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The energy loss of a charged particle to a solid-state plasma film or slab of finite thickness is treat-
ed here, both for motion parallel to the slab faces as well as for penetration across the slab. In this,
we extend the early work of Ritchie to include nonlocal dispersive plasma features, in addition to
the dynamic response features associated with the excitation of slab collective modes. We employ
the diagonal approximation for the slab random-phase-approximation inverse dielectric response
function, and the plasma electrons are subject to the specular-reAection boundary condition at the
slab faces. For parallel motion within the slab, we find modifications to the result of Nunez,
Echenique, and Ritchie due to the finite width of the slab. For particle penetration across the slab,
we incorporate the dynamic plasma response features associated with phonon polarization and a
magnetic field to determine the role of bulk and surface magnetopolaritons in energy loss. Our de-
tailed field-free calculations clearly demonstrate energy-loss contributions associated with the exci-
tation of symmetric and antisymmetric slab surface polaritons as well as bulk polaritons, with com-
putations carried out in full for GaAs.

I. INTRODUCTION

Electron-energy-loss spectroscopy (EELS) has been an
important probe of the fundamental dielectric response
properties of a solid-state plasma film or slab. This was
brought into clear focus by Ritchie's' landmark work on
the loss of a fast charged particle penetrating across a
bounded quantum plasma of finite thickness. In this pa-
per, we extend Ritchie's analysis to treat energy-loss
spectroscopy for charged-particle penetration across a
nonlocal plasma exhibiting spatial dispersion in a plane-
bounded film or slab of finite thickness. In conjunction
with this, we incorporate the role of dynamic phonon-
magnetoplasmon coupling in the random-phase-
approximation (RPA) dielectric response function of the
system. Such phonon polarization effects are of interest
for semiconductor heterostructures, even at low tempera-
tures and they will be examined in detail here. Our for-
mulation includes a magnetic field (perpendicular to the
planar bounding surfaces of the quantum plasma) to facil-
itate later analysis of it as a richly revealing probe of the
properties of matter in this energy-loss context, as it has
been historically. Earlier work on nonlocal energy loss
has generally been focused on charged particles in transit
outside the film or slab, excluding penetration, most often
treating the film in a semi-infinite limit. ' Recent work
of Streight and Mills also touches upon aspects of plas-
ma nonlocality in EELS in the null magnetic field limit,
in the absence of phonon couplings, but with self-
consistent wave functions for n-type GaAs with depletion
or accumulation layers induced by suitable charge sheets
on the finite film surface. In our treatment of the sur-

faces, we assume the infinite barrier boundary condition
for specular reAection of the Fermi sea of electrons
within the finite slab. Furthermore, we assume that the
trajectory velocity of the incident particle of charge Ze is
not modified by its interaction with the medium, i.e., we
neglect all recoil effects.

Hayes and co-workers ' and Bending et al. " have
carried out experiments using injected hot-electron spec-
troscopy in GaAs to demonstrate nonequilibrium carrier
transport across thin semiconductor layers. The energies
of the charge carriers injected across the semiconductor
were significantly in excess of the Fermi energy. The re-
lated calculations of Ref. 10 were done neglecting the
contributions associated with the surface since the quan-
tity co L/u was large for the conditions under which the
experiments were performed. (Here, co~ is the bulk plas-
ma frequency, I. is the thickness of the slab, and v is the
uniform velocity of the injected electrons. ) Our work ad-
dresses such surface contributions for smaller slabs,
whose finite thickness must be considered along with
plasma nonlocality and phonon effects in carrier trans-
port across such slabs.

The energy loss of energetic charged particles moving
parallel to the surface of a semi infinite plasm-a has been
calculated by several authors' ' who have taken the fre-
quency and wave-vector dependence of the dielectric
function into account. Their calculations were carried
out using the specular reAection model of Ritchie and
Marusak'" in which the induced scalar electric potential
can be divided into three parts, (i) the potential due to the
external charge, (ii) the potential due to its image, and
(iii) a fictitious surface charge fixed by the boundary con-
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ditions. ' Our paper includes treatment of the "parallel"
case in providing the nontrivial extension of this pro-
cedure to a nonlocal slab of finite thickness. Qur general
formulation of dynamic nonlocal plasma-slab energy loss
for charged particles is presented in Sec. II. In Sec. III
we report the results of our calculations for energy loss of
charged particles moving parallel to the finite plasma slab
faces both inside and outside. Section IV is devoted to
the determination of the energy loss of a charged particle
moving perpendicular to the planar surfaces across the
dielectric slab. In Sec. V we study the low-velocity limit
of energy losses: In this limit, the nonlocal nature of
dielectric response is important. Finally, in Sec. VI, our
emphasis is on bringing forth jointly the roles of finite
slab width, phonon polarization, and the magnetic field in
fast particle energy loss in penetrating across a plasma
slab.

p(l) = —(4~e) ' f d 3 V', [K(1,3)—5 (1,3)]U(3) .

The frictional force on the passing particle is

f=e f d lp(1)V, V(l)

d31 +2 P 1 U 1

It is worth noting that part of this force, the self fovce, is
eliminated through the introduction of the electric field
stress tensor since (E= —VV, VXE=O)

[E(V E)—EX(VXE)] = g (E Et3
—

—,'5 t3E ) (3)a g 0; p z ap

and the tensor divergence on the right-hand side of Eq.
(3) integrates to zero over all space for a medium of arbi-
trary inhomogeneity. This yields

II. DIELECTRIC RESPONSE FORMULATION
OF ENERGY LOSS TO A PLASMA SLAB

We address the problem of energy loss in terms of the
effective potential V(1) at space-time point 1=(ri, ti ) in-
duced by a passing charged particle which impresses the
Coulomb potential U(2) =Ze/~rz —R(t2) ~

at space-time
point 2=(r2, t2). It is assumed that the frictional energy
loss is small, so the passing particle moves with approxi-
mately uniform velocity such that R(t2)=vt2+RD. The
plasmalike medium responsible for frictional energy loss
is characterized by an inverse dielectric function IC (1,2),
which provides the linear response relation V(1)= Jd 2K(1,2)U(2), with effective electric field
E= —V, V(1) and corresponding perturbed plasma densi-
ty

f= fd' ll', U(1)V, V(1)

= —Ze [V', V(1)], a(, ), (4)

since V'i U(1)= —4mZe5' '(ri —R(ti )) for a moving par-
ticle of charge Ze. Considering a slab which confines
Fermi-sea electrons with infinite-barrier bounding sur-
faces at z =0 and z =L we denote vectors projected onto
the x -y plane by subscripted parallel bars [e.g., r=(r~~, z)],
and introduce spatial Fourier transforms in the x -y plane
of translational invariance. It is convenient at this point
to also introduce an infinite three-dimensional (3D)
Fourier transform of U(2), despite spatial inhomogeneity
in the z direction, with the result

f= —(Z ) V' d ' 'f1 (2') — (2')Z2 2'

()'")~+&?,', '

q~~+q, ri =vt
l +RP

Breaking the frictional force f in Eq. (5) into components parallel and perpendicular to the surface of the slab,
f= f~~+f,k, where k is a unit vector perpendicular to the surface, we have

f
~~

= —(Ze) f" dzq f "2
&q~~ f ' e' '"e ' ''"e

2ir )2 ii — (2ir )

and

E(z =U t +zo, z;q~~, co —
q~~ v~~+q U )X-

q
~~

+q~
(6)

d q d g z g () Eg U

f, = —(Ze)' dz,
a
Z i zl =U tl +20

whe~e v=vl(+U, k
To carry out calculations for energy loss, we employ the inverse dielectric function for a finite slab of nonlocal dy-

namic solid-state plasma derived in a companion paper [Ref. 16(b)] in connection with a study of surface screening phe-
nomena in a magnetic field. We shall draw upon the results of that analysis for various representations of K(1„2)sub-
ject to the boundary condition of specular reAection of electrons at both slab faces, using those representations of
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IC(1,2) which are convenient for our energy-loss calculations in a variety of conditions to be considered. One of the
most useful forms of K(1,2) is the diagonal approximation which neglects quantum interference effects associated with
the vanishing of the wave functions and density at the infinite barrier boundaries, ' while admitting to consideration
bulk quantum effects arising in the temperature-dependent Lindhard dielectric function and its Landau quantized coun-
terpart in high magnetic field. In this, only surface-induced spatially inhomogeneous modifications of the polarizability
are ignored in the process of joining bulk dielectric response properties across the boundaries of adjoining media at the
slab faces (including their complement of bulk quantum effects). For the diagonal approximation, we have for a slab
with planar surfaces at z =0 and z =1.,

q z eq
K(z, z';q}},rd)=0( —z) 5(z —z') —e ' 5(z')+ [(2+E +E )5(z')+(e —E )5(L —z')]

2(1+e )(1+7q)
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Z
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cos(q, z)
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and

In this notation, q, =nor/L where n =0, 1,2, . . . , ~ and

nq
=

—,
' for q, =0 and 1 for q, &0, and the vector k has

z

components k, and q}}. 0(x) is the Heaviside step func-
tion. Also,

~ll 'gq,
Eq '(~d)= (9b)

q }-.} lql ~i(q ~)
where el (q, co) is the wave-number- and frequency-
dependent dielectric function for an infinite solid. It will
generally be approximated in the random-phase approxi-
mation in this work. The diagonal approximation may be
expected to be useful for samples which are large in corn-
parison with the characteristic distance over which
surface-induced spatial inhomogeneities penetrate the po-
larization properties, I. ))1/2kF. Moreover, the diago-
nal approximation is also valid in any classical or semi-
classical description of nonlocal response.
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III. PARTICLE MOTION PARALLEL
TO THK SLAB SURFACES: HIGH-VELOCITY LIMIT

by 5:—v 'dW/dt, where the rate at which the charged
particle loses energy is

Considering parallel motion of a charged particle at a
distance zp from the surface, with velocity U)~ (U, =0), the
stopping power (energy loss per unit path length) is given Using Eq. (6) with z2 =z2 —zp, we find

(10)

Ze& dqll U'qll —
q zS = i — Jdzz e ~ 'I(.'(z) =zp, zz=zz+zp;q~~, d)=q~~ v)

qll

or, alternatively,

—i (Ze) QQ

dq dq v q~~V(zp zp'q~~ co
q~~

v)
(2~) u

(1 la)

(1 lb)

Here, V(z, z',
q~~, co) is the electrostatic potential at z due to a Coulomb charge of unit strength at z', taking full account

of the dynamic nonlocal polarization of the dielectric slab. After a lengthy but straightforward calculation, making use
of the diagonal approximation of Eq. (8), we have obtained the value of V(z, z';q~~, co) for (a) the cross-boundary situa-
tion, i.e., when z and z are on opposite sides of a surface of the slab, with one of the test charges inside the slab, (b)
when z and z' are both in the vacuum region, and (c) when z and z' are both inside the slab. Substituting these results
into Eq. (11),we obtain the energy loss per unit path length for a particle outside the slab at a distance zp from the sur-
face as

S="Z"f- dq J2 v —
qll

q 'o
ll

—
q L

(I+a )(I+X~) 2(1+8~)(1+E~)

qli g q+
i
—g z [q~~cos(q, L)—q, sin(q, L)]

1+Eq L
q ( ) Iql EL(q, q)) v)

1+,—g [q~~cos(q, L)—q, sin(q, L)]
q, (odd) Iql EI„(q

For a particle traveling insrde the slab at a distance zo from the surface, our calculations show that the energy loss
per unit path length is obtained by substituting the following result for the electrostatic potential for 0&z,z (I into
Eq. (11):

V(z, z', q ~), cp)
2m.e

ll

—
q (,L —z') qli cos(q, z)
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2 cos(q, z)+—g i) I2q~(cos(q, z') —e " [q~(cos(q, L)—q, sin(q, L)]]
q, (even)

'
lql sL. (q pi)

cos(q, z) 1
I2q

1+Eq L
q (odd) Iql'EL, (q, (o) ~ (odd) Ikl'EL(k

i
)—e (' [q~(cos(k, L)—k, sin(k, L)]]

cos(q, z) Ik

[ 2q
~~

cos( k, z' ) —q(~
e

1+E, ' L', (....) Iql'EL, (q, ~) k ( ) Ikl'et. (k, pi)

I—e " [q~~cos(k, L)—k, sin(k, L)]], (13)

where the wave vector k has components k, and q~~. In the limit of high velocity, when the dielectric function E(q, co) is
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taken to be independent of wave number and equal to the local limit E(co), we have E~ =E(co)coth(qllL/2) and
Y. =s(co)tanh(qllL/2) (null magnetic field). Substituting these results into Eqs. (13) and (11), and taking the thick film
limit L —+ ~, we find that the stopping power for an electron traveling inside the slab at a distance z0 from the surface is
given by

(Ze) co~S= ln
U

k, u
+ 1+

COp

'2 1/2

.+
(Ze) co,

K0
2co,zo (Ze) co

K
U

2 0
2copz0

(Ze) co~ co L
+2 K0

U

(Ze) co, co,L
E0

U U
(14)

where co is the bulk plasma frequency and co, =co /&2 is the frequency of the surface plasmon in the long-wavelength
limit. Ko(x) is a Bessel function of imaginary argument, k, is a cutoff wave number associated with the onset of natural
damping which has been introduced into the bulk contribution to the stopping power, which ensures that the result is
finite. The erst three terms have been calculated by Nunez, Echenique, and Ritchie' for the half-space geometry. The
last two terms in Eq. (14) are due to the finite slab thickness.

IV. PARTICLE MOTION PENETRATING ACROSS A PLASMA SLAB: HIGH-VELOCITY LIMIT

We consider a charged particle penetrating across a slab, normal to its bounding surfaces at a constant velocity
throughout, neglecting the change of speed upon entering and leaving the binding potential of the quantum well. In
this approximation, the force on the charged particle is, from Eq. (7) (vll =0),

f, = —(Ze) f dz2 f f K(zo+v, t„z2,qll, co=q, v, ) . (15)
(2~)~ —m 2vr z0

Forming the total work integral

W=f" dz, f, (16)

and integrating by parts with respect to zo, we obtain (set zo =zo+v, t, )

W'= —(Ze) f dz f dz f ", f " '
q, ', ', ImK(z, ,z, ;q„, co=qv),

(2~)' -- 2 '
q', I+q

where Im stands for the imaginary part. Alternatively, putting co =q, U„we obtain

II'= f d'qll f" d~&~&(qll ~)

where the probability function is defined by'

1 (Ze) 2 1 oo QO EZp C0/V IZ2N/V
(qII'co) f dzo f dzz e ImK zo'z2'qll'co)e

27T g U + co

(17)

(18)

ImK(zo Z2 qll M) =5(Z2)e II ' ImK2D(qll ~)
—IqllZ I

where K (qll, co) is the reciprocal of the dielectric function of a two-dimensional electron gas. Substituting Eq. (20)
into Eq. (17) yields

(20)

In this, we have used the fact that the imaginary part of the inverse dielectric function is an odd function of co and the
real part is an even function of co. The representation for energy loss in Eq. (17) is useful for carrying out calculations in
the low-velocity limit.

For a particle crossing a 2D inversion layer sheet at the z =0 plane, we have'

(2m) — 2vr ( q +q )
(21)

In this very-thin-film limit, when only the lowest subband is taken into account for the heterostructure, the formal re-
sult for energy loss is relatively simple.

To proceed further with the determination of energy loss to a slab of finite thickness, we employ the inverse dielectric
function K (z, z;qll, co) given in Eq. (8). Our calculation based upon the diagonal approximation of Eq. (8) yields

(Ze) 1
(22)

2& 'RU q
~~

+CO /U
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where Uis given by

s(coLIU) —1] e—q[cos(coL/U)+1] —2E Y. J

2+ 2/ 2 (1+Eq)(l+e )

Fq SQ)(&+ S1n
1+

Z
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4 67+-
L V

2

Eq 8Q
((
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1 1

q, (odd) eL (q~ ~ ) (~/t') qz
2 2

z

q (even) I q' ) qz

4
V

L

coI
U

1 1

(odd) I- q~ (~»)2 2

4 co+-
L, V

1

2 2 2

4 co+-
L V

2

1 cos 1

' c.i (q, co)[(colv) —q, ]
2 2 2

1
'

&q 1 1
[ 1+cos(coL /U)]

g
~~

+63 /v 1+Eq
q Iodd) eL (q ~) (~/U)

L

+ [1—cos(coL /U)]
E,

q 1 1

1+7 ' El. (q, ~) (co/U) —q,
(23)

These results provide a complete description of the energy loss of a charged particle passing through a slab of dielectric
material where both the wave-number and frequency dependencies of the dielectric response function are taken into ac-
count, within the framework of the diagonal approximation assuming classical specular scattering at the surfaces. It is
straightforward to show that in the high-velocity limit q~O we obtain the well-known result of Ritchie. Taking
ei (q, ~) to be the local dielectric function e(co) —= e and using the relations

2
q(odd) qz

L L
tan —u

4e

Tl
qz I. I.cot —a

q, (even) O' 6'z
(24b)

Taken jointly with Eq =e coth(q~~L/2) and Y. =e tanh(qt~L/2) these results yield the probability function in the local
limit of dielectric response as (no magnetic field and no phonons)

P(q, co) = Im(Ze) 1 L
Il' 2 2g 2 ~ 2+ 2y 2

2g
~I+ Im

(q2 +~2/U 2)2
1 —E 2(E —1)cos(coL/u)+(e —1) e " +(1—E )e "

(E —1) e " —(e+1) e
—

q L —
q L
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(which is appropriate in the high-velocity limit since
co —qzvz ).

In the thick-slab limit, i.e., q~~~L ))1, Eq. (25) becomes'

Integrating this in accordance with Eq. (18) to obtain the
total work done, W=—Wb„&„+W,„,f, where the bulk and
surface terms are, respectively,

P(q(( ~)=LP'-(q)) ~)+Pb(q)( ~»
where

P'„(q, co) —= (Ze) 1
Im

1

ll' 2g 2 2+ 2/ 2
ll

Wb

Wsurf
=

L(Ze) co i v'ln 1+
v

~(Ze) co, 1—
U v'2

2

(28a)

(28b)

2(Ze)
q~~ 1

PI, (q, co)—: Im
2g 2

( 2+ 2/ 2)2
(1—e)
E(1+E)

(26c)

CO CO
2 2

CO CO
2 2

P (27a)

2 2

2 2 2 2~~ —~P
(Ze) p

~Av qll +co /v
(27b)

Specifically, with c,(co) =E= 1 —co /(co iD —
) we obtain

(Z. )
Pb(q, co) =

~fiv (q +co /u )

Taking the cutoff wave number K = co /v, we obtain
Wb„,„/8;„,t=1.065t, where t:copL—/u. In the experi-
ments carried out in Refs. 9 and 10, we have L =650 A,
v =10 cm sec ' and co =2. 13X 10' sec ' so that
Wb„s, /8', „,„=14.8, and the surface terms may be
neglected in analyzing the data.

V. LOW-VELOCITY LIMIT FOR PARTICLE
CROSSING PLASMA SLAB

The low-velocity limit for energy loss is amenable to
analysis. For charged particles moving perpendicular to
the surfaces of the slab, we may obtain the low-velocity
limit of Wby expanding the inverse dielectric function K
in Eq. (17) to linear order in co=q, u„while holding the
nonlocal dispersive structure of K intact. This yields

W=u( )'f" d, f" —,f ", f" 'q,"
(2~) — 2~

q~~ +q,
and carrying out the q, integral explicitly in Eq. (29), we have

Im K zv'z2'q~ (29)

U qll 2
—

lqll~ l 2 Ol(Ze) f dz2 f dzo f /q~~/ e ' Im K(zozo'q~~co)
(2~) Bco

co —0
(30)

R (1,2)—: ~ = —iG, (1,2)G, (2, 1+) .
5V(2)

(33)

Considering the situation when screening effects are weak
(low phonon density), the RPA integral equation

K(1,2)=54(1—2)+ fd~3f d~4u(l —3)R(3,4)K(4, 2)

(31)
reduces to the ordinary Hartree-Pock approximation

KH„(1,2)=5 (1—2)+ f d"3 v(1 —3)R (3,2), (32)

where R (1,2) is the density perturbation response func-
tion

where

dk f( k+F-. ) f( k , +&p—)—
R p (q, co) =2

2~ Am+c&+E —ck —E&+i0+
(35)

In this, f (E) is the Fermi-Dirac distribution function and
c.k+F. is the electron energy in the ath subband, where
@&=A k /2m' with m' equal to the electron effective
mass. Employing the unscreened approximation of Eq.
(32) for K in Eq. (30), and carrying out the zo integral, we

obtain 8'as

[Gi(1,2) is the one-electron thermodynamic Green's
function and R (1,2) is the ring-diagram contribution of
density-density response; v (1 —2) is the Coulomb poten-
tial. ] For a single quantum well with transverse subband
wave functions u (z), we have quite generally

R (Zl Z2 q~~
co) g u (Zl)u (Z2)up(Z2)

u, (Ze) 2DX f "dq~~ ~q~~~lm

a

q
(36)

Xup*(z, )R p(q~~, co), (34)
where we have used the following approximation for a
quantum well:
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f co oo —
Iq)( I I~, —~3 I

dz2 dz3 u (zz )u&(z2 )e u& (z3 )u (z3 )

=5 &f dzzf dz3l zz l e '
' 'lu z3)l—:5 &F (qi) . (37)

1/2
8~8m *

ImR (q(~, co) = P

qlt

X sinh(Pcs )exp

exp
8m*

f3m ('o

4q
~~

(38)

and correspondingly

Im R (q(~, co)2D

co —0

1/2 2
pp 8~pm * Pq

~)

exp 8m*
(39)

where P= 1/ke T and the nondegenerate areal density for
the 2D electron gas is p =4m "e /P. (g is the chemi-
cal potential relative to the subband energy E . )

It is readily recognized that R (q(~, (o) is the two-
dimensional density perturbation response function with
chemical potential measured relative to the subband ener-
gy E . R (q~~, co) is well known both in the presence
and absence of a magnetic field, ' and it is straightfor-
ward to obtain Why numerical integration of Eq. (36) for
any regime of temperature, with slight modification of
the formula to accommodate a magnetic field having a
discrete 2D energy spectrum in place of c.~nkvd, . The
special case of a field-free nondegenerate 2D quantum
plasma in highly tractable with

dynamic phonon polarization and magnetic field effects in
the plasma (magnetopolariton) energy loss of a charged
particle to a finite slab of dielectric material. In particu-
lar, we treat the energy loss in the high-velocity limit,
again employing the diagonal approximation of the in™
verse dielectric function E (1,2). The Landau quantized
Lindhard dielectric function for the bulk system in the
long-wavelength limit is given by the following classical
result which incorporates the dynamic phonon polariza-
tion:

Q
EL (q, (o) =e„ 1+

67TO CO

qz qadi
[0 (co)][0 (co)]-

q co q co co

(40)

[Q„(co)] =
2

67p

c. 1+ Q

63TO CO

(41)

where it is understood that co has a small negative imagi-
nary part, i.e., co ~~ —iO+, c, is the high-frequency
dielectric constant, co, is the cyclotron frequency,
n =—Q)Lo —6)T(3, with coTO and coLo as the transverse opti-2= 2 — 2

cal and longitudinal optical phonon frequencies, respec-
tively, and

VI. MAGNETOPLASMON-PHONON EFFECTS
ON ENERGY LOSS AT HIGH VELOCITY

In addition to accommodating nonlocal dispersive
effects, our formulation can easily incorporate the role of

Here (o~ —=4m.e p/m* is the square of the bulk plasma
frequency, p is the electron bulk density, and m * is the
electron eff'ective mass. Substituting Eq. (40) into Eqs. (9)
and carrying out the sums with the use of Eqs. (24), we
obtain the results

1
X

q(.dd) lql s, (q, ~)
L /4q(i

0
c 1+

COTO Ct7

[Q (co)]

CO

[Q (co)]

CO CO
2 2

1 —[n, (~)]'/(~' —~', )
'"

X tanh
2 1 —[Q~(co)] /co

vl

q (even) Iql'EL, (q, (o)

L /4q(i

01+
COT~ CO

[Q (co)]1—
67

[0 (co)]

CO CO
2 2

q(iL 1 —[0 (ro)] /(co co,)—
X coth

1 —[0 ((o)] /co
(43)
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1 1 — L IL=C(co ) tanh
( dd) EL (qyco) (Qj/v) q 4I 2

q((+( /"
r'+(~/u)' 4~/v r'+(~/u)'

coL

2U

r

7/ q 1 — L IL
2

=C(co) coth
( „) L(q, ) ( / ) —

q 4r 2 r'+ (~/u)'
q(( +(co/v )

cot
4~/v r'+(~/u)' (45)

where

C(co )—:

and

1+ Q

COT~ CO

[A„(co)]1—
2 2

C

[Q~((v)]1—
CO

1

[0 (co)] COp Q2+
CO CO To CO

(46)

(47)

Clearly I =q(( for co, =0 (i.e., zero magnetic field) and the coefficients of the hyperbolic tangent and hyperbolic co-
tangent terms in Eqs. (44) and (45) are zero. For the remaining sums, we note that

1 1

(,dd) &L(q, (v) [(co/u) —q, ]
2 2 2

L IL=C((v ) tanh

() 1 1

4, (.«) Ei(q ~) y —q,

[r'+(~/u)']'

L 1 coL
tan

8(colu) [I +((v/v)~]~ 2v
T 2 2

X q + — 12+
U U

L

2

+2 —
(q~~

—I )

2 2 2q((+(~/v), ~1.
2

sec
4~ r'+(~/v)' 2v

(48)

Q q 1

q (e e ) EL(q ~) [(~/u) —q, ]
2 2 2

qq

q (even) L( i&~) g q
y =(co/U)

=C((v ) coth
rL
2

I —
qII

[r'+(~/u)']'

L 1 coLcot
8(co/u) [I +(co/u)2]2 2v

2 '2 2

X ~ q + CO r+—CO

U
+2 — (q' —r')

II

q((+((v/u)
2

CSC
I + ((v/u)2 2u

(49)

The substitution of these results into Eqs. (22) and (23) determines the probability function of the high-velocity energy
oss for a fast charged particle penetrating across a finite plasma slab, with proper accounting of phonon polarization

"eld 3ointly corresponding « the excitation of bulk and surface magnetopolar;tons for finite slab»
In null magnetic field, we find considerable simplification of the formulation. After a lengthy and tedious calculation,
we obtain from Eq. (23), for co, =0
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V= —LC(~)— 2q((

qll+~v /v

1

COL +cos
2U 1+6,

sin («~)—I t',
1+

(50)

appeai jng in Fq {50) are given by the zero-field limits, obtained from Eqs. (42) and (43) with
i =C(~)tanh(q L /U), e =C(rv)coth(q L /U). The first term in Eq. (50) corresponds to L times the probability Per

unit path length for an infinite crystal (in the absence of a magnetic field). The remaining terms represent the boundary
corrections m the limit of large L. We thus write P (q((, rv) as the sum of two t
P'„(q„,m) as the probability per unit slab thickness for an infinite medium; and (ii) Pb(q)(, (o), which arises from bound-
ary eA'ects. Inserting the expressions for Eq and E'q foI cop 0, we obtain

(Ze)
Pb q, CO

zfvz (qz+~2/Uz)2
r

COI
X Im . sin coth

2U 2
COL qll+cos tanh
2U 2

—coth
2

tanh
2

coL 1
SiIl

C -' —tanh(q((L/2)

COL 1+cos
C ' —coth(q((L /2)

(51)

The first two terms in Eq. (51) proportional to C give rise to surface energy losses at the bulk polariton frequencies,
whereas the last two terms correspond to losses at the symmetric and antisymmetric surface polariton frequencies. We
note that the bulk and surface terms produce a decrease in loss and an additional loss, respectively [see Eq. (27a)j. In-
tegrating over frequency, weighting Pb(q)), (v) with the energy transfer quantum A'cv, we obtain the corresponding sur-
face energy loss Wb(q(() as

(Ze)
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where 3 2=rvzrUTzo/((vz ~II2)

(52)

qli
(q), ) = e„+tanh

2 q)I ) E +coth (53)

CO
2 — 2

CO~ =COTo+

2
CO Q2

COTO+ +
I /2

CO& COTO—4

and cv, (+), ~v, (+) are obtained from tv+ in Eq. (54) by replacing e by E, (q(), e (q ), respectively Integrating over q
our calculation yields the surface energy loss 8'b as the sum of the two terms, 8'» and 8'bz, with

8'b) =— 2 Q 2

(cv +0 ) 2 2
oo CO

2
CO~L

sin dq coth
CO~ VO

(( 2~ 2 g 2

2
CO~L oo q(l+cos ™nh

qll +CO~/V' 2
(55)
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where t+ —=co+L/V. In Fig. 1 we plot Wb =—Wbl+ Wb2

C3

C3

C3
Lri
C3n

LA

C3
C3

C3

CO

Ui

C3

t =—~„liv
5.0

FIG. 1. Calculated energy loss W& —= W»+ 8'» (solid curve)
and W» (dashed curve) as a function of the variable t —=copL/U.
The calculations are based on Eqs. (55) and (56), the high-

frequency dielectric constant c = 10.94 and co« = 1.76mp,
coTo=1.61cop for GaAs.

It is of interest to examine the dependence of 8'b&, 8'b2
on the slab thickness L. In the limit of small slab thick-
ness (t:co L/U—((1), we obtain an analytic result for

and Wb&, given by Eqs. (55) and (56), as functions of t
The values of coL&, coTo, and co~ are taken to be
5.50X10', 5.045X10', and 3. 130X10' sec ', respec-
tively. The high-frequency dielectric constant is taken to
be E = 10.94 for GaAs so that [see Eq. (40)]
El. (0) E e'Lo/e'To 13.0. The W» term subtracts from
the LW' term for arbitrary slab thickness. Also, as Fig.
1 shows, the 8'b2 term is positive when the slab is
su%ciently thin. As the slab thickness increases both 8b&
and 8'b2 approach zero from below. Such behavior was
discussed by Ritchie' for energy loss to a plasma slab in
the absence of electron-phonon coupling.

VII. CONCLUSIONS

This work has been directed at the determination of
charged particle energy loss in a solid-state plasma film
or slab of finite thickness. In particular, we have focused
attention on features involving penetration of the slab by
the passing particle, and nonlocal dispersive response
phenomena of the plasma, as well as well-defined slab-
collective-mode excitations. In this, our considerations
addressed conditions appropriate to semiconductors, in-
cluding dynamic phonon polarization phenomena and
magnetic field effects in conjunction with plasma
response, corresponding to the excitation of bulk and sur-
face magnetopolaritons for a finite slab size.

Our description of plasma response for the dielectric
slab was formulated in terms of the RPA inverse dielec™
tric function of the quantum plasma in the diagonal ap-
proximation, subject to the boundary condition of specu-
lar reAection of electrons at the slab surfaces. In the case
of particle motion parallel to the slab surfaces, we dis-
cussed the stopping power for motion both inside and
outside the slab subject to nonlocal dispersive corrections
of the finite slab. For the inside case at high velocity, we
have found modifications to the results of Nunez,
Echenique, and Ritchie due to the finite width of the slab.

We have also examined the total work done by a
charged particle penetrating across the plasma slab or
film, determining the probability function P(q~ ~, co~) (for
energy transfer fico with momentum Aq~~ ) within the diag-
onal approximation of RPA slab plasma response, mak-
ing contact with Ritchie's early work and also treating
the formulation for thin 20 inversion-layer —quantum-
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well structures as well. Our incorporation of nonlocal
dispersive slab response features was seen to be most
prominent at low velocity of the impingent particle.

In orienting this study toward semiconductor micros-
tructures we also incorporated the dynamics of phonon
polarization into the response nature of the magnetoplas-
ma slab to determine the role of bulk and surface magne-
topolaritons in the energy loss of a high-velocity charged
particle penetrating across the finite slab. The magnetic
field aspects of our formulation will facilitate further fu-
ture analysis of this important probe in the context of en-

ergy loss. Our detailed field-free calculations have clearly
demonstrated energy-loss contributions associated with

the excitation of symmetric and antisymmetric slab sur-
face polaritons as well as bulk polaritons, with computa-
tions carried out in full for GaAs extending the earlier
work of Ritchie to include features appropriate to semi-
conductors microstructure devices.
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