
PHYSICAL REVIEW B VOLUME 43, NUMBER 1 1 JANUARY 1991

0
Deviations from the impulse approximation in liquid He: An experimental test at Q =23 A

T. R. Sosnick* and W. M. Snow
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, Illinois 60439

R. N. Silver
Theoretical Division and Los A lamos Neutron Scattering Center, Los A larnos National Laboratory,

Los Alarnos, New Mexico 87545

P. E. Sokol
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 6 April 1990; revised manuscript received 9 August 1990)

Deep-inelastic-scattering measurements at high-momentum transfer Q can provide direct infor-
mation on the momentum distribution of a system of particles if the impulse approximation (IA) is
valid. In many such experiments, however, deviations between the observed scattering and predic-
tions based on the IA are present. In liquid He these deviations, called Anal-state e6'ects (FSE), are
caused by interactions among the particles. We have used liquid He as a testing ground for the
study of FSE. Deep-inelastic-neutron-scattering measurements on liquid He have been carried out
for temperatures of 0.35 and 3.5 K at a density of 0.147 g/cm . Under the assumption that current
theoretical calculations of the momentum distribution of liquid He are accurate, we extract the
form of FSE in the superfluid phase from the scattering data. We also compare the predictions of

0
several theories for FSE to the experimental data. At the momentum transfer of Q =23 A
reached in these measurements, we find that an FSE theory due to Silver is the only current theory
in agreement with the data in both the normal and superfluid phases.

I. INTRODUCTION

Deep-inelastic-scattering experiments are now per-
formed in many fields of physics in an effort to gain infor-
mation on momentum distributions. ' The basic idea
behind all such measurements is quite simple. In a deep-
inelastic-scattering event, the energy and momentum
transferred from the scattering probe to a particle in the
target are very high compared to the characteristic ener-
gies and momenta of the particles in the system. In this
limit the scattering law may be related to the momentum
distribution through the impulse approximation (IA).
Roughly speaking, the impulse approximation consists of
the assumption that the scattering probe strikes a single
particle of the target and that this particle recoils freely
from the collision.

The scattering data exhibit an interesting scaling be-
havior as the energy and momentum transfer increases.
In the case of neutron scattering from a monatomic sys-
tem, for example, the dynamic structure factor S(Q, co) is
directly related to a Compton profile J ( Y, Q):

(Q/M)&(Q, co) —=J( Y, Q),

2M

where co and Q are the energy and momentum transfer
from the neutron to the sample, and M is the mass of the
scattering atom (we have chosen units in which A'= I). In
the limit Q ~ Qc, J ( Y, Q) tends to a function of Y only:

lim J( Y, Q) —+J( Y) .
Q~ oo

This behavior of the Compton profile is known as Y scal-
ing. If, in addition, the IA is valid, then Y is the com-
ponent of the momentum along the direction of Q, and
J&A( Y) is the longitudinal momentum distribution.

Deviations from the IA are present at finite values of
Q. When such deviations exist, the momentum distribu-
tion cannot be inferred from the scattering data alone,
and more information on the system becomes necessary.
IA violations are typically understood to originate from
two different classes of physical effects. In one class of
effects, violations arise from the excitation of the internal
degrees of freedom of the target particle. In this case, re-
ferred to as scale breaking, information on the internal
excitations of the target is necessary in order to extract
the momentum distribution. Deviations from the IA can
also be caused by the interaction of the target particle
with its environment. These deviations are generically
called final-state effects (FSE's). In the presence of FSE's,
the momentum distribution cannot be inferred without
information on the interactions among the particles of
the system.

Momentum distribution measurements provide the ob-
vious practical reason for the interest in scaling viola-
tions. Less widely appreciated is the fact that scaling
violations can be of interest in their own right. In the
case of deep inelastic electron scattering from protons,
for example, not only did the scaling behavior of the
scattering data provide important evidence for the pres-
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FIG. 1. Theoretical momentum distributions used in this pa-
per to extract FSE's. The solid line is the GFMC (Ref. 4) result
at T =0 K, which includes a 6-function singularity due to the
condensate with 9.2% of the total intensity. The dashed line is
the PIMC (Ref. 5) result in the normal liquid at T =3.33 K.

ence of quarks and gluons, but also the detailed form of
the scaling violations was crucial experimental evidence
for QCD as the theory of strong interactions. In the
case of deep inelastic neutron scattering from helium,
FSE's are sensitive to nontrivial correlations in the
strongly interacting ground state of the liquid. A correct
description of FSE s in helium may provide important in-
sight into the understanding of FSE's in a number of oth-
er dense, strongly interacting systems.

Liquid He provides an excellent testing ground for the
study of FSE's for several reasons. First of all, the heli-
um atom does not possess any internal degrees of free-
dom which can be excited by neutron-nucleus scattering
at the energies used to date in deep-inelastic-scattering
experiments. Therefore, scale breaking cannot be the
source of deviations from the IA, and only FSE's are
relevant. In addition, many properties which are neces-
sary for the theoretical calculation of FSE's, such as the
helium-helium scattering cross section, the atomic densi-
ty, and the pair-correlation function, have been measured
accurately.

The most important information available on liquid
He, without which neither an experimental determina-

tion of FSE's nor a test of FSE theories could be conduct-
ed, comes from the extensive theoretical calculations of
the momentum distribution. At zero temperature, calcu-
lations of the momentum distribution in the ground state
of liquid He have been performed using both variational
methods and the Green's-function Monte Carlo (GFMC)

method. At finite temperatures, the momentum distribu-
tion has been calculated using both finite temperature ex-
tensions of the variational calculations and the path-
integral Mone Carlo (PIMC) method. Over the past few
years, significant advances have been made in the sophis-
tication of these methods. The results for many proper-
ties of liquid He, such as the equation of state, the static
structure factor„ the elementary excitation spectrum,
and even the superAuid fraction, are in good agreement
with each other and with experiment. On the basis of
this agreement, the calculations of the momentum distri-
bution are expected to be quite accurate. Figure 1 shows
the momentum distribution at T=O K at a density of
0.147 g/cm calculated using the GFMC method and the
momentum distribution at T=3.3 K at a density of
0.138 g/cm calculated using the PIMC method. We will
assume that the results of the GFMC and PIMC calcula-
tions for n(p) are also accurate in our experimental
determination of FSE's and in the comparison of the
scattering data to FSE theories.

A unique characteristic of liquid He which makes it
ideal as a testing ground for FSE's is the presence of a 6-
function singularity in its momentum distribution in the
superAuid phase. This singularity is due to the presence
of a Bose condensate containing approximately 9% of the
atoms at T =0. In the absence of FSE's this singularity
would be present in the observed scattering. In the pres-
ence of FSE's, the scattering in the superAuid phase is
modified and provides a sensitive test of the details of
FSE broadening. The presence of a condensate is espe-
cially important from this point of view because the
width of the FSE broadening in liquid helium is small
compared to the width of the nearly Gaussian momen-
turn distribution of the noncondensate atoms. Without
the condensate, an experimental extraction of FSE's from
the scattering data would be much more difticult.

Finally, the momentum distribution of liquid He has
the unique property that the singular part of the momen-
turn distribution, due to the condensate, can be turned off
by entering the normal-liquid phase in which the conden-
sate vanishes. The effect of FSE's on the normal-Quid
scattering can provide an interesting contrast to the
effects in the superAuid. For a large class of FSE theories
in which the FSE broadening function in liquid He is not
expected to be very sensitive to temperature or even
phase, the normal-Quid data can provide a nontrivial con-
sistency check on the form of FSE's obtained from the
superAuid data.

A quantitative understanding of FSE's in liquid He
would also enable a large body of inelastic-neutron-
scattering experiments to be more fully understood. Pre-
vious measurements of the scattering from liquid helium
for Q ( 15 A ' have exhibited significant deviations from
the IA. " These deviations take the form of oscilla-
tions in the observed scattering of the peak center, width,
and asymmetry of the line shape as a function of Q. The
observed deviations are inconsistent with the minimum
conditions which must be satisfied for the IA to be valid,
and they show that FSE's are definitely present. The lack
of understanding of FSE's in these measurements makes
the extraction of information on the momentum distribu-
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tion difFicult. An understanding of the nature of FSE's at
higher Q's, where the deviations from the IA are not as
large, may lead to important progress in our understand-
ing of the lower-Q data.

In this paper, we make use of recent high-resolution
neutron-scattering studies of S(Q, to) in liquid He in both
the normal and superfluid phases using much higher Q's
than in previous high-resolution experiments. Under the
assumption that the momentum distribution calculation
by the GFMC method is accurate, we extract FSE's by
comparing the predicted scattering obtained from the
theoretical momentum distribution using the IA to the
observed scattering in the superfluid phase. In addition,
we compare several theories for FSE's to the observed
scattering. Many of the theories provide a reasonable
description of FSE's in the normal-liquid phase. Howev-
er, we find that the only theory for FSE's which is con-
sistent with the data in both the normal and superAuid
phases at the Q's reached in our experiments is a recent
theory due to Silver. '

This paper is organized as follows. Section II contains
a discussion of deep inelastic neutron scattering. Section
III covers experimental details. In Sec. IV we extract the
form of final-state effects directly from the scattering data
under the assumption that the theoretical calculations of
the momentum distributions are correct. Section V
presents comparisons of the scattering data to various
theoretical treatments of final-state effects. We conclude
in Sec. VI with a discussion of the significance of these
comparisons and suggestions for future work.

II. DEEP INEI.ASTIC NEUTRON SCATTERING

The scattering of neutrons is described by the double-
differential scattering cross section

d'~ =b S(Q,co),lA QQ)
(2.1)

where b is the neutron-nucleus scattering length for He,
k, and k& are the initial and final momenta of the scat-
tered neutron, and Q and co are the momentum and ener-

gy transfer from the neutron to the sample (we have
chosen units in which iii= 1). The dynamics of the sample
are contained in S ( Q, co), the dynamic structure factor.
The dynamic structure factor is directly proportional to
the space and time Fourier transform of the equilibrium
density-density correlation function. '

The density fluctuations which contribute to S ( Q, co)

include both collective excitations involving many atoms
and single-particle excitations. For sufficiently large Q,
the distance -2~/Q over which the phase of the incident
neutron changes significantly during the scattering pro-
cess is small compared with the distance D between the
scattering atoms. In this limit, known as the incoherent
approximation, the part of S(Q, to) due to the interference
of scattering amplitudes from different atoms is negligi-
ble. The scattering is then due primarily to single-
particle excitations. In the incoherent approximation,
the expression for S ( Q, co) becomes

S(Q, to)~S;„,(Q, to)= —f exp(icot) g (exp[iQ r~(0)]exp[ —iQ r (t)])dt,
J=1

(2.2)

where r (t) is the position . vector of an atom and ( ) signifies a thermodynamic average. In liquid He 2m/D -2
o ~ ~ ~ ~

0
A '. Measurements of the static structure factor S(Q) show that it reaches the incoherent limit' for Q ) 8 A . In
our experiments, Q at the center of the recoil peak is 23 A, and the incoherent approximation is certainly applicable.

The frequency moments of S ( Q, to) provide valuable information on the energy dependence of the scattering function
for fixed Q. In general, they depend explicitly on the details of the interactions between the atoms. However, the first
three moments of S;„,(Q, co) are independent of these details. ' The moments are

Mo(Q)= fS;„,(Q, co)de= 1,
Mi(Q) =f (to —co„)S;„,(Q, co)den=0,

M2(Q) = f (co—to„) S;„,(Q, co)den= —', co„(E&),

(2.3)

(2.4)

(2.5)

where the recoil energy co„ is Q /2MH, and MH, is the mass of the scattering atom. Under the conditions of the in-

coherent approximation, the average kinetic energy per atom, (Ek ), can be obtained directly from the second moment
of the observed scattering.

The scattering simplifies considerably in the limit Q~ ~ if the interparticle interactions can be neglected. In this
limit, known as the impulse approximation (IA), S (Q, to) is directly related to the atomic momentum distribution n (p):

1 ~pi
lim S(Q, co) =S&~(Q, co) =—f n (p; )6(to E(p&)+E (p, ))— (2.6)a- p

' (2~)'

where p, is the initial momentum of an atom, p&
=p;+Q

is the final momentum of the recoilong atom, and
E(p) =p /2MB, is its kinetic energy. The 5 function in
Eq. (2.6) represents the conservation of energy and

I

momentum for the scattering of a neutron from a single
atom. In the IA, the distance probed in the scattering
event is much shorter than the typical distance traveled
by a helium atom before it is significantly affected by in-
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teractions with other atoms. The recoilong atoms then
acts as a free particle during the collision.

Both the use of finite Q's and the presence of strong in-
teractions between the particles can cause the IA to fail.
In order to discuss the manner in which the IA is ap-
proached, it is convenient to express S (Q, co) in terms of a
Compton profile J( Y, g):

(Q/MH, )S(Q,~)—:J( Y, Q), (2.7)

Q2
(2.8)

At this stage, this is just a formal transformation to a
different set of independent variables. In terms of the
Compton profile, the sum rules can be written in the form

J Y, dY=1, (2.9)

f '"YJ(Y, g)d Y=o,

f Y' J( Y, g)d Y = ', MH, (—Ei, ) . (2.1 1)

(2.10)

lim J ( Y, Q)~J ( Y) .
Q~ oo

(2.12)

This property of the Compton profile is called Y scaling.
It is important to note that Y scaling alone does not im-
ply the validity of the IA. %'hether or not the IA is valid
also depends on the nature of the interparticle interac-
tions. For smooth interatomic potentials with Fourier
transforms which decrease exponentially with Q, the IA
is valid in the Q~ao limit. For atoms with infinitely
repulsive hard-core interactions, however, S ( g, co) obeys
Y scaling in the Q~ oo limit, but the function of Y to
which it scales is not directly related to n(p). ' Strictly
speaking, of course, an infinitely repulsive hard-core in-
teraction is unphysical. However, the interatomic forces
in helium are steeply repulsive at short distances. As a
result, a slow approach to the IA limit as a function of in-
creasing Q is expected for helium.

In the IA, both Y and J( Y) possess a direct physical
meaning. Y is the component of the momentum along
the direction of Q, and J,~( Y) is the longitudinal momen-
tum distribution. In this limit, J,~( Y) is simply related to
the momentum distribution:

The motivation for this transformation is the fact that, in
the Q-~ oo limit, the Compton profile is an isotropic sys-
tem such as a liquid can be expressed as a function of Y
only:

I I I I I I I

O+++ 24A
0cao 12A

0.4 —x x x 7 A
o

cj
++X tf.

X

J(Y, Q) I(Y)
X+

0.2

width of the scattering is directly proportional to Q and
inversely proportional to MH, . In bulk liquid He, both
of these conditions are well satisfied for Q's greater than
15 A

For finite values of g, neither the IA nor Y-scaling be-
havior is satisfied exactly. However, for suKciently large
Q, it is possible for the scattering data to exhibit Y scaling
to a good approximation over a finite range of Q. In this
case, an analysis of the data in terms of J( Y) provides a
more convenient framework for interpreting the results
than an analysis using S(g, to). Figure 2 shows J( Y, g)
in liquid He for g's of 7, 12 (Ref. 18), and 23 (Ref. 19)
A '. To a first approximation, the data from these
different Q's fall on a universal curve J( Y) and thus ex-
hibit Y scaling. For this reason, in this paper we have
chosen to perform the analysis in terms of J( Y) instead
of S(g, co).

The IA only approximately describes the scattering for
currently accessible momentum transfers. Deviations
from the IA, known as final-state effects (FSE's), result
from the interaction of the recoiling helium atom with its
neighbors during the scattering process. These interac-
tions can alter the final momentum of the scattered neu-
tron from the value expected in the IA based on energy
and momentum conservation in the neutron-atom
scattering.

Several theories of FSE's have been proposed. A de-
tailed discussion of these theories is beyond the scope of
this paper. However, for the purpose of comparing these
theories to the experimental results, it is convenient to
separate the theories into three classes: (a) broadening
theories, (b) additive theories, and (c) theories with alter-

+~
J,~( Y)= f pn (p)dp(2') p

= f f n (p„,p„Y)dp, dp (2.13)

where the z axis is chosen to lie along the direction of Q.
J,~( Y) exhibits several features which are characteristic
of the IA. It is symmetric about Y =0 and depends on Q
only through the scaling variable Y. These features are
equivalent to the more familiar conditions that S(g, co)
satisfies in the IA. Namely, the scattering is centered at
and is symmetric about the recoil energy co„and the

0 0 —4 —2
I

0

Y(A ')
FICx. 2. Compton profile J( Y, Q) for liquid 4He at Q's of 7,

12, and 23 A . To a first approximation, all of the Compton
profiles fall on a universal curve J(F) which is independent of
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R Y, dY=1,

YR Y, dY=O,

Y~R Y, dY=O .

(2.15)

(2.16)

(2.17)

To a first approximation, the convolution of a function
with R ( Y, Q) simply broadens the function. However,
since the first and second moment of R ( Y, Q) vanishes,
R ( Y;Q) must possess both positive and negative values.
As a result, a convolution also redistributes the intensity
in a manner which cannot be viewed as a simple broaden-
ing. Whether or not this redistribution is a significant
efFect depends on the detailed form of R ( Y; Q).

Theoretical calculations of deviations from the IA have
also been expressed as a sum of the IA result plus correc-
tion terms. For these theories, referred to as additive
theories in this paper, it is common to split the correction
terms into two parts:

J( YQ)=J~( Y)+bJ, (YQ)+bJ„(YQ), (2.18)

where hJ, (Y;Q) and b,J„„(Y;Q)are the FSE correc-
tions which are symmetric and antisymmetric with
respect to Y =0. Just as for R ( Y, Q), the first three sum
rules for incoherent scattering place constraints on the
symmetric and antisymmetric correction terms. These
constraints are

f bJ,„(Y,Q)dY=0,

f YhJ„(Y, Q)dY'=0,

f '"Y'SJ,„(Y, Q)d Y =0 .

(2.19)

(2.20)

(2.21)

The sum rules constrain both the zeroth and second mo-
ments of b,J,„(Y, Q) to vanish. From the zeroth-
moment constraint, it follows that AJ,„(Y, Q), if it is
nonzero, must have both positive and negative values.
This constraint, in combination with its symmetry about
Y =0, forces b,J, ( Y;Q) to possess at least three extre-
ma as a function of Y.

The first-moment sum rule forces bJ„„(Y, Q), if it is

nonzero, to possess at least two maxima and two minima
as a function of Y; By construction, hJ„„(Y; Q) already
has at least one maximum and one minimum. But if it
has no other extrema, then

~
YbJ„„(Y, Q) ~

is necessarily
positive everywhere, and its integral over limits which are
symmetric about Y =0 can only vanish if bJ„(Y, Q) is
zero.

native scaling variables.
In one class, referred to as broadening theories in this

paper, the corrections to the IA are expressed as a convo-
lution in Y space of the IA expression with a broadening
function R ( Y, Q):

J(Y;Q)=f R(Y —Y', Q)J,~(Y')dY', (2.14)

where J,~( Y) satisfies the sum rules which are valid in
the incoherent approximation. If the incoherent approxi-
mation is also valid for the experimental J(Y,Q), then
the sum rules place constraints on the shape of R ( Y, Q).
The constraints are

III. EXPERIMENTAL DETAILS

This section contains a brief discussion of the experi-
mental procedure used to obtain the scattering data and
the methods of data analysis used to transform the
scattering data to Y space. A more detailed discussion
has appeared elsewhere.

Inelastic-neutron-scattering measurements of liquid
helium were carried out using the PHOENIX spectrome-
ter at the Intense Pulsed Neutron Source (IPNS) at Ar-
gonne National Laboratory. PHOENIX is a time-of-
Aight inelastic spectrometer using a Fermi chopper for
incident energy selection and a single high-angle detector
bank (135 (0 ( 144 ) containing 25 detectors for observa-
tion of the scattered neutrons. The incident energy used
in these measurements of 495.5 meV corresponds to an
average momentum transfer at the helium recoil peak of
23 A '. The scattering from liquid helium was measured
at temperatures of 0.35 and 3.5 K at a constant density of
0.147 g/cm . The helium sample was contained in a cy-
lindrical sample cell made of 6061-T6 aluminum. The
cell was 0.10 m high with an inner diameter of 0.04 m
and a wall thickness of 1.6 mm. The cell was attached to
the mixing chamber of a dilution refrigerator in a special-
ly designed cryostat with no cryogens in the neutron
beam. The cell temperature was monitored using ger-
manium resistance thermometers attached to the top and
bottom of the cell.

The scattered neutrons are histogrammed as a function
of time of Aight for each detector individually. The data
from each detector are transformed to S(Q, co) using the
mean incident energy and time at sample obtained by
comparing a Monte Carlo simulation of the incident
beam with the observed monitor spectra. The data are
then converted to J( Y) using the energy and momentum
transfer for each histogrammed point and the known
mass of the helium atom. Finally, in order to take into
account any systematic errors in the Y scale, the scatter-
ing data are shifted by +0.04 A ' (about half a channel
width) so that the first-moment sum rule for incoherent
scattering is satisfied.

Since the statistical accuracy of the results from an in-
dividual detector is low, the data from the 25 detectors
are added together after being converted to a common Y
scale. There is little variation of Q across the detector
bank and the data that are already approximately Y scale,
and so this procedure results in a significant increase in
the statistical accuracy of the results with little degrada-
tion in instrumental resolution.

An absolute-intensity scale for the scattering was ob-
tained from measurements of low-density (0.0073 g/cm )

helium gas at 5.6 K using the same experimental setup
and cell as used in the liquid measurements. This pro-
vides an absolute-intensity scale to within the 5%%uo statisti-
cal uncertainty in determining the area of the helium
peak. Thus, after correcting for the effects of sample
self-shielding and multiple scattering, the scattering from
the liquid may be placed on an absolute-intensity scale.

The effects of instrumental resolution must be taken
into account in order to determine the true scattering
from the liquid. In general, the instrumental broadening
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IV. EXPERIMENTAL DETERMINATION
OF FSE CORRECTIONS

The observed scattering from the bulk liquid at tem-
peratures of 0.35 and 3.5 K and at a constant density of
0.147 g/cm is shown in Figs. 3(a) and 3(b). The scatter-
ing has been converted to an absolute-intensity scale us-

ing the helium-gas measurements. The integrated inten-
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FICx. 3. (a) Normal-liquid data at T=3.5 K. The line is the
instrumentally broadened IA prediction using the PIMC calcu-
lation of n (p). (b) SuperAuid data at T =0.35 K. The line is the
instrumentally broadened IA prediction using the GFMC calcu-
lation of n (p).

is a complicated function depending on the energy and
momentum transfer and the instrument geometry, and a
simple closed-form expression for the resolution function
is not possible. In the case of helium, for which the bulk
of the scattering intensity is concentrated near Y =0, an
effective resolution function which is a simple one-
dimensional convolution can be defined. This effective
resolution function, I(Y,Q), is calculated by a Monte
Carlo simulation of the spectrometer. In terms of
I ( Y, Q), the observed resolution-broadened Compton
profile J,b, (Y, Q) is

J,b, ( Y, Q)= f I(Y—Y', Q)J( Y', Q)dY', (3.1)

where J( Y, Q) is the unbroadened Compton profile. The
instrumental broadening has a full width at half max-
imum (FWHM) of -0.6 A ' and is much narrower than
the total observed scattering.

sity of the observed scattering, when sample attenuation
is taken into account, is unity at all the temperatures, to
within the 5% error in the absolute-intensity scale pro-
vided by the helium-gas measurement. Thus the ob-
served scattering satisfies the zeroth-moment sum rule for
incoherent scattering, which simply indicates that all the
scattering is observed. In addition, the observed scatter-
ing is consistent with the minimal features mentioned in
Sec. II for IA scattering.

We will now exhibit the presence of final-state effects in
the scattering data under the assumption that the
theoretical calculations of the momentum distributions
are accurate. We will use the IA to convert the theoreti-
cal n(p) to J&A( Y), broaden J&A( Y) by the instrumental
resolution function, and compare the result directly to
the scattering data. If the momentum distribution calcu-
lations are correct, then any differences which appear in
this comparison must be due to FSE's.

Figure 3(a) shows a comparison between the observed
scattering in the normal liquid at 3.5 K and a density of
0.147 g/cm and the theoretical prediction of the PIMC
results of Ceperley and Pollock at 3.33 K and a slightly
lower density of 0.138 g/cm . The theoretical prediction
has been converted to J«( Y) using the IA and broadened
by the instrumental resolution. The agreement between
the IA prediction and the observed scattering is excellent.
Deviations from the IA due to FSE's are very small in the
normal-liquid scattering at these Q's.

Figure 3(b) shows a similar comparison of the experi-
mental results at 0.35 K and the ground-state GFMC cal-
culation of Whitlock and Panoff at the same density.
Differences between the theoretical prediction and exper-
imental results are clearly evident. The GFMC calcula-
tion predicts substantially higher intensity near the peak
center than the experimental results. This discrepancy is
just what one would expect if a condensate peak is
present which is broadened by FSE's.

If the FSE's are expressed as a convolution with the IA
prediction, as in Eq. (2.14), then the final-state broaden-
ing function may be obtained by deconvoluting the in-
strumental resolution function and J&z( Y) from the ob-
served scattering. The dotted line in Fig. 4 shows the re-
sult of this deconvolution for the superAuid data. The ex-
perimentally determined R ( Y, Q) exhibits a sharp central
peak and negative tails at higher Y. Figure 4 also shows
the shape of R ( Y, Q) for some of the broadening theories
which will be discussed in Sec. V.

There are two noteworthy features in the experimental-
ly determined R ( Y, Q). First of all, the R ( Y, Q) obtained
from the deconvolution satisfies the constraints which
follow from the sum rules for incoherent scattering
within the uncertainties of the deconvolution procedure.
This must be true in the incoherent approximation, since
in this case both J(Y,Q) and J&~(Y) obey the second-
moment sum rule. In particular, as mentioned in Sec. II,
the negative tails are consistent with the second-moment
sum rule. In addition, the central peak of the broadening
function is relatively narrow with a full FWHM of 0.67
A

While the general features of the extracted R ( Y, Q) are
accurate, the finer details of the shape are affected by the



SOSNICK, SNOW, SILVER, AND SOKOL 43

2.5 1.5 I I

I

I 4 I I

I
I I I j

R(Y,Q)

2.0

1.5

Lorentmian-

Hilver

~
"""". Data

l R(Y,Q)

1.0

ug8ian

up gian

rier

nonform

1.0

0.0 ~ ~
llV r ~

v
~ '

0.0

~ ~

~ e

I i i » I & i & & I

—2 0 2

{A ')

s t y I t s & I I I I I

—2 0
0

(A ')

FIG. 4. Comparison of ththe experimentally determined FSE
broadening function R ( 1' Q)

'

th
ous theories. The dot- a

in t e superft. uid has
e ot- ashed line is the Lorentzian broadenin

function with a width I = o(Q)/2. ' '
e

roa ening function due to Silver. The solid line ise so i ine is the broaden-

the br

'
uez. e otted line is

e roadening function determined from the ex er
in the superAuid phase.

ine rom t e experimental data

FIG. 5. Three diA'erent R(Y; )'s which
good fits to the ex

, ~ s w ich produce equally
s o t e experimental data when convol t d

'
hue wit t ein-

ental resolution function and the GFMC J
ted line is R(F ais, ~', as determined from a Fourier transform
deconvolution. The solid line is R ( F

using a parametrized two-Gaussian form Th dorm. e dot-dashed
a fit using a parametrized

statistical noise in thee numerical decon volution pro-
ce ure. To illustrate which features of R ( Y Q)

y e scattenng data, we have performed decon-
volutions in which the form of R ( Y Q) is

11ur11

um o Gaussians. Figure 5 shows th 1

erical deconvolution shown in F' 4
e resu ts of the

own in 1g. 4 along with two
aussian and three Gaussian R ( Y, Q)'s. U

tion with th
s. Upon convolu-

GFMC J Y
e mstrumental reesolution function and the

J,~ Y), all of the R ( Y, Q)'s shown in Fi . 5 r-
duce equall ood ay g agreement with the experimental d
It is clear from Fi . 5

atae
ig. that the main feature of the FSE

road enin functio
its width.

'
g ction which is constrained b th d

th. The detailed features of R ( Y Q)
y e ata is

cannot be det
o,Q at high Y~

e ermined from our scattering data.
Although all of the results of th'

under the assumption that th th
1s paper are obtained

the momentum di t b
e eoretical calcul ations of

possess a
is ri utions are accurate t

' f '

qualitative understandin of the s
, i is use ul to

h d R(Y~'e,~~j~to certain features of the underl-
ing momentum distribution. We have erform

es s. n t e first test, we have c
extracted R ( Y, Q)'s obte, ~~ 's obtained from two momentum distri-

utions with the same co
1 erent distributions for the uncondensed atom

with the same kinetic energy (14.5 K) and the

same value for ther the condensate fraction (9.2%). Th
di6'erences betwe

ere are
e ween the two momentum distrib

1 Y d t h h Y Nig . evertheless, the corre
two Gaussian R ( Y Q)',

orresponding
's, shown in Fi . 6 be, )'s obtained

e compared the extract-n e second test, we hav
d from three momentum distribu-

tions with the same functional form for the u
is ri ution, but with differen

igure c s ows three Gaussian J ( Y)'
same kinetic energy as in Fi . 6(a bu

d f '
f7%%u 9

, Q 's are shown in Fig. 6(d). There are lar e
diff'erences between the R ( Y extracted from the
momentum distribution with 7%%ua o condensate and the
other two extracted R ( Y, Q)'s. s one might ex ect
width of the extracted R ( Y ise, ' is somewhat ore e si-
ive oc an csin

chan es in t
g

'
t e size of the condensate tha e a11 lt 1s to

g the momentum distribution of th
densed atoms.

ion o t e uncon-

Another feature of the momentum d' t 'b
uncondensed atoms which might be ex e

is ri ution of the
p

aw singularity which is ex ected
s. is term is included in the T =0 momen-

turn distribution calculation
dhari an

ation of Manousakis and Pan-
aripande, and the calculated ( ) he n p s ows significant



43 DEVIATIONS FROM THE IMPULSE APPROXIMATION IN. . . 223

I

I

0.5
I

I

I

—dauggian

IA —UFMC

I

'

I

'

I—dauggian

IA —dFMQ-

I, I, I

—4 —2 0 2 4 —2 —1 0 1 2

I

I

I

0.5
I

I

I

n =0.1M0—n =0.090

n =0.07—
0

I

'
I

'
I

n =O. ii0
- —n =0090

R(Y,Q)

I, I

—4 —2 0 2 4 —2 —i 0 i 2

differences from the GFMC momentum distribution at
small p. However, these differences become very small
when the three-dimensional momentum distribution n (p)
is converted to the longitudinal momentum distribution
J(Y). This is because J(Y) is proportional to the in-
tegral of pn (p). The extra factor of p in the integrand
suppresses the effects due to the condensate-induced
singularity at small p. For this reason, the presence of
the condensate-induced singularity has little effect on the
extraction of R ( Y, Q) from our scattering data.

In principle, the same procedure as used above could
be used to determine FSE broadening in the normal
liquid. However, due to the limited statistical accuracy
of the data (3%) and the small effect of FSE's in the nor-
mal liquid as shown in Fig. 3(a), it is not possible to ex-
tract a final-state broadening function using the same

FIG. 6. Sensitivity of the extracted R ( Y, Q) to certain
features of the underlying longitudinal momentum distribution.
(a) GFMC momentum distribution along with a Gaussian
momentum distribution with the same condensate fraction of
9.2%%uo and the same kinetic energy of 14.5 K. (b) Corresponding
R ( Y, Q)'s as determined from a fit using a parametrized two-
Gaussian form. (c) Three-Gaussian momentum distributions
with the same kinetic energy of 14.5 K with condensate frac-
tions of 7%, 9%, and 11%. (d) Corresponding R ( Y, Q)'s.

—(Y —Y, )

20

n a
model( Y) —g 2 1/2 xp

; = ) ( 2'o;).
whose amplitudes, widths, and common center may be
varied. This form is not unique, and many other forms
could be used to fit the data. Nevertheless, this form,
with the restrictions that the amplitudes are always posi-
tive and the centers are locked together, does provide a
physically realistic model scattering function. It is sym-
metric about Y, and positive definite. It is free of spuri-
ous oscillations and other obviously unphysical features

procedure as for the superAuid. The experimental data
must posses much higher statistical accuracy before a
broadening function can be determined experimentally in
the normal liquid.

There is a possible point of confusion regarding the
FSE's in the normal Auid which we wish to clarify. The
fact that FSE's appear to have little effect for the
normal-Auid data does not necessarily mean that the FSE
broadening function for the normal Auid is significantly
different from that for the superAuid. In fact, if the phys-
ical ideas behind the successful FSE broadening theory of
Silver' (discussed in Sec. V) are correct, then one would
expect the broadening function for the normal Auid to
differ little from that of the superAuid. At this point, we
merely wish to point out that there is no internal incon-
sistency in this possibility. Since the scattering in the
normal Auid is nearly Gaussian and the extracted FSE
broadening function in the superAuid is relatively narrow
by comparison and has zero second moment, the shapes
of the broadened and unboardened distributions for the
normal Auid would be almost indistinguishable.

We can also determine the form of FSE deviations
from the point of view of the additive theories. To obtain
the corrections to the IA result for this case, the theoreti-
cal prediction using the IA must be subtracted from the
measured scattering after the instrumental broadening
has been removed. For perfect data with no statistical
noise, a unique deconvolution is possible. However, for
data with statistical noise, deconvolution is an ill-posed
problem which can lead to large and unphysical Auctua-
tions in the results. Therefore, in the presence of statisti-
cal noise, a whole family of scattering functions can pro-
vide an accurate description of the observed scattering.

Rather than attempt to deconvolute the instrumental
resolution, we will fit a model function broadened by the
instrumental resolution to the observed scattering. We
will choose the model such that is has physically realistic
behavior and sufhcient Aexibility to accurately reAect the
behavior of the true scattering. The model scattering
function that we have found most convenient for describ-
ing the observed scattering is a sum of Gaussians:

r

TABLE I. Two Gaussian fitting parameters, resolution and FSE deconvoluted.

Temperature
(K)

0.35
3.5

0.785
0.875

OI
(A )

0.95
1.00

(%)

0.215
0.125

Op

(A )

0.29
0.45

F,
(A )

—0.03
—0.04
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which often appear when a direct deconvolution is at-
tempted. The variation of the center of the scattering
function Y, enables the fitting function to take into ac-
count a scattering component which is asymmetric about
Y =0 if such a component is present.

We have performed two Gaussian fits to the scattering
data for both 0.35- and 3.5-K data. Excellent agreement
with the observed scattering can be obtained at both tem-
peratures using only two Gaussians in the model scatter-
ing function. The parameters used in the fitting functions
are listed in Tabel I. Once again, we emphasize that the
particular values of these parameters are only representa-
tive of an entire family of values which can equally well
characterize the data. The widths and amplitudes of the
fitted Gaussians are highly correlated, and a relatively
broad set of parameters can lead to essentially the same
shape for the underlying momentum distribution. The
relative uncertainty of the scattering data is larger at high

Y~ due both to the lower counting statistics and the
poorer signal-to-noise ratio. As a result, the J,d,~(Y)
scattering functions ar more tightly constrained by the
data at small

~
Y than at large

~
Y~.

Armed with J,d„( Y), we can obtain the additive devi-
ations due to FSE's for the normal and superAuid phases
by subtracting J,d,&( 1') from J«( 1'). The symmetric
and antisymmetric components of J,d, &( Y) for both the
normal and superAuid phases are shown in Figs. 7(a) and
7(b), and the symmetric and antisymmetric correction
terms 5J,„(Y, Q) and b J„„(Y; Q) are shown in Figs.
7(c) and 7(d).

The corrections to the IA in the normal liquid obtained
using n (p) from the PIMC calculations of Ceperley and
Pollock are shown in Fig. 7(c). Both the symmetric and
antisymmetric corrections are small. The maximum am-
plitude of the corrections is on the order of 5% of the to-
tal peak amplitude, comparable to the statistical accuracy
of the data. The small size of the corrections is not
surprising, given the good agreement of the IA prediction
and the observed scattering shown in Fig. 3(a).

The corrections to the IA in the superAuid obtained us-
ing the n (p) from the GFMC calculations of Whitlock
and Panoff are shown in Fig. 7(d). Both the symmetric
and antisymmetric correction terms are now much larger
than in the normal liquid. The maximum amplitude of
the antisymmetric correction is now =20%%uo of the total
peak amplitude, compared to =5% in the normal liquid.
The symmetric correction has a peak amplitude of
=25% of the total peak amplitude. In addition, it con-
tains a negative 5-function singularity containing 9.2% of
the total intensity. This term is required to cancel the
condensate 5 function in J~~( Y).

It is important to realize that this conclusion is
unaffected even if one allows J,d„(Y) to include a nar-
row feature. If it were possible to include a sizeable nar-
row component in the fitting function, then it might be
possible to significantly decrease the symmetric com-
ponent of the difference. We have fit the superAuid data
with a J,d„( Y) which includes a Gaussian much nar-
rower than the instrumental resolution function. The
narrow Gaussian in this fit reaches a size with only = l%%uo

of the total area, which is close to the uncertainty with
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which the data determine the condensate. Even in this
case, the symmetric component of the difference is almost
a large as it is using the J,d„( Y) shown in Fig. 7(b).

The sum rules for incoherent scattering place restric-
tions on the shape of the symmetric and antisymmetric
corrections to the IA which are recorded in Sec. II. It is
not difficult to see that the experimentally determined
b.J,„(Y, Q) and bJ„„(Y;Q) are consistent with these
constraints. b,J„„(Y, Q) possesses two maxima and two
minima as a function of Y, and b,J,„(Y, Q) has more
than the minimum requirement of three extrema.

The reason for the appearance of a large positive com-
ponent and a negative 5 function in the symmetric
correction term should be clear. The observed scattering
contains no feature with a width comparable to the in-
strumental resolution. Therefore, the 6-function singu-
larity due to the condensate in J&~( Y) must be removed
and replaced with a broadened peak. This is a natural
consequence of expressing the corrections to the IA as
additive terms in the superAuid.

V. COMPARISON TO THEORIES

We now turn to an evaluation of FSE theories.
Theoretical calculations for FSE may be tested by direct
comparison to the observed scattering. The same pro-

FIG. 7. (a) and (b} Comparisons of the IA predictions in the
normal and superAuid phases with the model scattering functionJ,„,I( Y) obtained from a fit to the data. The components of
J d, I( Y) symmetric and antisymmetric about the recoil peak at
Y=O are plotted separately. (c) and (d) Symmetric and an-
tisymmetric components of the additive correction for FSE's in
the normal-Auid and superAuid phases.
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cedure used in Sec. IV will be applied. The theoretical
calculations for n (p) are used to obtain the scattering in
the IA. The results are then corrected for FSE's, using
the appropriate theory, and broadened by instrumental
resolution function. These results may then be compared
directly to the observed scattering to evaluate the
theories.

A number of theories predict a Lorentzian form for the
FSE broadening function over most or all of the Y range.
The earliest estimate of FSE's in liquid He, by Hohen-
berg and Platzman, takes the form of a convolution in
which the broadening function is a Lorentzian:

0.5

0.4
(a)

I I I

j 3.5 K

0.3

0.2

O. i

0.0

—4 —2 0 2

F +1(Q)
The width used for the FSE broadening was
I (Q) =po. (Q), where p is the density and o.(Q) is the to-
tal cross section for helium atom-atom scattering. More
recent Lorentzian theories obtain a width of I (Q)
=pIT(Q)/2, half the size of the original Hohenberg-
Platzman value. These theories include the asymmetric
Lorentzian obtained by Platzman and Tzoar, the
Lorentzian calculated by Reiter and Becher in a quasic-
lassical approximation, and the result of Kirkpatrick '

which is approximately Lorentzian near
~ F~ =0.

Figure 4 shows the Lorentzian broadening for the ex-
perimental conditions of this work using the smaller
value of po. (Q)/2 for the width. Figure 8(a) and 8(b)
show a comparison of the theoretical and experimental
results in both the normal and superAuid phases. In both
cases, the broadening is far larger than that observed ex-
perimentally. The theoretical results are not in agree-
ment with the experimental observations using a
Lorentzian broadening function of this width.

There is a theoretical objection to any broadening
function with a Lorentzian form. A Lorentzian function
possesses an infinite second moment and is therefore in
violation of the second-moment sum rule for incoherent
scattering discussed in Sec. II. However, the high- Y re-
gion of the Lorentzian function which is responsible for
its finite second moment is not tightly constrained by the
high- Y tails of the scattering data. Thus this theoretical
objection does not preclude a strong constraint on the
form of the broadening function extracted from the ex-
perimental data.

The failure of the existing Lorentzian theories for
FSE's is chieAy due to the size of the predicted width and
not their Lorentzian form. With an appropriate choice
for the width, it is possible to obtain good agreement with
the data using a Lorentzian broadening function or even
a Gaussian broadening function. The main feature of the
FSE broadening function which is constrained by the
data is its width.

From the point of view of some more recent FSE
broadening theories, there is a physical reason why
Lorentzian theories overestimate the broadening. The
Lorentzian form for the broadening follows from the as-
sumption that the struck He atom scatters from the other
atoms in the liquid at a rate which is independent of the
distance of the recoiling atom from the point of collision.
In reality, however, this scattering rate is not constant as

I I I I

~

I I I I

0.5

0.4

0.3

O. i

0.0

—4 —2 0 2 4

FIG. 8. (a) and {b) Comparison of the observed scattering
with the theoretical prediction, converted to J{Y) and
broadened by instrumental resolution, using the Lorentzian
broadening function of Hohenberg and Platzman with a width
1 =po.(Q}/2.

a result of the strong correlations among the atoms in the
liquid which are present before the atom is struck. Since
the mean separation between the He atoms places them
outside of the hard-core region of the potential responsi-
ble for the final-state scattering, the real scattering rate at
small times (and therefore at large Y) is lower than that
derived from the Lorentzian theories. By taking inter-
particle correlations among the atoms into account, these
theories can be made consistent with the second-moment
sum rule and can result in a broadening function with a
narrower width.

Czersch and Rodriguez made the first explicit attempt
to include the effects of ground-state correlations within
this approach. As a result, they obtained a final-state
broadening which is not Lorentzian. Instead, it contains
both a central peak which is narrower than that of the
Lorentzian theories and negative tails. The Gersch-
Rodriguez theory is consistent with the second-moment
sum rule. The calculated broadening is shown in Fig. 4.
Figures 9(a) and 9(b) show a comparison of the predicted
and observed scattering. The agreement in the normal
liquid is excellent. In the superAuid phase, the predicted
intensity at the peak is slightly too high. Nevertheless,
the agreement of the Gersch-Rodriguez theory with ex-
periment is quite impressive.



SOSNICK, SNOW, SILVER, AND SOKOL 43

0.5

0.4

I I

i

I I I I

i

I I I I

(

I

[3.5 K
0.5

0.4

I I I

i

I I I I

i

I I I I

I35 K

0.3 0.3

0.2 0.2

O. i O. i

0.0 ——
I I l I I I I I I I I I I I

—2 0 2

0.0

0 2

05 0.5
I

i

I I I I I I I I

(

I I I I

I

Q 4 0.4

Q3

(Y) 0.2

0.3

O. i O. i

0.0

—4 —2 0 2 4

0.0
I I I

FIG. 9. (a) and (b) Comparison of the observed scattering
with the theoretical prediction, converted to J( Y) and
broadened by instrumental resolution, using the broadening
function calculated by Gersch and Rodriguez.

FIG. 10. (a) and (b) Comparison of the observed scattering
with the theoretical prediction, converted to J ( Y) and
broadened by instrumental resolution, using the broadening
function calculated by Silver.

Most recently, Silver' has calculated a broadening
function similar to that of Gersch and Rodriguez (GR).
The physical point of view taken in Silver's theory is
similar to that of Gersch and Rodriguez, but there are a
number of differences in detail. Silver uses improved ap-
proximations for the two-body t matrix at high Q (semi-
classical versus eikonal approximations), uses different
approximations for the two-body density matrix which
satisfy sum rules, and expresses the theory in terms of the
Y-scaling variables. Silver's theory also uses more accu-
rate inputs which were unavailable at the time of GR's
work, such as the experimentally measured g (r) instead
of a step function approximation to g (r) and more accu-
rate He-He potentials as measured by He-He scattering
experiments. A detailed comparison between various
theories for FSE's has been performed by Silver. The
most important difference is that the GR theory uses a
longer classical trajectory before collisions begin than
Silver s theory {as illustrated in Ref. 34, Fig. 4), and this
is the reason why FSE's are smaller in the GR theory
than in Silver's theory.

The broadening function calculated by Silver for the
experimental conditions used in this measurement is
shown in Fig. 4. A comparison of the predicted and ob-
served scattering using Silver's theory is shown in Figs.
10(a) and 10(b). The agreement is excellent in both the
superfluid and normal-liquid phases at this Q. There are

deviations between Silver's broadening function and the
experimentally determined broadening function for

~ Y~ )0.8 A ', but since the data do not tightly constrain
the form of R ( Y, Q) for large

~
Y~ these differences are not

particularly significant. The main reason for the success
of Silver's theory from an experimental point of view is
that the width of the broadening function agrees with
that extracted from experiment.

In another large class of FSE theories, the additive
theories, deviations from the IA are expressed as additive
corrections to the IA result. These corrections are then
split into terms that are either symmetric or antisyrn-
metric about Y =0. One of the reasons for the interest in
this approach to FSE corrections is that if the antisym-
metric correction is dominant, then most of the FSE's
can be removed from the experimental data by simply
symmetrizing the data. In addition, since the removal of
the antisymrnetric term leaves both the zeroth and
second moment for incoherent scattering unchanged, this
procedure has no effect on any determination of the aver-
age kinetic energy using the second-moment sum rule.

Sears performed a forrnal expansion of the Cornpton
profile J( Y, Q):

oo d ll

J(Y,Q)=JI~(Y)+ g ( —1)"~„(Q) „JI~(Y),dY"

(5.2)
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in terms of J,~( Y) and it derivatives with coefficients
depending on Q. The leading-order correction to
bJ„„(Y, Q) was found to be of order 1/Q, and the
leading-order correction to hJ, ( Y, Q) was found to be
of order 1/Q . If this is true, then the antisymmetric
correction should be much larger than the symmetric
correction. Sears noted that this expansion would not be
valid for superAuid helium due to the presence of the con-
densate. There is no reason, however, for it to fail in the
normal Quid.

To test this expectation, we return to the decomposi-
tion of the symmetric and antisymmetric contributions to
FSE's extracted in Sec. IV. In the normal liquid, as
shown in Fig. 7(c), both the symmetric and antisym-
metric corrections are small. Unfortunately, the correc-
tions are so small that no conclusions can be drawn re-
garding which correction is dominant. The fact that the
corrections are small is not inconsistent with the sym-
metrization prediction. The symmetrization treatment of
FSE corrections does not modify the second moment of
the data. Thus it will have little effect on the broad, near-
ly Gaussian momentum distribution in the normal Quid.

In the superffuid, as shown in Fig. 7(d), the symmetric
and antisymmetric corrections are much larger than in
the normal Quid. In addition, the symmetric correction is
larger than the antisymmetric correction. The symmetric
correction consists of a negative 5-function singularity
with 9.2% of the total intensity superimposed on a net
positive part with a peak amplitude of approximately
25% of the total peak amplitude. [The negative 5 func-
tion is required to cancel the condensate 5 function which
appears in J,~( Y).] Symmetrization does not remove the
dominant part of FSE's.

Another approach to the description of FSE's in liquid
He attempts to incorporate some of the effects of inter-

particle interactions, not in the form of a broadening
function, but into the definition of the Y scale itself.
Theoretical predictions using an alternative Y scale have
been made by Stringari, and the general approach has
recently been described by Mayers. (Strictly speaking,
this shift should be referred to as an initial-state effect
rather than a final-state effect, since it arises from an at-
tempt to account for the change in the initial energy of
the atom due to its binding in the condensed phase. )

Such a description is incapable of describing the broaden-
ing of the condensate peak observed in the experimental
studies.

Stringari predicts that the recoil peak should be shifted
below the IA prediction of Y =0 by MH, E& /Q (EI, is the
average kinetic energy). The predicted peak shift of
—0. 11 A ' is not apparent in the scattering data at
Q =23 A '. The approximations underlying the
Stringari model have been criticized by Rinat as too dras-
tic. Nevertheless, it is possible that the use of a
different Y-scaling, variable may be useful in describing
the antisymmetric component of FSE corrections at
lower values of Q.

Finally, a new calculation of FSE's which makes use of
an alternative Y variable has been performed by Rinat
and Taragin. Rinat and Taragin expand the Compton
profile J( Yz, Q) in a power series in MH, /Q with

0.5

0.4

I I I

I

I I I

I 35 K

0.3

0.2

0.1

0.0
I I 1 I I

0 2

0.5

0.4

0.3
J(Y)

0.1

0.0
—2 0 2

FIG. 11. (a) and (b) Comparison of the observed scattering
with the theoretical prediction, converted to J ( Y) and
broadened by instrumental resolution, using the additive FSE
theory of Rinat and Taragin.

coefficients depending on Q and an alternative Y variable
Yz. The di(ference between Yz and Y is of order 1/Q
and thus vanishes in the Q ~ oo limit. Figure 11 shows a
comparison performed by the authors of their theory
with the Q =23 A ' data in terms of the West Y variable
used throughout this paper. The comparison shows good
agreement in the normal-liquid phase. In the superAuid
phase, the theoretical prediction of Rinat and Taragin is
narrower than the experimental data near Y =0.

VI. CONCLUSIONS

We have carried out a test of theories for final-state
effects in liquid He by comparing the observed scattering
in the normal and superAuid phases of liquid He with
theoretical predictions for the scattering, using current
calculations for the momentum distribution as input.
Therefore, implicit in our test is the assumption that the
theoretical calculations of the momentum distribution are
accurate. Obviously, our conclusions regarding FSE's
are accurate only to the extent that the theoretical calcu-
lations are accurate.

We find that several of the theories for FSE's are con-
sistent with the scattering observed in the normal-liquid
phase in which n(p) is broad and featureless. The only
theories which fail in the normal liquid are those that
predict Lorentzian broadening with a width po /2. These
theories predict a scattering that is much broader than
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that observed experimentally.
The scattering in the superAuid phase provides a much

more stringent test for FSE theories due to the presence
of the condensate. In the superAuid phase, only Silver's
theory provides an accurate description of the FSE's.
The theory of Gersch and Rodriguez also produces fair
agreement. From the point of view of the additive
theories, the data indicate that the symmetric correction
is larger than the antisymmetric correction.

However, the success of the Silver's theory for the sin-
gle momentum transfer of 23 A ' used in this experiment
does not by any means imply that the problem of FSE's
in liquid He is solved. Recent calculations of the two-
body density matrix in liquid He give results which are
significantly different from the approximation used in
Silver's theory. Whether or not these differences
significantly modify Silver's prediction remains to be
seen. For lower values of Q where most of the experi-
mental data exist, Silver's theory may not apply in its
present form at all.

Much experimental work remains to be done to clarify
the nature of FSE's in liquid "He. In particular, it would

be very interesting to extend the measurements per-
formed at Q =23 A ' to lower values of Q, both to deter-
mine where Silver's theory fails and to make contact with
the previous lower-Q experiments. Experiments in both
the normal and superfIuid should be performed, since any
differences between the two phases in the Q dependence
of FSE s could give important insight into the underlying
physics. If more theoretical calculations of momentum
distributions are performed at higher densities, then it
would also be possible to perform quantitative experi-
ments to investigate the density dependence of FSE's.
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