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Calculations, based on the Stillinger-Weber (SW) interatomic-potential model and the method of
long waves„are presented for the elastic properties of amorphous Si (a-Si) and for pressure deriva-
tives of the elastic constants of crystalline Si. Several models of a-Si, relaxed on the basis of the SW
potential, are considered, and the external stresses that are associated with these models are evalu-

ated using the Born-Huang relations. The elastic constants appear to obey the isotropy conditions
to within a reasonable accuracy and are also consistent with other predictions based on the SW po-
tential at finite temperature obtained by Kluge and Ray. Estimates of the pressure dependence of
the elastic constants, Debye temperature, and Grueisen parameter for a-Si are also provided on the
basis of these calculations.

I. INTRC3DUCTIQN

It is useful to examine the microscopic basis of the
elastic constants in amorphous Si (a-Si) since it is difficult
to obtain them experimentally because samples are in the
form of thin films. Single experimental values of the
Young's modulus' and of the Rayleigh-wave velocity
have been provided for separate (amorphized) samples,
both stated to have a density 0.95 times the crystalline
density. In addition, Rayleigh-wave velocities in an
amorphized sample were measured as a function of tem-
perature. Since there could be important sample-
dependent effects, a combined experimental and theoreti-
cal study of elastic constants could also help characterize
structures. Indeed, it is found that quite different results
are obtained for (low-density) sputtered and amorphized
materials.

Elastic properties of a-Si can be estimated through the
use of structural and interatomic potential models. One
of the fIrst attempts at such an estimate was that of Gutt-
man, who made use of the Keating potential, which is
known to give accurate crystalhne elastic constants. This
estimate was based on models with periodic boundary
conditions and with relatively few independent atomic
positions in comparison to recent models. Guttman used
the method of homogeneous deformation (MHD), where-

by he imposed various elastic strains and computed their
effect in the potential energy. Earlier, Steinhardt et aI.
presented a MHD elastic constant study for 519- and
210-atom continuous-random-network (CRN) models
having surface atoms (of less than full coordination).
They applied their study to a-Ge, but their results are
easily transferable to a-Si. More recently, Kluge and
Ray (KR) have made use of molecular-dynamics (MD)
techniques and the fact that the elastic constants are
linear-response functions. (A generalization of the theory

to the case of initial stresses has also been given. ) Kluge
and Ray obtained elastic constants of 216-atom models,
also with periodic boundary conditions, of a-Si at T=294
and 478 K. Their method does not take into account
quantum effects, but it does take into account anharmoni-
city to all orders. Guttman's results yield static-lattice
elastic constants, i.e., T=O K results in the absence of
zero-point-energy efFects. Both methods properly include
internal-displacement contributions to the elastic con-
stants. The estimate of KR is also consistently based on
the Stillinger-Weber (SW) potential, since the structure
as well as the (MD) computed elastic constants are deter-
mined on the basis of that potential.

It should also be noted that the SW potential does not
represent the crystalline elastic constants as precisely' '"
as the Keating potential does (which presumably can be
explained in terms of the difFerence in values of the ratio
of the bond-angle to bond-length force constants between
the two potentials). ' Nevertheless, KR (Ref. 7) pointed
out that although the experimental amorphous-state elas-
tic constants also do not appear to be accurately given by
the SW potential, the SW potential correctly predicts
difFerences between (averaged) crystalline and amorphous
elastic constants. We also mention that Cowley' has
compared values of selected elastic and vibrational prop-
erties of crystalline Si as calculated with a few recently
proposed interatomic potentials and concluded that the
SW potential gave best overall results.

In this paper we consider static-lattice elastic constants
of a-Si on the basis of the S%' potential and we consider
several structural models consisting of 216 atoms as well
as one of 1000 atoms. Our method of evaluation is the
method of long waves, ' which is applicable to crystals
since it is based on a perturbation theory, in the wave
vector, of the secular equations of lattice dynamics.
However, models of a-Si can be regarded as crystal lat-
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tices with large unit cells consisting of many basis atoms
that are presumed to correspond to the amorphous ma-
terial. (Of course, the "lattice" merely serves to imple-
ment periodic boundary conditions as the range of the
interatomic forces is considered to be negligible in com-
parison with the "lattice" parameter. ) Thus the method
of long waves is directly applicable to these models, al-
though the method will involve taking the inverse of a
large real symmetric matrix, of order 3X —3, composed
of generalized force constants. The method of long
waves and the other methods discussed above are funda-
mentally equivalent in the T=O K limit. Finally, a re-
cent' treatment of the method of homogeneous deforma-
tion that is more general than that given in Ref. 13 can be
seen to be equivalent to the method of long waves in the
T=0 K limit.

The Born-Huang relations, ' which relate external
stresses to elastic coeScients, S; k&, are also examined in
this paper. The models under consideration have been
relaxed, using MD, with either the virial pressure being
monitored, ' which restricts the external stresses to
p = —g, , T;;/3, or the volume kept fixed. (Relaxation
is accomplished by setting the total kinetic energy to zero
every few hundred time steps. ) Neither of these ap-
proaches ensures that the individual components, T;, of
the stress tensor correspond to hydrostatic pressure con-
ditions. Once the external stresses are known through
use of the Born-Huang relations, the corresponding
strains and strain energy can also be computed through a
knowledge of the elastic constants. It is worthwhile to
point out the existence of external stresses in the models
which Guttman used. Guttman noted that the energy
was not a relative minimum at the cubic-cell
configuration, but instead at a finite value of strain for
each strain component that was varied; reference states
for the elastic constants were chosen to correspond to
these relative minima, and hence different elastic con-
stants correspond to different reference states in the work
of Ref. 4.

We shall also obtain estimates of the pressure depen-
dence of elastic constants of a-Si and crystalline Si on the
basis of the SW potential. The latter is included for com-
parison because we are unaware of the availability of
such calculations for the SW potential. Applications of
our results to the low-temperature limits of the specific-
heat Debye temperature and thermodynamic Gruneisen
parameter are also made.

II. MODELS

KRR model was relaxed at fixed volume in order to pro-
vide a structure (model II) in which the atoms are in stat-
ic equilibrium. We performed two different relaxations
on the basis of the Wooten model —one (model III) keep-
ing the volume fixed at the crystalline value, i.e., the
volume used by Wooten, and one (model IV) in which the
(virial) pressure was also minimized, thereby allowing the
cell volume (as well as the internal coordinates) to "re-
lax." Models I and IV have number densities in SW units
(1/o = [1/(2.091 A)] ) of 0.4545 and 0.4404, respec-
tively. The density of model I is noted to be quite close
to the crystalline density of 0.460 as well as to the densi-
ty, 0.4527, of model II. We find that model III corre-
sponds to a virial pressure of p =4.078 GPa. We also
mention that models I and II are energetically lower than
model IV by 0.02 in SW units/atom (1 SW
unit=3. 4723X10 ' erg), where, for the SW potential,
the cohesive energy for crystalline Si is 2 SW units/atom.

In addition, we study a 1000-atom model (model V) re-
cently introduced in a calculation of thermal conduc-
tivity of a-Si. This model is quite closely related to model
IV since they are both obtained by the same algorithm.
Its density is 0.4396. Its potential energy is lower than
that of model IV by 3X10 SW units/atom. Finally, it
is remarked that the secular equations of lattice dynamics
have been solved for a11 of the models considered here
and it was found that models II (Ref. 21) and V (Ref. 20)
have one small imaginary frequency each, and associated
eigenvectors corresponding to fairly localized modes.
These instabilities can be expected to have a negligible
inAuence on the elastic properties of the models, at least
within the framework of the calculations to follow.

We wish to point out that the models studied in this
paper are substantially different from those recently in-
troduced by Kwon et al. The latter are appropriate to
sputtered samples. They have low densities due to the
presence of voids and are also characterized by low coor-
dinations (3.5 —3.7) in comparison to our models. In par-
ticular, the average coordinations are 4.037, 4.009, 4.009,
4.000, and 4.000 for models I—V, respectively. Here we
have assumed a cutoff of 1.28o. as a criterion for coordi-
nation. This cutoff occurs in the tails of the first peaks of
the radial distribution functions for all of our models,
where the maxima of these peaks occur at interatomic
distances within 2% of one another; the cutoff' used by
Kwon et al. was similarly chosen. It should also be
pointed out that models IV and V are not perfectly four-
fold coordinated as a few threefold and fivefold coordina-
tions exist in these models.

We consider, primarily, three different 216-atom mod-
els of a-Si: (a) the model of Broughton and Li' (denoted
model I in our calculations), which is the Wooten-
Winer-Weaire (WWW) model' relaxed via the SW po-
tential to a structure of zero virial pressure and static
equilibrium; (b) a Kluge-Ray-Rahman (KRR) model' de-
rived on the basis of the SW potential through a MD
quench of the liquid state —the particular model
transmitted to us corresponds to T=471 K; and (c) a
model of Wooten' derived by the same procedure as was
the WWW model, but with fourfold rings allowed. The

[ij,kl]=— m m m
1J ~~ k ~~ ix, x

IC, K 771

(3)

III. EXTERNAL STRESSES

The Born-Huang expressions for external stresses are

S,, —S"=[jj,ii] —[ii jj], i j =1,3

and

(2)

where



2154 J. L. FELDMAN, J. Q. BROUGHTON, AND F. WOOTEN 43

Component

TABLE I. Stresses (in units of Gpa).

Model
III IV

Sl 1 +p
S22+p
S33+p
S23

Slq

—0.26
0.02
0.24
0.01

—0.68
—0.34

0.37
0.09

—0.46
—0.64

0.08
—0.05

—0.60
0.91

—0.32
0.42

—0.48
—0.49

—0.26
0.68

—0.42
0.43

—0.41
—0.48

0.16
0.09

—0.25
—0.22

0.07
—0.07

Here, m is a unit-cell index, ~ is a basis-atom index, the
@;J's are the second-order coupling constants, and x(„.)
refers to equilibrium position vectors. ' Results are given
in Table I for the various models considered here. It is
evident that these models, which are based on cubic
periodic boundary conditions and which have been re-
laxed to temperatures less than -3 K, are under stresses
ranging up to 0.2 —0.9 CiPa (1 GPa= 10 kbar), aside from
the substitutional virial pressure of model III. The pres-
ence of these stresses is due to the cubic periodic bound-
ary conditions that are imposed. Because internal
stresses can be more easily "relieved" for a large model
than for a small one, these external stresses were expected
to depend on the size of the model, as was indeed found
(compare the first four columns of the values in Table I
with the fifth). Owing to the presence of these stresses,
the elastic coefBcients that enter into the elastic-wave
equations (i.e., the 5;J k~ s in the notation of Ref. 13) will
not have the usual symmetry properties. It is most con-
venient in that case to quote elastic constants based on
Lagrangian strain parameters, which enter into the quad-
ratic and higher-order terms in the strain energy formally
the same as do the ordinary infinitesimal strains in the
cases of either zero stress or hydrostatic pressure.

IV. ELASTIC CONSTANTS AND STRAIN ENERGIES

In Table II we give selected Lagrangian elastic con-
stants, C;, for the models considered. (In our notation,

"C" denotes elastic constants based on Lagrangian
strains and "c" those based on infinitesimal strains. )

These elastic constants correspond to a single reference
system with external stresses, S;, present. It is of interest
to see how well these elastic constants obey the isotropy
relation C44 =(C» —C&2)/2. The values of Table II
show deviations from the less restrictive cubic, as well as
isotropic, symmetry in various elastic-constant compar-
isons. Most likely, these deviations can be attributed to
both the finite size of the models and the cubic periodic
boundary conditions. As we have noted, those effects
a1so lead to the isotropic-symmetry-breaking stresses of
Table I. In fact, we have tried to explain the deviations
from elastic isotropy, in the case of the 216-atom models,
solely in terms of the above stresses using two of the three
independent third-order elastic constants of an elastic
continuum that enter into these considerations as adjust-
able parameters, but we could not obtain satisfactory re-
sults. Therefore we conclude that the deviations of our
results from the isotropy relations is not primarily caused
by the external stresses present, but, instead, by the finite
nature of the models. Certainly the isotropy relations are
seen to be better obeyed for model V than for the 216-
atom models, as expected. Further, similar deviations
from elastic isotropy, to results for models I—IV, for a
216-atom model were obtained in Ref. 7, despite the fact
that the latter calculations correspond to a reference sys-
tem for which the external stresses are zero.

The calculations of Kluge and Ray yielded

TABLE II. Lagrangian elastic constants C;, (in units of 10"dyn/cm ).

Selected
components'

11
22
33
12
13
23
44
55
66
14
25
45
44 —( 11—12)/2

14.30
13.92
14.48
8.05
8.01
8.36
3.66
3.34
3.45
0.09

—0.06
—0.08

0.54

13.22
14.65
15.20
7.85
7.79
8.01
3.21
3.87
3.37

—0.08
0.27
0.09
0.03

Model
III

14.99
15.16
16.09
8.23
8.23
8.61
3.49
3.75
3.32
0.32

—0.09
0.01
0.11

11.94
13.11
13.07
6.69
5.95
6.88
3.01
3.21
2.54
0.56

—0.28
0.03
0.39

13.24
12.83
12.78
7.05
6.90
7.00
3.10
2.94
3.00

—0.03
0.17
0.12
0.01

'The additional nine independent elastic constants that are not given here are similar in magnitude to
the last four rows of values.
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TABLE III. Isotropic parameters and strain energy per atom, e, of models. Isotropic parameters and strain energy (strain energies
are based on strains resulting from stresses, S;, +p5;, , given in Table I) of models (values in parentheses represent maximum devia-

tions from average values).

k (10" dyn/cm')

p (10" dyn/cm )

10 e (S% units/atom)'
Debye tempera tur e Oo (K)

'1 SW unit=3. 4723 X 10 ' erg.

8.14(0.2)
3.26(0.5)
5.0

463

7.88(0.2)
3.36(0.7)
3.4

470

Model
III

8.76(0.3 )

3.12(0.4)
3.3

445

IV

6.51(0.6)
3.01(0.5)
5.6

447

V

6.98(0.08)
3.00(0. 1)
0.493

446

c,2=8.3X10" dyn/cm at both T=294 and 478 K.
They also yielded c«=3.3 and 2.7X10" dyn/cm at
T=294 and 478 K, respectively, and c» —2c~4=8. 6 and
8.0X10" dyn/cm at T=294 and 478 K, respectively.
These results compare well with our values. As indicated
above, the volume of model II corresponds to the T=471
K volume. Ignoring the small volume difference between
T=471 and 478 K, the difference in elastic-constant
values between model II and these T=478 K values
ought to reAect the combined effect of explicit
temperature-dependent terms and of differences in result-
ing atomic coordinates when the potential energy is mini-
mized and when the free energy is minimized. However,
the observed differences in values are small and could be
attributed merely to the above-mentioned difference in
reference states —our reference state corresponds to a cu-
bic unit cell, whereas that of Ref. 7 does not.

It is well known that to first order in anharmonic
effects the elastic constants are linear in T at high T and
the linear extrapolation to T=O K yields the static-
lattice elastic constants. The extrapolation to T =0 K of
KR's results yields c,2

=8. 3 X 10" dyn/cm and
c44 =4.2 X 10" dyn/cm . These values should be
equivalent to those of model II plus a small volumetric
correction, as model II corresponds to a small virial pres-
sure ( ——0.3 GPa). Based on our estimate of pressure
dependencies given in a following section, the correction
to A, , i.e., c&z, is —+0.15X10" dyn/cm and that to p,
i.e., c44, is negligible. Model II results and the above ex-
trapolated values are then seen to compare favorably for
c,2, but not for c44, as the extrapolated value of c44 is
somewhat too large. The latter difference, however, is
well within estimated combined uncertainties of the cal-
culations. Larger models will clearly be required to study
this relationship in greater detail.

Next, we make use of the above values of elastic con-
stants to estimate the strain energies associated with the
external stresses that we have computed for these models.
The strain energy per atom (under zero external stress) is
defined by the general expression

(4)

where U is the atomic volume, e; represents the
infinitesimal strain and where we have used the full ten-
sor notation. The strains associated with these stresses
are most conveniently obtained through stress-strain rela-
tions involving the elastic compliances, which are ap-

proximated to obey the isotropy relations since it is of in-
terest to obtain only a rough estimate of the strain ener-
gies. In Table III we present values of isotropic elastic
moduli, k and p, and corresponding strain energies asso-
ciated with our models. The "isotropic" elastic constants
are derived from Table II, where appropriate averages
are taken. [For p, , both elastic-constant types c4& and
(c» —c&2)/2 are averaged together. ] Additionally, in the
case of model III, a conversion from the C; 's of Table
II to the ordinary elastic constants was made within the
approximation that only isotropic stress, with a value
corresponding to the virial pressure of model III, is
present. It should also be noted that, by employing ex-
pression (4) and the values in Table III, we are making
the tacit assumption that there is a negligible difference in
the second-order elastic constants between a zero-stress
state and that corresponding to the stresses of Table I.
Further, the values of the strain energy are larger than
the kinetic energy of the final iteration in the relaxation
procedure by factors ranging from 4 to 100 for the 216-
atom models considered. Thus, whereas additional relax-
ation of some of our 216-atom models is possible, the uni-
formity of the results for the strain energies suggest that
these values are intrinsic to the algorithms used —given
the SW potential, 216-atoms, and cubic periodic bound-
ary conditions. In the case of model V, the strain energy
is seen to be an order of magnitude smaller than for the
216-atom models and it is larger than the kinetic energy
of the final relaxational iteration by a factor of 10".

V. COMPARISON OF ELASTIC MODULI
WITH EXPERIMENT AND EARLY MODEL

CALCULATIONS

It is also worthwhile to present experimentally extract-
ed values of the elastic constants as well as results based
on a "scaling" of the theoretical results of Steinhardt
et al. for a-Ge. Tan et al. ' determined the room-
temperature value of Young's modulus, E, to be
12.4+0.3, which, when combined with the measured
Rayleigh surface-wave velocity of Senn et al. of
4. 16X 10 cm/s, yields A, =58.7+4O and p =4.23+o o2

where elastic moduli are in units of 10" dyn/cm . Simi-
larly, if the measured room-temperature, surface-wave
velocity of Vacher et al. of 4.29X10 cm/s is used in-
stead, we obtain A, =8.33+3 o and p=4. 70%0. 1. (In this
work we adopt the value 2.21 g/cm for the experimental
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density of a-Si. ) These results are based on the standard
Hat-surface analysis of the Rayleigh surface-wave velocity
in terms of elastic constants of an isotropic medium; for
the former set of elastic constants, the full variation in E
could not be rejected in the uncertainties in X and p
since above E =12.5 there are no solutions to the Ray-
leigh equation. Clearly the latter set of results is most
consistent with the values in Table III. In addition, the
former set of results leads to unreasonably large values of
the bulk modulus. In view of the fact that values of the
density, as well as of the coordination, of crystalline and
amorphous Si are quite similar, we expect the bulk modu-
li to be similar between the two structures as well. This is
the case for the latter set of experimental values, which
yields 8 =11.5+30 to be compared with the crystalline
value of 9.8. However, the former set yields values of
the bulk modulus in excess of 21.7, which are unreason-
ably high in our opinion. In order to indicate the effect
of a possible uncertainty in the density, a density of 2.23
g/cm yields A, =7. 14 (34.4) and @=4.77 (4.29) for the re-
sults of Vacher et al. (Senn et al.), i.e., to be compared
with the corresponding above results, A, =8.33 (58.7) and
@=4.70 (4.23). It must also be noted that Vacher et al.
did not state the density of their amorphized sample.

Guttman's calculational results for elastic moduli of
amorphous models were presented in terms of a/r, where
r is the near-neighbor distance in the corresponding crys-
talline material. Kluge and Ray applied Guttman's re-
sults to the case of a-Si by fitting the Keating expression
to the experimental result for c», their results corre-
spond to k=5. 2 and @=6.05. Steinhardt et al. as-
sumed a Keating-like potential, but with a value
/3/a=0. 2, whereas Guttman's values are based on the
Keating potential with a value of P/a=0. 3, quite close
to the Keating value. Since Steinhardt et al. presented
results for a-Ge, it is necessary to scale their results to a-
Si. This is done through the parameter a/r. We obtain
a from (a) the two-body part of the SW potential (a is
equivalent to "F"of Ref. 10), and (b) a fit of the Keating
expression for c» to experiment, or c» = 1.2a/r = 16.6,
where we set /3/a=0. 2 in the Keating expression. We
obtain A, (p) to be 6.75 (5.63) and 6.90 (5.76) for cases (a)
and (b), respectively. Steinhardt et al. also presented re-
sults for the effect of "relaxation" on the elastic con-
stants, as the elastic constants can be written as the sum
of two terms, one which corresponds to an aSne
deformation —and which alone is present when each
atom is a center of symmetry —and one which allows for
variation of the atomic coordinates in the presence of a
macroscopic strain. In the calculation of Steinhardt
et al. , the boundary-atom displacements were deter-
mined by an a%ne deformation. In Table IV we compare
our shear and bulk moduli results with those in Ref. 6.
The unrelaxed elastic constants do not obey the isotropy
conditions very well only in the case of model I;
(c44) =8.21 and ( —,')((c») —(c,z))=5.84, where ( )
indicates averages over cubic-symmetry-equivalent in-
dices. Therefore, Voight polycrystalline averages are in-
cluded (values in parentheses) for model-I entries in Table
IV. Our models clearly yield larger relaxational effects
than those of Ref. 6, and we note that a large relaxational

effect in p may be generally characteristic of amorphous
materials as it appears to be present in amorphous metals
as well.

VI. APPLICATION TO PRESSURE
DEPENDENCIES AND DEBYE TEMPERATURES

TABLE IV. Relaxation effects in bulk and shear moduli: R,
relaxed; U, unrelaxed (in units of 10"dyn/cm ).

Steinhardt et al. '

Model I

Model II

Model III

Model IV

Model V

R
U

10.50
10.76

10.31 (10.17)
13.92 (13.13)

10.13
12.01

10.84
13.18

8.52
11.09

8.98
10.84

5.63
8.94

3.26 (3.31)
7.03 (7.27)

3.36
7.15

3.12
7.54

3.01
6.96

3.00
6.91

'Based on scaling choice (a) (see text) of values in Ref. 6.

Here we apply the above results to obtain estimates of
the Debye temperature, Gruneisen parameter, and the
pressure derivatives of elastic constants. The pressure
derivatives of elastic constants can be estimated by com-
paring results for models III and IV since these models
differ primarily through the difference, 4.078 GPa, in
their virial pressures. Thus we obtain A,

' =5.5 and
p'=0. 25 (the primes denote d/dp). Because of the close
relationship between models IV and V, slightly more reli-
able results might be obtained by replacing the k and p
values of model IV by those of model V. This yields
A,

' =4. 5 and p' =0.27. Next we compare SW static-
lattice results with experiment for the case of crystalline
Si: The calculated (experimental) values are 2.97 (4.29),
2.75 (4.20), and 0.183 (0.75), for c &&, c'&z, and c44, respec-
tively, where the experimental values correspond to
T=77.2 K. We note that the large underestimate of c
by the SW potential is not surprising since a previous
MD result' showed that the SW potential similarly un-
derestimates the high-temperature value of the thermal
expansivity.

The Debye temperature 00 (based on our isotropic
elastic constants) of each model is given in Table III. In
Table V we compare SW results with the corresponding
experimental crystalline and amorphous values for
the quantities 8o and yo, where yo is the thermodynamic
Griineisen parameter (T =0 K limit). The quoted uncer-
tainty of the SW value of 00 is based on the maximum
deviation of results for models I, II, and IV from their
average value. In addition, the Gruneisen parameter is
estimated from results for Oo of models III and IV and is
found to have a rather small magnitude, not unlike the
case of the crystal that has negative thermal expansion at
not overly low temperatures. Furthermore, from the
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TABLE V. Low-temperature Debye temperatures and Griineisen parameters.

0O (K}
Amorphous Crystalline Amorphous

3 0

Crystalline

SW'
Expt. (thermal)
Expt. (elastic)'

460+13
528+20
538+1'
557+1

554.2
645+5'
650'

—0. 1g 0.4
0 44h

0.25'
0.21"

'de Launay's tables were used to compute "crystalline" values of 00.
bReference 30.
'Based on (room-temperature) results of Refs. 1 and 2 and standard formula, in terms of A, and p, for
the Rayleigh surface-wave velocity on a flat surface. Uncertainty reflects quoted uncertainty in

Young's modulus alone (see text).
Based on (room-temperature} results of Refs. 1 and 3 (see footnote c}.

'Reference 27.
Based on T=77.2 K elastic-constant values given in Ref. 26.
We do not know how to estimate the uncertainty (see text) ~

"Reference 29.
'Reference 28.

values of Oo, in Table IV, our models are seen to accu-
rately yield the increase, due to amorphization, in the
low-temperature aT term in the specific heat: We find

a„~„/a, , =0.57+8% (0.55+15%%uo) in the case of the
SW potential (experiment). On the other hand, it is seen
that the absolute value of Oo given by theory is in error.

We also present (Table V) a comparison of the mea-
sured heat-capacity and experimentally determined
elastic-constant Oo values for a-Si. These results are in-
conclusive uis a uis the existence of an "extra" contribu-
tion to the T heat capacity, known to occur for many
glasses. ' If an extra contribution existed, we would have
found an elastic-constant value larger than the
calorimetric one, and only one of the two "measure-
ments" for the elastic-constant value is outside the range
of possible calorimetric values. It should also be recalled
that a large linear heat-capacity term at very low temper-
atures is also characteristic of insulating glasses and gen-
erally ascribed to two-level tunneling systems. Such a
term was not observed in the heat capacity of a-Ge, al-
though careful measurements on that material have been
made below 1 K. (We are not aware of measurements
performed at su%ciently low temperatures to rule out
such a term in the heat capacity of a-Si.)

Returning to our quoted result (Table V) for yo, the
possibility that yo is negative is intriguing since that
would imply that the thermal expansivity is predicted to
be negative in the T=O K limit. It might appear that
there is a substantial uncertainty in this result, indicated
by the deviations from isotropic conditions, i.e., the
values in parentheses in Table III. Indeed, if we had
chosen appropriate individual elastic-constant values
rather than averaged values, a large positiue value of yo
could have been obtained. However, we believe that such
considerations greatly overestimate the uncertainty in yo
since some "self-averaging" of elastic constants most like-
ly occurs in going to larger models, as indicated by the
closeness in values of Oo for models IV and V.

VII. CONCLUSIONS

We demonstrated the use of the method of long waves
for evaluating elastic constants of four different 216-atom
models as well as a 1000-atom model of amorphous Si.
An important feature of these models in applying the
method is that they have periodic boundary conditions.
Our results were found to be consistent with previous re-
lated theoretical estimates of elastic constants at finite
temperatures. Unfortunately, combined uncertainties
preclude obtaining reliable differences between our
static-lattice values and the high-temperature values of
Kluge and Ray for the purpose of estimating temperature
dependencies. On the other hand, rough estimates of
pressure effects were possible. External stresses based on
the Born-Huang conditions were also obtained. These
quantities were found to be ~0.9 GPa for the 216-atom
models and ~0.3 GPa for the 1000-atom model. It
seems worth pointing out that those stresses are compa-
rable to the value 0.2 GPa, which represents the mea-
sured' internal-stress component for a thin-film a-Si sam-
ple made by ion implantation.

Finally, we have given detailed information pertaining
to the energetics of these models. We found that the
1000-atom model was lower in potential energy than its
closely related 216-atom model (model IV) by 3 X 10
whereas the strain energy in the 216-atom model was
found to be merely 5.6X 10 (in SW units/atom). Thus
the difference in energies between the two models does
not primarily represent a relaxation of internal stresses in
the larger model, although such a relaxation clearly takes
place on the basis of our results.

ACKNOWLEDGMENTS

One of us (J.L.F.) wishes to thank J. R. Ray for several
useful discussions, for pointing out Ref. 14, and for com-
municating his model, which had previously been utilized



2158 J. L. FELDMAN, J. Q. BROUGHTON, AND F. WOOTEN

in calculations with P. B. Allen on the thermal conduc-
tivity of a-Si (Ref. 21). We thank D. Singh for valuable
technical advice and P. B. Allen and D. Weaire for a crit-
ical reading of the manuscript and several helpful sugges-
tions. The computer code employed for evaluating the
Stillinger-Weber force-constant matrix is that of X.-P. Li.

The 1000-atom-model calculations were performed at the
Cornell Superconducting Center, Ithaca, NY. One of us
(F.W. ) was supported in part by the University of Califor-
nia and Lawrence Livermore National Laboratory under
U.S. Department of Energy Contract No. W7405-Eng-
48.

S. I. Tan, B. S. Berry, and B. L. Crowder, Appl. Phys. Lett. 20,
88 (1972).

W. Senn, G. Winterling, M. Grimsditch, and M. Brodsky, in
Physics of Semiconductors, 1978, edited by B. H. L. Wilson,
Institute of Physics Conference Series, No. 43 (The Institute
of Physics, London, 1979), Chap. 21, pp. 709—712.

3R. Vacher, H. Sussner, and M. Schmidt, Solid State Commun.
34, 279 (1980).

4L. Guttman, Solid State Commun. 24, 211 (1977).
5P. N. Keating, Phys. Rev. 145, 637 (1966).
P. Steinhardt, R. Alben, and D. Weaire, J. Non-Cryst. Solids

15, 199 (1974). (Note that the units in Table I of this refer-
ence should be 10"dyn/cm .)

7M. D. Kluge and J. R. Ray, Phys. Rev. B 37, 4132 (1988).
8J. R. Ray, Phys. Rev. B 40, 423 (1989).
F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5162 (1985).
R. E. Cowley, Phys. Rev. Lett. 60, 2379 (1988).
M. D. Kluge, J. R. Ray, and A. Rahman, J. Chem. Phys. 85,
4028 (1986).

In the harmonic approximation, the only noncentral-force
term in the SW potential is proportional to [cos (9)+—'j'
where 0 represents a bond angle, and it is the coefficient of
this term that can be identified with P of the Keating poten-
tial, although the Keating potential contains additional non-
central terms that are quadratic in atomic displacements. It
can then be seen that the value of the ratio P/a within the
SW potential is approximately 3 of that within the Keating
potential.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon, Oxford, 1954), especially Chap. V and Sec. 28.
J. F. Lutsko, J. Appl. Phys. 65, 2991 (1989).

'5J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, J. Chem.
Phys. 75, 5128 (1981).

~6J. Q. Broughton and X.-P. Li, Phys. Rev. B 35, 9120 (1987).

F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54,
1392 (1985).

M. D. Kluge, J. R. Ray, and A. Rahman, Phys. Rev. B 36,
4234 (1987).

9F. Wooten (unpublished).
2oJ. L. Feldman, J. Q. Broughton, P. B. Allen, and F. Wooten,

Bull. Am. Phys. Soc. 35, 216 (1990);and unpublished.
J. L. Feldman and P. B. Allen, in Atomic Scale Calculations in
Materials Science, Vol. 141 of Materials Research Society
Symposium Proceedings, edited by J. Tersoff, David Vanderbi-
lt, and V. Vitek (MRS, Pittsburgh, 1989), p. 219.

~~I. Kwon, R. Biswas, G. S. Grest, and C. M. Soukoulis, Phys.
Rev. B 41, 3678 (1990).
See, e.g. , T. H. K. Barron and M. L. Klein, Proc. Phys. Soc.
London 85, 523 (1965).

24J. R. Ray (private communication).
25D. Weaire, M. F. Ashby, J. Logan, and M. J. Weins, Acta

Metall. 19, 779 (1971).
~ H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 35, 2161

(1964).
P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Philos.
Mag. 4, 273 (1959).

~~W. B. Daniels, in Lattice Dynamics, edited by R. F. Wallis
(Pergamon, Oxford, 1965), pp. 273 —280.
P. W. Sparks and C. A. Swenson, Phys. Rev. 163, 779 (1967);
also see K. G. Lyon, G. L. Salinger, C. A. Swenson, and G.
K. White, J. Appl. Phys. 48, 865 (1977).
M. Mertig, G. Pompe, and E. Hegenbarth, Solid State Com-
mun. 49, 369 (1984).
R. O. Pohl, in Amorphous Solids, edited by W. A. Phillips
(Springer-Verlag, Berlin, 1981),pp. 27—64.

2H. v. Lohneysen and H. J. Schink, Phys. Rev. Lett. 48, 1121
(1982).


