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We examine the dielectric response of a slab of quantum magnetoplasma subject to arbitrary elec-
trostatic fields having no special symmetry across the slab. We construct the inverse dielectric func-
tion for this system in the random-phase approximation including the role of “nondiagonal” quan-
tum interference effects, and discuss various limits and approximations of special interest. In this,
we assume that the boundary conditions at the slab faces are those of specular reflection (infinite-
barrier model). This work is applied to a determination of magnetic-field effects on the static shield-
ed potential for a point charge and image phenomena in the vicinity of a slab face, including
Thomas-Fermi (Debye) shielding phenomena and Friedel-Kohn “wiggle” (i.e., spatial oscillatory
structure) shielding effects for a highly anisotropic magnetoplasma in the quantum strong-field lim-
it. In this connection, shielded image potentials are examined for both source and field points out-
side the plasma, surface-corrected bulk shielding is treated when both points are inside the plasma,
and ‘“‘cross-boundary” shielding is studied when one of the points is inside the plasma boundary and

the other is outside.

I. INTRODUCTION: POTENTIALS OF A SLAB
OF QUANTUM MAGNETOPLASMA

As interest in semiconductor microstructures mounts,
it is appropriate to reexamine the nonlocal dynamic
dielectric response properties for a quantum plasma slab
of finite thickness, bounded by two infinite-barrier-
potential walls. In this study we undertake such a reex-
amination, employing Newns’s formulation' for electro-
static fields which are symmetric or antisymmetric across
the slab, making the useful extension to arbitrary fields
having no special symmetry, and displaying the results in
terms of the corresponding inverse dielectric function for
the slab*®'—whose general importance is tied to its close
relation to the slab density-density correlation function.
Our results for the slab inverse dielectric function gen-
eralize those of Bechstedt and Enderlein®® by incor-
porating the role of “nondiagonal” quantum interference
effects. Moreover, because of its intrinsic interest, we
carry out here the calculation of the statically shielded
Coulomb potential of a magnetoplasma near a bounding
surface using the slab inverse dielectric function, inspect-
ing the roles of both anisotropic Thomas-Fermi-pole con-
tributions and Friedel oscillatory contributions under
high-magnetic-field conditions. This formulation is also
applied in a companion paper® to the explicit determina-
tion of fast particle energy loss to a slab of solid-state
plasma.

Our determination of the inverse dielectric function
K(1,1')=8V(1)/8U(1") [U(1’') is the impressed poten-
tial at space-time point 1’; ¥ (1) is the effective potential
at space-time point 1] for a solid-state plasma slab will
employ the fact that with the model potential
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U(2)=8%2—1'), we have
vih= [d*2K(1,2)U(2)=K(1,1),

which relates K(1,1') directly to the corresponding
effective potential V(1) which we calculate by standard
procedures. For the slab (Fig. 1) having infinite-barrier
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FIG. 1. Quantum plasma slab bounded by specularly
reflecting hard walls at x =0 and x =/ in a normal magnetic
field.
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specular-reflection boundary conditions at the planar
faces x =0 and x =/, we employ a mixed representation
with Q as Fourier transform wave vector conjugate to
R=7,—7,=(y,—y},2z,—z}), and a direct x representa-
tion for which we employ a complete set of Fourier-series
cos(gx) functions to represent potentials having no
definite symmetry cross the slab, instead of dealing sepa-
rately with symmetric and antisymmetric cases. Thus,
we have

f(R,x)=%§an (‘;;Q)Zeié-—cos(qx)fgq , (1)
where

foq f dx fdzR e "2 Reos(gx)f (R ,x) ()
with

q=ﬁl—’1, n=0,1,2,..., (3a)
and

4 for ¢=0
1= |1 for g>0 (3b)

Following Newns’s notation,! we consider arbitrary

external sources SL, ST S localized in regions I, II, III,
which produce potential contributions ulLul, g re-
spectively (V2U=47S). Furthermore, we designate the
perturbed slab density as §p(1), and the associated densi-
ty perturbation response function as R(1,2)
=8p(1)/8V(2)—8p(1)= [d*2 R (1,2)V(2), which has a
double-Fourier-series  representation R (x,x')—R,,
— Ry, In these terms, the Poisson equation for the
slab yields

Volx)= —% > mgcos(gx)
q

x> E“IQqq,[41Tqu: +V5,(0)
-

—(=D"Vo(D], @

where V;(0),V5(l) represent derivatives of ¥ at the
boundaries x =0 and x =/ and (|q|?*=Q?+¢?)

Egu=1a1?8,4: /1, +47R oy (5a)
and the structure of Rogy is

Ry =Dogdgy /Mg~ Aggq 5 (5b)
with a ‘““diagonal” part, Dgy,, and a “nondiagonal” part,
— Ag,y- Consideration of the electrostatics of the re-

gions I and III outside the slab yields

V5(0)=QV,(0)—2QU,(0) , (6a)
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Vo= —QVo(+2QUSND) , (6b)

which may be used in conjunction with Eq. (4) to deter-
mine V,(0) and Vy(I) as

(1—A4)S,+BS,

— , (7a)
(1—A)1—4)—B? a

Vo(0)=

(1— A4)S,+BS,

— . (7b)
(1—A)1— A4)—B?

Vo=

In the evaluation of S,,S,, 4, A,B, we employ the fact
that E “IQqq, is the (g,q’) matrix element of the operator
E“IQ, such that E_IQqq'Z(ql(E_’QHq’), which is the
inverse of the dielectric matrix of Eq. (5a), involving only
the density perturbation response function R,. Recog-
nizing that R, has even parity about the center of the
slab, it follows that Ey and E 'IQ also have even parity,
so that the states {g| and |g’) must have the same parity
to have a nonvanishing matrix element E”Qqq,. With
this in view, we find that

A=A=—1/2e5—1/2%,, B=1/2¢5—1/2%, (8)
where
o= [4Q/DSE 5 |,
99’
odd
9)
_ -1
€= [(40/D) 3 nE " o0
o
and
S —_ 8m + E-! 11
1 1 [ ) 2 g 040"50¢'
g,9' odd gq,q' even
1 I 111
+ 0)— l
eQ(Q)[UQ( ) o (D]
1
+ [ulo)+uin (10)
Zo() ° ¢ th]
and
8 _
Szz—_—lz -3+ 3 m|E quq'qu'
¢,9' odd  g,q’' even
1 I I
— Uy(0)— U, (I
PRTTARCIUNRCARS
1
+ [Uubo)+Uliny . (11)
@) ° ¢ th]

The final results for V(0) and Vo(l) are
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_ 8 —1 no_ 8 -1 1
EQ(I“*‘?Q)—_— 2 E Qqq'SQq' EQ(1+EQ)T 2 an Qqq'SQq’

Vo(0)=(1+e€p) (1+2,) ! ;
g,q' odd q,q9' even

+(2+€p +Ep)UH(0)+(eg =8 )UG D) |, (12)
Vol)=(1+eg) M(1485) 1 |eg(1+29) T E~ S8 —2,(14+€9) 2T E 5, Sh
o(=(1+¢€g) €o) |€ol1tEg 2> caSoq ~Ee(1H €)= X ME " 00 Soy
g,9" odd q,9’ even

+(eg—%o)ULH(0)+(2+e€y +&x)UGND) (13)

and using Eq. (6) we obtain V5(0) and ¥V (/) which facilitate an explicit determination of the potential ¥V(x) as (set
E Mquq‘:an_quq’)

ox 8 _ 8 ~
Vo (x)=Ub(x)—e QUL (0)+ ————— | —€, (142, )~ E ' SE . —g,(1+e€p)— E-1, so,
0 0 O e ey | 0T qq%dd 0aSoq ~Eo(1+€0)— q,q%en 09504
+(2+ey+€5)UL(0)+(€g —€o ) ULI) (14)
for region I, x <O,
4 _ Qe 8 _
Vol)==7 3 cos(gx)E " gq 27rsgq,—l+g T“ S E oS +UL0)— U
g,q9' odd €0 k,k' odd
4 &= —1 I Q% |8r = 1 11 I I
—= 3 cos(gn)E o 208 —— |5 3 E lpueSHe+ULO+USND ||, (15)
Iq,q' even 1+€Q I k,k’ even
for region II, 0=x =</,
Vo(x)=Ug"x)—e 2> "Ughn)
e Qx—h 8 _ 87 ~ _
—————————— |ep(1+8,) = 3 E ', Sh —Eo(l+ey)— 3 E 5.8k
(1+6Q)(1+?Q) (4] Q Ji e edd Qqq9"° Qq Q Qo ] adaven Qaq'=Qq
+(eg—€p)UH0)+(2+€ey+E)UGND | (16)

for region 111, x > .

II. INVERSE DIELECTRIC FUNCTION OF A PLASMA SLAB

The most useful characterization of electrostatic response of the slab plasma is provided by the inverse dielectric
function K (1,1’), which is a property of the medium, independent of field within the framework of linear response. It
embodies a description of dynamic and nonlocal screening phenomena, including nonlocal image potentials involved in
surface interactions and collective modes of the bounded slab plasma. K (1,1’) plays a central role in the determination
of the Raman light scattering cross section, van der Waals interactions, correlation phenomena, and energy loss which
we will discuss at length in the companion paper.® As indicated above, we will determine K (1,1’) using a model poten-
tial U(2)=8%2—1') such that

V(= [d2K(1,2)UQ)=K(1,1'). (17)

1t is straightforward to determine the sources of U as V2U =4S and construct KQ(x,x',Q) using Egs. (14)-(17), with
the result
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Ox
Ko(x,x",Q)=0(—x) |8(x —x")—eP8(x')+ ¢ [(2+€p+€p)0(x")+(eg—€p)8(] —x)]
+0(x)0( —x)e® [ —2-2 5 E-1 g Pcos(g'x")
1+6Q lq,q’odd
?Q 2 ~

—= 3 E“Qqquq’|zcos(q'x’)
1_’_GQ ! g,9' even

+6(x)0(1 —x) ~[8(1—x')—5(x')]6—QQ 3 cos(gx)E g,y

1+e€g / 09 odd
€ ~
80 —x)+8(x)]—2- 22 5 cos(gnE g,
1+€Q l q,q9" even
+6(x")0(l —x") 2 > ]q’]zE_IQqqlcos(qx)cos(q'x')
g,q9' odd

2 = _
+5 3 |q’E 7'y, cos(gx)cos(g'x")

! g,q' even
€ 8 _ — ’ 1
l_wCQ:_T% S E ' E ouelk'[*cos(gx)cos(k’x)
Q q,q9" odd k,k' odd
€0 80 5

L2 s S E g E T onlk' [ cos(gx)cos(k'x”)
1+€, I 9,9’ even k,k’ even

—Q(x—1
+0x —1) | 8(x —x')—e @ Dg(] —x")+ — [(eg—2g)8(x")+ (2460 +20)8(1 —x')]
2(1+ep)N(1+%,)
_ _ € 2
—0(x")0(l —x")e Qx—D| 2 < > E ', 1q'%cos(g’x")
lteg 1,5 %4

EQ 2 ~—1 1|2 r
—= ¥ E Qqq'lq |%cos(g’x")
1—f'GQ ! q,9' even

(18)

These results, as well as Egs. (19)-(21) below incorporate the role of ‘“nondiagonal” quantum interference effects due to
the specular reflection of electrons at the “hard wall” surfaces at x =0 and x =/, including spatial inhomogeneities in-
duced into the structure of the polarizability by the boundary conditions.

In the semi-infinite limit, / — oo, we find?

eQ eQ l o 0 _
' Q)=0(— ety — Ox ’ ry, Ox ’ 1 la'l Pyt
Kolxx',0)=0(=x) |8(x =x") = 17 —e®B(x")+0(x")e e, 7 J.7da [ "dg' E7 gy lqPcos(q'x")

’ 6Q Ql * * rp—1
+600) |86 ?fo dq [ “dg' E™" gy cos(gx)

—!—O(x');% fomdq fowdq’ E ! 5,1q'[*cos(gx)cos(g'x")

—_ ’ €Q le ® * ’ —1 * ® ’ —1 12 ot
6(x )E;Tfo dg [ “dg' E ™ gy cosigx) [ “dk [ “dk' Egle k' Peos(k'x’) | . (19)

Although smaller, neglected terms in Ky (x,x'Q) of order O (I~ ') are of importance in problems of surface physics, and
denoting the associated contribution as K éurf“"' we obtain
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2
ae€
Kgee(x,x’, Q)= —0(—x)8(x"Je &F——2—
2
6Q aQ EQa

+6(—x)0(x")e?*

o5 [ ak [k B gl costi'x')

I+eg 2 (l+ey)

2
. € a €9 al - © -1 nQa
~ =+ 2= [ Tak [ “dk’ cos(kx)E 7} g | —0(x)0(x") =
OB | = (Teg? 2 S dk [ Tk’ cos(kx)E ™ g | —0(x)0(x")
' GQ al * * rp—1 2 1t
+ S ,
0CI0x") | T 3 J.7dk [ Tdk'E T gl P cos(k'x ")
€  Qal l
I 2 0 L= ' E71 -
(1+€p)? fo dqfo dq"coslaIE oy
X [ "k [ “dk' E7 gy lk'|? cos(k'x")
GQ aQZI ® * ' —1
7(1+6Q) 52 Jo dq fo dq' cos(gx)E " g4 | > (20)
where
a=(Q/m) [ “dq'E " gq, . @1

In the case of a thick but finite slab of solid-state plasma (Qy/ >>1), it is often useful to employ the ‘““diagonal” ap-
proximation' which neglects quantum interference effects associated with the vanishing of wave functions and density
at the infinite-barrier slab boundaries, while admitting to consideration bulk quantum effects arising in the
temperature-dependent Lindhard dielectric function and its Landau quantized counterpart in high magnetic field. In
this, only surface-induced spatially-inhomogeneous modifications of the polarizability are ignored in the process of join-
ing bulk dielectric response properties across the boundaries of adjoining media at the slab faces (including their com-
plement of bulk quantum effects). Such a “diagonal”” approximation is also in fact exact in the semiclassical limit where
the electron dynamics are governed by purely classical laws, while statistical averaging is carried out with a Fermi-
Dirac distribution. In general, the “diagonal” approximation may be expected to be valid for samples which are large
in comparison with the characteristic distance to which surface-induced spatial inhomogeneities penetrate the polariza-
tion properties, / >>(2Qr)"!. In this case, the “nondiagonal” term — Aggy of Ry, in Eq. (5b) may be neglected, and
the resulting diagonality of R, and Eg,, . yields

Eﬂquq’zsqq’/[(qz‘kQZ)G((},Q)] , (22)
where
€(q,Q)=1+47D,, /(g*+ Q%) 23)

is approximately the bulk quantum-mechanical dielectric function [Lindhard, generalized for temperature and magnetic
field, within the random-phase approximation (RPA)] for 2Qp/>>1. Thus, in the “diagonal” approximation,
Ky(x,x'Q) is given by the finite slab result



43 DIELECTRIC RESPONSE AND QUANTUM MAGNETIC-FIELD . .. 2111

Ox
8 Y A st( I)+ e (2+ +€ )8( ’)+( —€ )8(1— ')
e egireg) o coT €)X Heg =€ ol =x1)]

KQ(x,x',Q)=9(—x)

€ €
+0(x)0(l —x")e® | —2—& ~1(Q,x", Q)+ —2 e—l(Q,x',mH

, Ny €e €9
—[8(1 —x")—8(x")] a(Q,x,Q)+[8(] —x")+8(x")] a(Q,x,Q)

H—eQ H—"e‘Q

+06(x)0(l —x)

e NQ, x+x', Q)+e (Q, x—x', Q)+ HQ, x+x', Q)

+40(x")0(1 —x")

+274Q, x —x', Q)— 2€0 e 1Q,x",M)alQ,x,Q)
1+eQ

1+2,

%‘“(Q,x’,ﬂ)ﬁ(Q,x,Q)H

+06(x —1) {S(x —x")—e Q2> ~h8(] —x")

e—Qlx—1)

2(1+ep)(1+2y,)

[(e0—%p)8(x")+(2+€n +E,)8(1 —x')—6(x")(] —x")e~ 2> D]

I

€0 PPN - R ' 4
1+€Q6 (Q,x",Q) l+”e‘Q6 (Q,x",Q) , (24)
where
—1 -1
=2 5 0| |42 *J——] (25a)

9,9’ odd [ g odd ‘Qsz(q’Q)

and

—1
0 o (25b)
I een ldl’e(q, )

l

g,q9' even

—1
=22 s E—‘Qqq.(ml -

and
X a)=2 3 <ostex) (26a)
I e €0q,Q)

— _2 1, cos(gx)
T HO,x,Q) ] S me(q,ﬂ) , (26b)

g even
_ 20 cos(gx)
a(Q,x,Q)==% —_—, (27a)
! q%id lql’e(q,Q)

_ 20 1,4c08(gx)
(Q,x,Q)=—% — . (27b)
O [ qgen lql’e(q, Q)
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These results for the “diagonal” approximation are in agreement with those of Bechstedt and Enderlein®® for slab

dielectric response.

Finally, in the semi-infinite limit of the “diagonal” approximation,

2

269 -1
Ko(x,x",Q)=0(—x) [8(x —x')— e%*8(x")+6(x")e % e 1(Q,x',Q)
€0 1+eQ
+0(x) |8(x ')1+ a(Q,x,Q)+0(x")e MQ, x —x', Q)+ HQ,x +x',Q)]
€0
Bx')— 2 (0, x,0)e(Q,x", Q) 28
1+€QGQ,x, € (Q,x, , (28)

where
_Ql © 27 8(qg—q’)
2f qf q l Iq'lle(q,n)
Q oc
(29)
f Tlql%e(q,0) q,m
and
1 L cos(gx)
(Q,x,0)= fo T a ) (30)
and
20 *® dag—C08 (gx)
a(Q,x,Q)= —_— (31a)
f Tlql%e(q,Q)
It is often convenient to use the notation
v(Q,x,Q)=a(Q x,Q)/Q
_ ®d _cos(gx)
=— (31b)
f Tlql?e(q,0) -

Equations (28)-(31) are in agreement with earlier results®
for /— . In the high-frequency-low-wave-number ap-
proximation, describing local, long-wavelength plasma
behavior, we have €(q, Q2)—€(0,Q)—€(Q).

III. MAGNETIC-FIELD EFFECTS ON SHIELDING
AND IMAGE PHENOMENA NEAR A SURFACE

Our treatment of static shielding phenomena will be fo-
cused on the role of quantum magnetic-field effects with a
single bounding surface for a thick slab. In this, we will
analyze the shielding integral

Vir,t— o)
:(277')*2fdx’fd2Qe"é’§
XKo(x,x';0—i0")UQ,x") ,
(32)

where U(Q,x’) is the two-dimensional (2D) Fourier
transform of an impressed Coulombic impurity potential
of strength Ze centered at ry=(x,,0,0). Our examina-
tion will treat contributions from the vicinity of an aniso-
tropic Thomas-Fermi shielding pole ~ Qg at low wave
numbers, and a Friedel-Kohn oscillatory branch-cut con-

[

tribution at 2Q (Q is the Fermi wave number), which
we take to be in a much higher wave-number regime
2Qr>>Q1g, so that the singularities contribute with
negligible interference. It is well known that at zero mag-
netic field the Friedel-Kohn oscillatory contribution is
important at large distances from the impurity. Qualita-
tively, one may surmise this by expanding the shielded
potential integrand in the vicinity of 2Qy in powers of the
small polarizability contribution |g—2Q|Ilnlg —2Q|,
whose long-range oscillatory contribution in position
space is never quenched. The introduction of a strong
magnetic field, however, leads to a qualitative change: In
the anisotropic quantum strong field limit (all electrons in
the lowest Landau level), #iw. > £ the branch-cut polariza-
bility contribution ~In(q —2Qf) is very large near 2Qp
(Appendix), precluding any possible expansion in powers
of it, and in fact its largeness in the shielding integrand
denominator diminishes the contribution from ~2Qy, re-
ducing the Friedel oscillatory shielding component in
high magnetic field.

For a thick slab of solid-state plasma, with Coulombic
source and field points at distances x4,x > (1/2Qf) from
the surface, we employ the semi-infinite ‘“diagonal” ap-
proximation for Ky(x,x") given by Eq. (28) (zero frequen-
cy limit, 1 —0) for the evaluation of V(r,t— o) in Eq.
(32) to examine the effects of shielding on image phenom-
ena. Executing the x' integrals involved we obtain a re-
sult* having four distinct analytic structures depending
on whether the field point x and source point x, are
within or outside of the plasma slab, as follows (J, is the
Bessel function and }—0 throughout for the static limit;
also, recall v=a /Q):

Case I, x <0 and x, <O0:

Ze

—Qlx+x;l
[r—r, ’

V= +2e [ 70 Jy(QR) SVED—,

ov(Q,0)+1
(33a)
Case II, x >0 and x,> 0:

Vy=2Ze fo“’dQ Jo(QR)Q [UQ, x —x)+WQ, x +x,)

_20v(Q,x)v(Q,x¢)
ov(Q,0)+1

(33b)
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Case III, x <0 and x> 0:

_ © QV(Q,xo) —0lx|
Vm-—2Zef0 dQ Jo(QR) o e . (33c)
Case IV, x >0, and x, <O0:
- o ov(Q,x)  —Qlx,l
Viy=2Ze fo dQ JO(QR)——————QV(Q’O)+1 e (33d)

The bulk static dielectric function involved has been
thoroughly examined,’~’ and for the quantum strong-
field limit (%, >{) it takes the zero-temperature form
[Ref. 5(b)]

€(Q,q)=€o—[4me?/(Q*+¢*)(p/H)(m /2¢70)'?

(#Q%/2mw )

Xe In|(g —2Q) /(g +2Q8)| ,

(34)

where we have neglected higher-order terms
O (#Q?/2mw,)" with n > 1 for the examination of shield-
ing at large transverse distances R. Also, {=#2Q}%/2m is
the Fermi energy, m is the effective mass,
p=m3"w 2 /227 ? is the uncorrelated density ex-
pression for #iw, >, €, is the background dielectric con-
stant, and w, is the cyclotron frequency. The quantity
a(Q,x)=a(Q,x,Q2=0) is of central importance in the ap-
plication of Eq. (28), and

a(Q,x)=0v(Q,x)
=(@/m [ ” dge™/[(g>+QNe(q)], (39)

due to the even property of e(q). The analysis of the g in-
tegral of Eq. (35) is facilitated by noting that there are
two types of singularities of the integrand, an anisotropic
Thomas-Fermi shielding pole around Qir and branch
points at ==2Q, which are well separated for 2Q; >> Q1.
With this in view, we deform the g contour off the real
axis as indicated in Fig. 2, to a large semicircle in the
upper half g plane, thus encircling the isolated pole about
QO+r and encircling the vertical branch cuts originating at
the branch points =2Q as shown. This yields two dis-
tinct contributions (recognizing that the semicircular
parts of the contour produce null contributions):
a(Q,x)=arp(Q,x)+tapk(Q,x). The Thomas-Fermi pole
contribution is

arp(Q,x)=(Q /)P i1 potedd e @ /[(q>+0Pe(q)]  (36)
J

ilmgq

«—J —

-20; 0 20¢ Re g

FIG. 2. Contour for the g integration of Eq. (35).

and in this low-wave-number regime g ~ Qp <<2Q; we
may approximate Eq. (34) using an expansion in powers
of wave number as®

e(q)ZEO{1—[47Te2/60(q2+Q2)]
X(—3p/dE+ Ag*+BQY)} , (37)

where an anisotropic effective Thomas-Fermi shielding
length is manifested by the nonidentical expansion pa-
rameters A,B: We employ the notation Q32
=47e’dp/df and A,B are given in terms of the bulk
electron density p and bulk energy density o by®’

A =(#/12m)d% /3¢ , (38a)
B=[1/mw?)[d0 /3,—p]
—[1/me?][(#w, /2)3p/dE—p] . (38b)

The last part of Eq. (38b) pertains to the quantum
strong-field limit with o —#w_p/2. Corresponding re-
sults for A4,B,p,0, etc. for arbitrary magnetic field
strength and temperature are given in Refs. 6 and 7. The
g integration of ag(Q,x) involves only a simple pole,
with the result:

are(Q,x)=[Q/(C?+E2Q*)?Jexp{ — z|[(C*+E3Q>)'?/(1—4me? 4 /€)' €0} (39)
where

Cl=¢y(1—4me® A /€)) Q3% (40)
and

Ej=el(1—4me? A /e))(1—4me’B /¢,) . 41

Qualitatively, we note that C ~€}/?Q1g, Eo ~ €, and for Q < Qp we have
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with ar(Q,0)~(Q /€h*Qrr) .

There are two identical branch-cut contributions to agg (Q,x) from the contour segments in the vicinity of +2Qp,

which may be obtained by setting ¢ =(2Qy +iu), and writing

apc (0,x)=(20 /w)ReerQ"XSS(zQF branch)dl € /[ (2Qp +iu)*+Q%e(q) . 42)

Introducing e(q)=€(Q, 20 +iu) of Eq. (34) to explicitly exhibit the role of In(g —2Q)— Inu, and taking account of its
discontinuity across the vertical branch cut of Fig. 2, the integrals on the two sides of the cut combine to yield

(2Qp+iu)e  **

apg(Q,x)= —ze—Qb Re eZiQFxfowdu
0

(2Qp+iu)+Q%2Qp +iu)+b In

(43)
b

4Q; +iu
2

u

where
4 5 172
b=""CP || exp(—#Q2/2mw,)=b, exp( —#Q?/2mw,) .
fie, |20

The asymptotic behavior for large x >>1/2Q is dominated by behavior near the u origin where Inu is large in the

denominator of the integrand, whence (set u'=u /4Q)

—4Qpu'x

aFK(Q’x)z_;%b Re

and we obtain the result

o , €
aFK(Q,x)z-ﬁo—cosQQFx)fo du m

—4Qpxu’
(45a)

Further information concerning the evaluation of this in-
tegral for 4Qpx >>1 is presented in the Appendix, where
we show that

0 1 cos(2Qpx)
e Y To [In(4Qpx )?]
1
X |1+0 In(4Qpx) (45b)

Above, we have also set Q —0 corresponding to large R
in the sense that R2>#/2mw, ~r? (r, is the radius of the
lowest Landau state). In applying this to the determina-
tion of apg(Q,0) involving x —0, we bear in mind that
the validity of the diagonal approximation is contingent
upon 2Qrx > 1, so that quantum interference effects asso-
ciated with wave-function reflection at the boundary may
be neglected. Therefore Eq. (45) may be understood con-
sistently as making a vanishingly small contribution to
apg (Q,0) in the limit of small x (modulo x >1/2Q)
within the framework of the diagonal approximation. A
more careful examination of agg(Q,0) starting from Eq.
(42), eliminating the restriction x >1/2Qy in the limit
x —0, reveals a featureless and small contribution to
ark(Q,0) lacking Friedel-Kohn oscillatory structure,
which may be safely ignored as indicated above. Never-
theless, a fully proper treatment should restore the nondi-

2iQpx [ e
e F f du’
0

[(2Q:)+QX2Qr)—b Inu'*+

3 (44)
uc
2

[

agonal quantum interference terms which have been
eliminated in this diagonal analysis. Finally, we note that
in the absence of a significant branch cut contribution

a(Q,0)=a1p(Q,0), (46)

the Thomas-Fermi pole is the major contributor to
a(Q,0). It is important to note that to the extent that
shielding phenomena are determined by the Thomas-
Fermi (Debye) pole, there is no need to limit considera-
tion to the quantum strong-field limit, and arbitrary
lower magnetic-field strength regimes are admissible, in-
cluding nondegeneracy as well as degeneracy, provided
the results of Refs. 5-7 are employed. On the other
hand, for large x>1/2Qp, we combine ap(Q,x)
+agk (Q,x) to obtain the result for a (Q,x) as

—[Q*+Q%p /)" *x
Q*+ Q75 /6]

Q0 1 cos(2Qpx)
bo€o 4Qrx [ln(4pr)]2

where by =b(Q =0).

It is straightforward to carry out the determination of
the shielded potential ¥ (r) in Eq. (33) using the evalua-
tion of a(Q,x) discussed above. For case I, in which
both the source and field points are outside the medium
in vacuum (x <0, x, <0), there is no charge present in
the outside region to support a Friedel-Kohn wiggle (i.e.,
spatial oscillatory structure) of density or potential,
which thus cannot occur. Mathematically, this is mani-

a(Q,x)zQF

€o

) (47)
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fested in the fact that only a(Q,0) appears in Viy(r) as
given by Eq. (33a), and a (Q,0)=ax(Q,0) [Eq. (46)] and
hence Vi(r) is therefore determined by the Thomas-
Fermi pole alone and is devoid of Friedel-Kohn oscillato-
ry phenomena. The Q integral of Eq. (33a) may be eval-
uated using Eq. (39) [a1p(Q,0)=Q(C*+E}Q?) "1/, tak-
ing the form

Vi(r)=Ze fo“’dQ Jo(OR (e

2Ze
C

*Q!x*xol_euQ\x + x|

)

+ —Qlx+x;l

J.7d0 @y(QR)

(1+Q2E§/C*)'*—Q/C
1-Q*1—E§)/C?

(48)
The first integral is well known (Ref. 8, p. 712, No.
6.623.1), and it describes the bare source potential and its
ideal image. Evaluating the last integral of Eq. (48) for
large separations between the impurity, image, and field
points, Qpl|xtx,| >>1, Q1pR >>1, we expand the term
in large parentheses in powers Q << Qg <<2Qp, and re-
taining only the leading term we find

— Ze . Ze
(R2+|x_x0|2)l/2 (R2+|x+x0(2)1/2

Vy(r)

2Ze |x +xo’
C (R¥*+|x+xy23¥2 "

(49)

We note that as a result of nonlocal static shielding
effects, the coeflicient of the second (ideal image) term in
Eq. (49) is —1 and not the conventional image strength
factor (1—¢€y)/(1+€y). One could anticipate this result
directly from Eq. (33a) by noting the smallness of
a(Q,0)~arp(Q,0)~(Q /e)?Q1r) << 1 for large separa-
tions. However, dependence on the background dielec-
tric constant € is carried in the third term in the struc-
ture of C and E, and the same may be said for the quan-
tum magnetic field parameter #iw.. Of course, semiclassi-
cal and classical magnetic field parameters will not enter
Thomas-Fermi (Debye) static shielding phenomena at
any (arbitrary) magnetic field strength since the Lorentz
force of classical dynamics cannot do work and it is
therefore incapable of supplying energy which would be
required for a redistribution of static shielding charge.
We may examine Vy(r), Eq. (48), for separations that
are small in the sense that Qrplx=£x,| <1, QR <<1
[notwithstanding our commitment to 2Q(x,x,)>>1 and
R >r,] by expanding the last integrand factor of Eq. (48)
in parentheses in inverse powers of Q (Qrp <Q <20r),
obtaining [ | —>[C/Q(1+E,)], with the integrated result

Ze
Vir)=
! (R*|x —xo |12
4|25 Ze (50)
I+Ey | (R4 |x +xo/)172

The image strength factor here, (1—E,)/(1+E,), is only
slightly modified from what it would be in the absence of
static shielding of the image. This is physically reason-
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able because the image distance behind the surface is too
short to accommodate an assemblage of shielding
charges, and shielding is thus rendered ineffective.

It is of interest to treat the case R—0 (modulo
R >r.~0) in which J4(QR)—1 in Eq. (48) for arbitrary
values of |x £x,|, which bridges the large and small sepa-
ration regimes discussed above. This case is analytically
tractable in closed form for Ey=1 (neglect quantum
effects and €y— 1; C ~ Q1) with the result

Vi(r)= Ze  Ze 4Ze
! Ix =xol  |x+xol C¥x+x,l?
+I(R =0), (51)
where
o 2Ze o —Qlx+x,l 9 24172
IR =0)==5 fO dQ Qe °(Q24C?)
c? ou?

X (52)

%C[Hl(cm—N](cm]—c

evaluated at u=|z +20{. In this, H, is a Struve function
and N, is a Neumann function (Ref. 8, p. 316, No.
3.366.3).

Vi(r), having x <0 and x,<O0 is determined by the
Thomas-Fermi (Debye) pole and is devoid of Friedel-
Kohn wiggle behavior. As pointed out above, in such
cases the results we have obtained describe all regimes of
magnetic-field strength (not just the quantum strong-field
limit) provided that the identifications of Refs. 5-7 are
employed for lower fields and nondegenerate as well as
degenerate statistics.

Focusing attention on the “cross-boundary’ shielding
cases where either source point x, > 0 is inside the medi-
um while field point x <O is outside (case III) or, on the
other hand, where field point x >0 is inside the medium
while source point x, <0 is outside (case IV), we note
that the inside point in either case involves perturbed
electron density which is capable of supporting a
Friedel-Kohn wiggle of the potential as a function of the
inside point. Noting that such a Friedel-Kohn wiggle
dominates the large-separation behavior of
a(Q,x)~apg(Q,x)<1, and further recalling that
a(Q,0)~arp(Q,0)<<1, we may approximate Vy(r) for
case III [Eq. (33c)] as

Vin(r)=2Ze fo“’dQ Jo(QR)a(Q,xq)e ~ 2 (53a)

and considering large R separation as well as large x,x,

we have [recall from Eq. (35) the definition
v(@,x)=a(Q,x)/Q; vix(Q,x)=apx (Q,x)/Q]
V() =2Zeveg (0,x0)|x | /(R2+x2)3/2 . (53b)

Similarly, we approximate Vyy(r) for case IV [Eq. (33d)]
with large separation as

Viv(r)=2Zeveg(0,x)|xo| /(R2+x2)32 . (54)
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Friedel-Kohn wiggle behavior is manifested through
vex(0,x,) and veg(0,x) as functions of source point x
and field point x in Vi (r) and Viy(r), respectively.

Finally, we consider Vy;(r) for case II in which both
the source point x>0 and field point x > O are inside the
medium. Qualitaively, we may expect Friedel-Kohn wig-
gle behavior of the potential in its dependence on both
source and field points, since both points are inside where
the perturbed density is capable of sustaining such phe-
nomena. For large separations, a(Q,x or x;,)
~apg(Q, x or xy) <1, and again a (Q,0)~ap(Q,0) << 1,
so that Vy;(r) [Eq. (33b)] may be approximated as

Vi(=Ze [ “dQ Jo(QR)[a(Q, x —xo)+a(Q, x +xo)
—2a(Q,x)a(Q,xy)] . (55)

The first and second terms of the integrand of Vy(r) in
Eq. (55), which are exact, correspond to the bulk shielded
potentials of an impurity charge sited at (x,,0,0) and of
an image charge of identical strength sited at the image
position ( —x,0,0), respectively. It is worthwhile noting
that the approximation Eq. (45b) for apg (Q,x) leads to
Friedel oscillatory contributions which exhibit high Q-
wave-number divergences in the first two terms of the
form

Ze[vpg(0, x —x)+vpg(0, x +x4)]

X

[ager e /R3

due to the low-wave-number approximations undertaken
in deriving Eq. (45b). This limitation also results in a
similar high Q-wave-number divergence in the third term
of Vy(r) in Eq. (55), which is of the form

/ R*.

The restoration of higher Q-wave-number dependence re-
quisite for removal of the divergences in the branch-out
integral (associated with Friedel-Kohn wiggle oscillatory
shielding phenomena) involves due consideration of a
Coulomb pole term ~[(2Q)*+ Q?] heretofore neglected
in the denominator of the integrand of apg (Q,x) in Egs.
(43) and (44). While this substantially complicates analyt-
ical evaluation, we may gain an appreciation of its role
from an earlier ordinary Hartree-Fock-type treatment of
the Friedel wiggle in the quantum strong-field limit,
which showed that the Coulomb pole couples the aniso-
tropic branch cut to source-field displacements parallel to
the surface such that for large displacements the Friedel
wiggle contribution to the shielded potential dies off very
rapidly with an  exponential envelope factor
exp(—2QrR).>~7 Consequently, for such large parallel
displacements in the first two bulk terms of V;(r) in Eq.
(55), the more slowly decaying exponential falloff
exp(—QrpR) of the bulk Thomas-Fermi (Debye) contri-
bution dominates the statically shielded potential. Simi-
larly one may expect the third term of Vy(r) in Eq. (55)
to yield a negligible Friedel wiggle shielding contribution
for large 2QR >>1.

—2Zevp(0,x)vpk(0,x¢) [fowdg E2o(E)
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On the other hand, for displacements along the
magnetic-field direction and perpendicular to the surface
R —0, the exponential envelope factor exp(—2QrR)—1
is unity, signaling the dominance of the highly anisotrop-
ic Friedel wiggle contribution to the shielded potential
over the Thomas-Fermi (Debye) contribution. An ordi-
nary Hartree-Fock calculation® of this Friedel wiggle in
the presence of a surface was presented in Ref. 9, includ-
ing the role of quantum interference effects, and also in
Ref. 10 a numerical RPA calculation is given for the
Friedel wiggle shielded potential in the presence of a sur-

¥,(F)/ 4"‘20;

FIG. 3.

“inside”
(R =0,x)/(4me?Qp) as a function of (Qrx) for a Coulombic im-
purity sited within the plasma on the axis at a distance (a)
xo=0Qs ' and (b) x,=20Q; ! from the surface. The solid curve is
for a background dielectric constant €,=10.94 and the dashed
curve is for €,=1. The magnetic field is H =10° G.

Plots of the shielded potential V7
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face, but without quantum interference effects.'® Here,

we present a similar numerical RPA evaluation of the full
“inside” shielded potential embodying the Freidel wiggle
contribution along with the Thomas-Fermi (Debye) con-
tribution based on Eq. (33b) for R =0, again without
quantum interference effects, but including the role of the
background dielectric constant appropriate to semicon-
ductors in which the quantum strong-field limit can be
achieved.

The appropriate bulk dielectric function €(Q,q) for
such a full static shielding analysis involves more struc-
ture than is given in Eq. (34), even for the strong-field
limit, since the higher-order terms O (#Q?/2mw, )" can-
not be neglected out-of-hand with R —0, and the ap-
propriate form for €(Q,q) is given in Ref. 5(b). The nu-
merical results for Vy(r) are shown in Figs. 3a and 3(b)
for R =0 and values of Qpx, R 1, so that the role of omit-
ted quantum interference terms may be expected to be
relatively unimportant in accordance with the results of
Ref. 9. In the calculations, we take the magnetic field to
be H=10> G, and for GaAs we use an electron effective
mass m =0.0665m,, bulk density p= lOlé cm 3,
€,=10.94, Fermi wave number Qr=0.0013 A ~!, chemi-
cal potential £=9.65X 107> eV, and cyclotron frequency
©,=2.65X10"® sec”!. For these values #iw, > ¢ and the
quantum strong-field limit is achieved with only the
lowest Landau state occupied. The Friedel-Kohn wiggle
is prominent in the RPA shielded potential shown as a
function of x distance from the boundary for R =0 in all
parts of Fig. 1 for various values of Qpx > 1. In addition
to the solid curves which show Vy(x) for GaAs with
€,=10.94, the corresponding results for €,—1 (but with
all other numbers characteristic of GaAs the same as in-
dicated above) are shown in dashed curves to emphasize
the importance of incorporating the proper value of the
background dielectric constant €.

IV. SUMMARY

We have analyzed the electrostatic fields and dielectric
response of a finite slab of Landau quantized magneto-
plasma subject to the boundary condition of specular
reflection at the slab faces (infinite barrier model). In
this, the RPA inverse dielectric function has been con-
structed quite generally, avoiding any commitment to po-
tentials having special symmetry across the slab, and the
role of ‘“nondiagonal” quantum interference effects has
been included. Special limits and approximations of par-
ticular interest for K (1,2) are explicitly determined.!!
This rather formal work will find many useful applica-
tions for a finite slab, including the analysis of fast parti-
cle energy loss to a film to be presented in a companion
paper,® and a variety of other surface response properties
governed by the longitudinal dielectric response function
of the slab.

Our analysis of magnetic-field effects on static shielding
phenomena and images in the vicinity of a magnetoplas-
ma surface has been exhaustive. In this, we have treated
all cases and phenomena of interest in a magnetic field,
including shielded image potentials when both source and
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field points are outside the plasma surface, and “cross-
boundary” shielding when one of the points is inside the
plasma boundary and the other is outside. Finally, we
studied the surface-corrected bulk shielding when both
the source and field points are inside the plasma surface,
presenting a numerical study for a realistic sample. Our
shielding work in all cases incorporates the role of
Thomas-Fermi (Debye) shielding phenomena and
Friedel-Kohn wiggle shielding effects for a highly aniso-
tropic bounded magnetoplasma in the quantum strong-
field limit. This case, in which only the lowest Landau
eigenstate is occupied, is more complicated than its zero-
field isotropic counterpart because the quantum strong-
field limit polarizability becomes large at g ~2Qp, rather
than small. Notwithstanding this, we have obtained both
closed form analytical results, as well as numerical re-
sults, for the anisotropic Friedel-Kohn wiggle shielding
contribution in the vicinity of a surface, as presented in
Sec. III.

Beyond the formal considerations, some interesting
shielding phenomenology in the presence of a bounding
surface and a magnetic field has been elucidated in our
analysis. For the “outside” case, V;(r) exhibits image po-
tential structure whose strength is substantially changed
from the conventional (local) image strength factor
(1—ey)/(1+¢€y) to image strength (—1) for large dis-
tances 2Qr > Qrr > (R ~1,|z£2z,| ™1 due to nonlocal stat-
ic shielding. On the other hand, for distances too small
(Qrplz£zyl <1, QR <<1) to accommodate an assem-
blage of shielding charges, the conventional local image
strength factor again emerges, because the shielding is
thus rendered ineffective. Our exact treatment of the spe-
cial case R =0 bridges the large-and small-distance re-
gimes for |ztz,| discussed separately above. In these
considerations, an anisotropic Thomas-Fermi pole
(modified by quantum magnetic-field effects) dominates
shielding phenomena since the absence of charge density
outside the boundary precludes any possibility of sup-
porting a Friedel-Kohn wiggle shielding contribution.

In the “cross-boundary’ shielding cases where either
the source point or the field point is inside the medium
(and the other point is outside), the inside point in either
case involves perturbed electron density. This provides
the capability of supporting a Friedel-Kohn wiggle con-
tribution (as a function of the inside point), which dom-
inates the long-distance shielded potential Vi, Viy
across the boundary. Our explicit analytic evaluation of
the Friedel-Kohn wiggle shielding integral shows that the
highly anisotropic quantum strong-field limit involves a
polarizability whose largeness in the shielding integrand
denominator at g ~2Q, diminishes the high field FK
wiggle.

For the “inside” shielded potential V7, with both field
and source points inside the medium, the charge density
perturbation of the medium again sustains a Friedel wig-
gle component of the shielded potential. Under the high
magnetic-field conditions of this quantum strong-field
limit study, the “inside” Fri¢del wiggle dies off exponen-
tially for R >1/(20Q) due to a Coulomb pole which cou-
ples the anisotropic branch cut to source-field displace-
ments parallel to the surface, leading to an envelope fac-
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tor exp(—2QpR), and then the more slowly decaying
Debye-Thomas-Fermi exponential falloff exp(—QrsR)
characterizes shielding. However, for R <1/(2Qp) the
Friedel wiggle is in fact dominant over the Thomas-
Fermi contribution, and the shielded potential for R =0
is evaluated numerically here including the role of the
background dielectric constant €,. The results presented
in Fig. 3 for R =0 exhibit the prominence of Friedel os-
cillations, and they also emphasize the importance of in-
corporating the proper value of €, for semiconductors.
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gla+1)=[1/T(a+D] [ “dte~'t"Int

=[1/T(a+1)] [(d/dz)fo“’dte—tt—l(ezlm)]

zZ=a

=[1/T(a+1)] [(d/dz)fowdte"tz”l]
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APPENDIX

We provide further detail about the evaluation of the
integral of Eq. (45). Setting A=4Qpx, it is of the form
(a=0,8=2)

I=f°°du’(u’)"‘e M s —1ny' )P
0

=1/ [ “dt 1%~ /(nA—1Int ) (A1)
where we have set u’=tA"!. Alternatively written,
I=(1/ A H[1/(InA)?]
X fo‘”dt t% " {1—Int /InA)"# , (A2)

an expansion in of InA>>1 (for

4Qpx >>1) yields
IE[I‘(OH—1)/A“+1][1//(1nl)3
+Bg(a+1)/(InA)BtL. .- ],

inverse powers

(A3)

where

z=a+1

1=I"(a+1)/1"(a+1)=¢(a+1) .

(A4)

Here, I'(x) is the gamma function and ¥(x) is the digamma function.! This provides us with the leading term of the

evaluation I [Eq. (45)] and its next correction as

I=[T(a+1)/AT[1/(InA)P+BPla+1)/(nA)FH 1+ - -+ ]

(AS)

for A=4Qpx >>1. It should be noted that in our case, =0 and =2, and the requisite value of the digamma function

in the correction is 1(1)= — C where C is Euler’s constant.®
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