ect that a relatively small
amount of tunneling can have, we refer to a recent experi-
ment' which shows a dramatic change of the electronic
collective excitation spectrum in the presence of tunnel-
ing. In this experiment, an electrically insulated 20
quantum-dot array is formed at a given gate voltage and
when the gate voltage is changed the quantum dots are
coupled to each other, through tunneling, to form an
electron mesh. However, a quantitative comparison be-
tween our results and those in Ref. 19 is impossible since
our present model does not include a magnetic field.

(iii) Physically, due to the tunneling, intrasubband
plasmon modes can exist. At low temperatures, the resis-
tivity of the system is mostly due to electron-acoustic-
phonon scattering where the electrons are limited to in-
trasubband transitions. Consequently, in considering

I

these ~v~tems. one needs to incorporate tunneling be-
tween the quantum dots both for the charge transport
and the resistivity.

In the calculation we make some additional simplifying
assumptions in addition to the random-phase approxima-
tion (RPA). First, we assume that only the lowest sub-
band is filled at T=O, which is not far from the experi-
mental situation in Ref. 19. Second, we assume that tun-
neling among the quantum dots can be described by a
nearest-neighbor tight-binding approximation, which can
be easily justified for the case of weak coupling.

Let us choose a rectangular array of quantum dots in
the xy plane, with the z axis perpendicular to the planar
array. The periods along the x and y directions are d and
a, respectively. The electrons tunnel along the x and y
directions. The single-particle states are

exp(ik nd +irma)g(x nd—)4 (y —ma)
n, m =0

QN N [1 +2acos( k„d)][1 +2P cos(k a)]
(z),

with

a= f dx g(x)g(x —d),

P, = f dy C, (y)@,(y —a),
and the energy levels are

W„+W W cos(k d)+ icos(k~a)E(k„k;j)=
2 2

(la)

(lb)

(2)

with
L„/2

W, =4f dx g(x) Vog(x —d), (2a)
X

L /2
W =4f dy @J(y)Vo@~(y —d) .

P(z) is a variational wave function ' in the z direction
given by

(2b)

z z
(z) = exp

(2L 3)1/2

and j =0, 1,2, . . . is the subband index. L, is charac-
teristic of the confinement thickness in the z direction.
L and L are the lateral dimensions along the x and y
directions, respectively. V0 is the barrier height. 8 „and

I

W are the bandwidths related to the tunneling intensities
along the x and y directions. The wave functions
g(x —nd) and N (y —ma) will depend strongly on the
form of the potential in the x and y directions, and wi11 be
given later. We have assumed that the system is always
in its lowest state with respect to confinement in the z
direction since the experiment' showed that electron
confinement in this direction was much stronger than
that in the x and y directions. Also, without loss of gen-
erality, we can always let d & a, and then the first excited
state is related to the single-particle transition along the y
direction. The doubly degenerate case, in which d =a,
will be discussed below. This degeneracy exists as long as
the confining potential of the quantum dot has xy symme-
try, irrespective of the detailed form of the confining po-
tential.

Following the self-consistent-field (SCF) scheme of
Ehrenreich and Cohen, we find the dispersion relation,
after a lengthy manipulation similar to that in Ref. 13, to
be

[Xoo(q, q, co)Fii(q„,q )
—1 ][Xio(q„,q, co)Fz~(q, qi, ) —1]

=Xoo(q, q, co)Xio(q„,q, co)lFiz(q„,q )l, (4)

where X „(q„,q~, co) are the components of the polariza-
bility tensor [see Eqs. (14) and (15) below] and

4~e'F»(q, q )= &
"

l&(q +mG )I'IBo(q, +nG, )l',
~s „,m —0 ~mn

4~e'
F~~(q„,q )= g lA(q„+mG )l lB, (qy+nGy)l

s n m=0 ~mn

I q )

Fi~(q, q )= g lZ(q„+mG )l Bi(qy+nG )Bo(q +nG )=Fbi(q„qy),
~s n, m =0

(7)
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where G =2'/d and G =2'/a are the reciprocal-lattice
vectors along the x and y directions, respectively. Also
e, =4~roe„,and

—Aq
B, (q ) = —i (A' q /2m *E,o )

'/ exp
10

(12)

q „=[(q,+mG„)+(q +nG ) ]'/ (8)

(8+9qL, +3q L, )I(q)=
8(1+qL, )

(9)

A (q„)and B;(q~ ) (i =0, 1) are the form factors given by

l
A (q, ) =exp

2 2—&XL~
(10)

—Aq
Bo(q )=exp

4m *E)o

Here the summation over integers m and n takes into ac-
count the effect of umklapp processes. I(q) is the screen-
ing factor introduced due to the finite confinement thick-
ness in the z direction, and is given by

Above we have assumed a parabolic potential,
—,'m*(Eiolfi) y, for electrons moving along the y direc-
tion, so that the wave function 4 (y —ma) will take a
simple harmonic-oscillator form. We have also intro-
duced a Gaussian wave function along the x direction

1 —(x —nd)
g(x —nd) =

i/z i/2 p
(ir Ao) 2ko2

7 (13)

and we have further chosen the half-width A,o=I. /2. As
mentioned above, we neglect the overlap of wave func-
tions coming from different quantum dots in the calcula-
tion of form factors in Eqs. (10)—(12) as a first-order ap-
proximation (error less than 6%). In the presence of tun-
neling, if only the ground state is considered, the Gauss-
ian form is a good approximation. The components of
the proper polarizability tensor X,o(q„,q~, co) and
Xoo(q, q~, co) can be expanded as

eA'

X ( co)=&o q qy
10

y(fl&+1) sin (q d/2) sin(k Fd) a sin (q a/2) sin(k Fa)+', +
(A —1)~ k ~a k Fd k Fd kFQ

r

y~(3&~+ 1) sin(k, Fd) sin(k Fa) q„d q a
sin X»n2 y

(0 —1) yFQ 2 2

q d
sin

2

kFQ

sin(2k, Fd)

2k„Fd
x

2

qyQa sin
2

k d

sin(2k Fa)1—
2k FQ

qyQ
cos

, 2

ynzD sin (q d/2) sin(k zd) a sin (q a/2) sin(k Fa)
Xoo(q„,q~, ai) = +

2E&o0 k FQ k Fd k Fd kFQ
(15)

where ng, = niD, n, Dki, iF=(~/2)n', D ', y= W /E, o((I,a= W /W„and A= biori/E, .o
It should be mentioned that in Eq. (4) the coupling be-

tween the intrasubband and intersubband plasmons is
taken into account since the single-particle transitions
here can be related to either transitions between two
bands or within one band. But as we can see from Fig. 1,
due to the large difference in the excitation energies, the
coupling is very weak in such a structure. Since
y = W„/Eio is generally very small, we expand Eqs. (14)
and (15) only to order (y ).

The results of Eq. (4) are shown in Fig. 1 for different
values of a, the ratio of the coupling constants in the y
and x directions. Here the symbols I, 5, and M indicate
the points (q„,q ) =(0,0), (rr/d, O), and (n/d, m/a), re-.
spectively, on the rectangular reciprocal lattice for the
quantum-dot array. In Fig. 1, the lower and higher
branches are the intrasubband and intersubband
plasmons. When there is no tunneling in the y direction

(no lateral tunneling), a=O and the plasmons are nearly
dispersionless along the 6-M line. When lateral tunnel-
ing is gradually added, plasmon dispersion along this line
increases. The depolarization shift of the intersubband
plasmon associated with the propagation along the M-I
line will be increased. However, the excitation spectrum
along the I -6 line remains unchanged since the disper-
sion in this region is determined only by the tunneling in
the x direction (longitudinal tunneling) which remains
constant.

Next we turn to the discussion of the degenerate case,
in which d =a (a= 1). We will assume that the confining
potential of the quantum dots takes the parabolic form
—,'m*(Eio/fi) (x +y ). Then using a similar technique,
we get the dispersion relation

i~ if l ')Xio( q„,q„ai)
1 7 (16)

(~ii+~~z) —I:(~ii —~zz)'+4l~i l'l'"
where
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1~0(q, +mG )~ ~g, (q +„G)~

S„(,„,, = 4~"
I ~i(q„+mG„)~~g (q +„G)~

S„(,, =4~" ~i(q, +mG, )g*( ~ '+o(q&+ «, )& i (q +nG ) =g* (v 21 'qx qy)

(17)

(19)

and G =2m/d. Here g o q ) and ~ i (q ) are obtained by
'g'6'n~o(q )ofEq (11)anding ( )ofE

q, respectively. The coupling between the in-
trasubband and intersubband la
this cou lin is

an p asmons is neglected since
is coupling is generally very small. Figure 2 shows the

result of the solution of Eq. (16) f d'ffor i erent values of y.
n ig. 2, except for the special points I and M

modes are s lit

'n s an, the

(L
p

'
due to the existence of both 1 t d

) and transverse (T) modes vth 11

ongitu ina

~ ~

w ose co ective excitation
energies are different. Along the lines of I -6 and M-I
we can identify the L and T d . Hmo es. Here the L or T

mode corresponds to the situation in which the d'

po arization is parallel or perpendicular to the
e sign in Eq. (16)wave vector of the plasmon. The + si

comes from the coupling between these two modes.

that is =0
When there is no tunneling in th de x an y directions,

di
a is, y =0, the T mode along the line I -6 1

ispersionless. In fact, when =0 th
'ne - is nearly

dis
, t e minimum in the

ispersion energy for the T mode i h
thou hb a ve

o eisatt eb, pointal-
oug y a very small amount (Err E~~=0.OO—63 meV .

This therefore does not seem to fit the ex
suits in Ref. 18.

o t t e experimental re-

n = 0.5O
p = 0.05

C0
«D

r

FIG. 1 ~ The d'dispersion curves for intrasubband an" i

band tunnelin lasmon
an and Intersub-

ng p asmon modes. The parameters used for the
numerical work are n 0 =0 17X 10 cm ' n ~

, d =200 A (L =114 A), a =600 A E
m„eb=6.5, and y = 8'„/E»=0.1. The

curves related to different values of a= 8' /8' are directly in-
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and tran
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ransverse modes, respectively. Th e parameters used for
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= 154 A), E&0 =25 meV, m *=0.071m

eh=6. 5, and a=8 S
Ale,S"„=1.0. The curves for y =0. 1 and 0.5,
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' ' o, are indicated in the

ure. e inset of the fifigure shows the curves for y=0.0 and
0.05 by using the different scale.



43 COUPLED TUNNELING PLASMON EXCITATIONS IN A. . . 2173

When tunneling is included in the consideration of the
system, the minimum in the dispersion relation for the T
mode is to be transferred from the 6 to the I point. This
is because in the presence of electron tunneling the
plasmon always gives a positive slope for the dispersion
curve along the k„direction near the I point. This leads
to an enhancement of the excitation energy at the 5
point. Moreover, when tunneling is gradually increased,
the depolarization shifts of both L and T modes are
greatly enhanced. The largest shifts occur when the tun-
nelings in the x and y directions are equal, i.e., a= 1.

When the possibility of electron tunneling is added to
the system, with parameters given in Fig. 2, the depolari-
zation shift is increased from 0.23 meV (y=0) to 2.60
meV (y=0. 1), along with the increase of splitting be-
tween L and T modes from 0.11 meV (y =0) to 0.45 meV
(y =0.1). These dramatic changes in the excitation spec-
trum are consistent with the experimental result in Ref.

19. When y=0. 5, the present model under the weak-
coupling limit may no longer be applicable. We include
y=0. 5 just as an extrapolation of our present model.
Compared with the situation of y =0, if the tunneling is
strong enough (y =0. 1), there should be no fundamental

difhculty in getting sufhcient resolution in Raman-
scattering experiments.

In conclusion, we have calculated the effect of electron
tunneling on the collective excitations in a planar array
composed of quantum dots. In the presence of tunneling,
both the depolarization shift and the splitting between
the transverse and the longitudinal modes is significantly
enhanced. This makes the detection of these modes in
Raman-scattering experiments possible.
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