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We examine the dielectric response of a slab of quantum magnetoplasma subject to arbitrary elec-
trostatic fields having no special symmetry across the slab. We construct the inverse dielectric func-

tion for this system in the random-phase approximation including the role of "nondiagonal" quan-

tum interference effects, and discuss various limits and approximations of special interest. In this,
we assume that the boundary conditions at the slab faces are those of specular reflection (infinite-

barrier model). This work is applied to a determination of magnetic-field effects on the static shield-

ed potential for a point charge and image phenomena in the vicinity of a slab face, including
Thomas-Fermi (Debye) shielding phenomena and Friedel-Kohn "wiggle" (i.e., spatial oscillatory
structure) shielding effects for a highly anisotropic magnetoplasma in the quantum strong-field lim-

it. In this connection, shielded image potentials are examined for both source and field points out-

side the plasma, surface-corrected bulk shielding is treated when both points are inside the plasma,
and "cross-boundary" shielding is studied when one of the points is inside the plasma boundary and

the other is outside.

I. INTRODUCTION: POTENTIALS OF A SLAB
OF QUANTUM MAGNETOPLASMA

U(2) =5 (2—1'), we have

V(1)=f d 2E(1,2)U(2)=K(1, 1'),

As interest in semiconductor microstructures mounts,
it is appropriate to reexamine the nonlocal dynamic
dielectric response properties for a quantum plasma slab
of f't nite thickness, bounded by two infinite-barrier-
potential walls. In this study we undertake such a reex-
amination, employing Newns's formulation' for electro-
static fields which are symmetric or antisymmetric across
the slab, making the useful extension to arbitrary fields
having no special symmetry, and displaying the results in
terms of the corresponding inverse dielectric function for
the slab "—whose general importance is tied to its close
relation to the slab density-density correlation function.
Our results for the slab inverse dielectric function gen-
eralize those of Bechstedt and Enderlein ' ' by incor-
porating the role of "nondiagonal" quantum interference
effects. Moreover, because of its intrinsic interest, we
carry out here the calculation of the statically shielded
Coulomb potential of a magnetoplasma near a bounding
surface using the slab inverse dielectric function, inspect-
ing the roles of both anisotropic Thomas-Fermi-pole con-
tributions and Friedel oscillatory contributions under
high-magnetic-field conditions. This formulation is also
applied in a companion paper to the explicit determina-
tion of fast particle energy loss to a slab of solid-state
plasma.

Our determination of the inverse dielectric function
X(1,1')=5V(1)/5U(1') [U(1') is the impressed poten-
tial at space-time point 1', V(1) is the effective potential
at space-time point 1] for a solid-state plasma slab will
employ the fact that with the model potential

which relates IC (1,1') directly to the corresponding
effective potential V(1) which we calculate by standard
procedures. For the slab (Fig. 1) having infinite-barrier

X=0

FIG. 1. Quantum plasma slab bounded by specularly
reflecting hard walls at x =0 and x =I in a normal magnetic
field.

43 2106 1991 The American Physical Society



43 DIELECTRIC RESPONSE AND QUANTUM MAGNETIC-FIELD. . . 2107

specular-reAection boundary conditions at the planar
faces x =0 and x =I, we employ a mixed representation
with Q as Fourier transform wave vector conjugate to
R = r I

—r 'I = (y, —y ', , z, —z ', ), and a direct x representa-
tion for which we employ a complete set of Fourier-series
cos(qx) functions to represent potentials having no
definite symmetry cross the slab, instead of dealing sepa-
rately with symmetric and antisymmetric cases. Thus,
we have

Vg(l) = —QVg(l)+2QUg' (1), (6b)

(1—A )S, +BSHE
Vg(0) =

(1—A)(l —A ) B—

which may be used in conjunction with Eq. (4) to deter-
mine Vg(0) and Vg(1) as

=2 ig IIf(R x) = g rl f e'g cos('qx) fgq
q

where

(1—A )S2+BS,
Vg(l) =

(1—A)(1 —A ) B— (7b)

fg =j dx f d R e 'g cos(qx)f (R,x)

with

q=, n =0, 1,2, . . . ,

and

for q =0
1 for q)0.

(2)

(3a)

(3b)

In the evaluation of S„S2,A, A, B, we employ the fact
that E 'g is the (q, q') matrix element of the operator
E 'g, such that E 'g =(q~(E 'g)~q'), which is the
inverse of the dielectric matrix of Eq. (5a), involving only
the density perturbation response function R&. Recog-
nizing that R& has even parity about the center of the
slab, it follows that E& and E '& also have even parity,
so that the states (q ~

and ~q') must have the same parity
to have a nonvanishing matrix element E gqq With
this in view, we find that

Following Newns's notation, ' we consider arbitrary
external sources S',S",S'" localized in regions I, II, III,
which produce potential contributions O', U", U"', re-
spectively (V' U=4mS). Furthermore, we designate the
perturbed slab density as 5p(1), and the associated densi-
ty perturbation response function as R (1,2)
=5p(1)/5V(2)~5p(l)= jd 2R (1,2)V(2), which has a
double-Fourier-series representation R (x,x') ~R~ ~

~R& . In these terms, the Poisson equation for the
slab yields

Vg(x)= ——g Il cos(qx)
2

q

Xg E 'g
q

[4m.Sg' ~ + Vg(0)

A = A = —1/2eg —1/2eg, B =1/2eg —1/2eg

where

'g= ( Q/')X 'g-
qq'
Qdd

'g= ' Q/" »~ 'g~e
qq'

even

and

Sm + g nq E 'g„Sg',
q, q' odd q, q' even

—
(
—1)" Vg(l)], (4) eg n

where Vg(0), Vg( 1 ) represent derivatives of V at the
boundaries x =0 and x =1 and (

~ q~
=Q +q )

Eg =
q~ 5 /g +4rrRg

and

+ [ U' (0)+ U"'(1)]
eg(n)

(10)

and the structure of R &
~ is

8m
2 I

X+ X &qE'gw a~
q, q' odd q, q' even

Raqq =Daq~qq « . ~aqq (&b) [ UI (0) UIII(1) ]g g

with a "diagonal" part, D&, and a "nondiagonal" part,
Consideration of the electrostatics of the re-

gions I and III outside the slab yields + [ Ug (0)+ Ug" (1)] .
eg Q

Vg(0) = QVg(0) —2QUg(0), The final results for Vg(0) and Vg(l) are



2108 CUI, HORING, AND GUMBS

Vg(0)=(1+eg) '(I+eg) ' —eg(1+Kg) g E 'g .Sg' —eg(1+eg) g rl E 'g Sg'
odd q, q' even

+ (2+ eg +eg ) Ug (0)+ ( eg —eg ) Ug" (l ) (12)

Vg(l) (1+eg ) (1+kg ) eg(1+Kg ) Q E gqq Sgq Zg(1+eg) g qlqE g Sg
oclci q, q' even

+ ( eg —eg ) Ug (0)+ ( 2+ eg +eg ) Ug~'(1) (13)

and using Eq. (6) we obtain Vg(0) and Vg(l) which facilitate an explicit determination of the potential Vg(x) as (set

'gqq =&qE 'gqq'

Qx

Vg(x) = Ug(x) eg"U—g(0)+ eg—(1+kg) g E 'g Sg' ~ eg(1—+eg ) g E 'g .Sg ~

( I+eg )(I+eg ) ocici q, q' even

+(2+eg+eg ) Ug(0)+(eg —
Zg ) Ug"(l) (14)

for region I, x &0,

Vg(x) = —— g cos(qx)E g, 2qrSg
4

q, q' odd 1+eQ
E —1 SII + UI (0) UIII(l)

k, k' odd

cos(qx)E 'g ~ 2qrSg' ~—
q, q' even 1+EQ

E gkk Sgk + Ug(0) + Ug ( l)
k, k' even

(15)

for region II, 0 ~ x ~ l,

( )
—U III( )

—g (x —i)
U III( l )Q Q Q

—Q (x —I)
+ 'g('+'g ) & 'gqq Sg' 'g('+'g ' & 'gqq Sg'q

(1+eg )(1+eg ) q, q' odd q, q' even

+(eg —eg ) Ug(0)+(2+eg+eg ) Ug"(l) (16)

for region III, x ) l.

II. INVERSE DIELECTRIC FUNCTION OF A PLASMA SLAB

The most useful characterization of electrostatic response of the slab plasma is provided by the inverse dielectric
function IC (1, 1 ), which is a property of the medium, independent of field within the framework of linear response. It
embodies a description of dynamic and nonlocal screening phenomena, including nonlocal image potentials involved in
surface interactions and collective modes of the bounded slab plasma. K (1, 1 ) plays a central role in the determination
of the Raman light scattering cross section, van der Waals interactions, correlation phenomena, and energy loss which
we will discuss at length in the companion paper. As indicated above, we will determine K(1, 1 ) using a model poten-
tial U(2)=5 (2—1') such that

Vi (1)=J d 2K(1,2)U(2)=K(l, l') . (17)

It is straightforward to determine the sources of U as V' U=4qrS and construct ICg(x, x', CI ) using Eqs. (14)—(17), with

the result
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Qx
K (x,x', Q)=0( —x) 5(x —x') —eg 5(x')+ [(2+e +Z )5(x')+(e —e )5(l —x)]2(1+e )(1+e )Q Q

+ 0(x '
)0( l —x '

)e g" E 'g„rq'r'cos(q'x')
Q q, q' odd

+ — g E 'g, ~q'~ cos(q'x')
1+eQ q q „,„

+0(x)0(l —x) —[5(l —x') —5(x')] g cos(qx)E 'gq~1+eg 1

+ [5(l —x')+5(x')] g cos(qx)E
1+6Q q, q' even

+0( )0(I x') g ~q'~ E g cos(qx)cos(q x )

q, q odd

~q'r E,cos(qx)cos(q x )

q, q' even

g 8 y y E ',E „,rk ~icos(qx)cos(k'x')
I +eg I q, q' pdd k, k' pdd

cos(qx)cos(k'x')
q, q' even k, k' even

—Q (x —I)—g~ ti5(I —
x )+ [(eg —eg )5(x')+(2+ eg+ eg )5

2(1+eg )(1+&g )

—0( )0(I — ') ,
r
q' ~'cos(q'x ')

1+~Q qq odd

EQ
,

/

q'/'cos( q'x ')
1 +&Q q, q' even

(18)
h 1, 11 Eqs. (19)—(21) below incorporate the role of "nondiagonal" quantum inte

l fl tio of electrons at the "hard wa/1" surfaces at x =0 and x =l, including spa o og
duced into the structure of the polarizability by the boundary conditions.

In the semi-infinite limit, l ~~, we find

Kg(x, x', Q)=0( —x) 5(x —x') — eg"5(x')+0(x')eg" f ™dqf dq'E 'g .~q'~ cos(q'x')
Q Q

+0(x) 5(x')
z f dq f dq'E 'gqq cos(qx)

1+eg ~~ 0 o

+0(x') f dq f dq'E g q
~q'r cos(qx)cos(q'x')

0 0

—0(x') f dq f dq'E 'gq~ cos(qx) f dk f dk'Egkk, lk'I cos(k'x')
1+eg ~4 o o 0 0

(19)

Although smaller, neglected terms in Kg(x, x'II) of order O(l ') are of importance in problems of surface physics, and
denoting the associated contribution as KQ"' "'we obtain
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CXCg
2

~surface(x x I ~) g( x)g(x I )e gx

2(l+eg)

2

+ f dk f dk'E 'gkk ik'i cos(k'x')
1+kg 2 (1+eg)~ 2ir~ o o

+9(x)5(x')
2—+ f dk f dk'cos(kx)E 'gkk —0(x)9(x')

I+eg 2 (I+eg)2 2ir2 o o
gkk

+8(x)8(x'), f dk f dk'E 'gkk ~k'i'cos(k'x')
1+Cg 2~ 0 0

2
&g Q

ized

—1 I
dq dq'cos qx E

Qqq(I+eg) ~ o o "2'
X f dk f dk'E 'g„k ~k'~ cos(k'x')

0 0

&g ~Q 2ti m+ f dq f dq' cos(qx )E 'gq~.(1+eg 2~2 o o
(20)

where

a=(Q/ir) f dq E go ' .
0

(21)

In the case of a thick but finite slab of solid-state plasma (QFl ))1), it is often useful to employ the "diagonal" ap-
proximation' which neglects quantum interference effects associated with the vanishing of wave functions and density
at the infinite-barrier slab boundaries, while admitting to consideration bulk quantum effects arising in the
temperature-dependent Lindhard dielectric function and its Landau quantized counterpart in high magnetic fIeld. In
this, only surface-induced spatially-inhomogeneous modifications of the polarizability are ignored in the process of join-
ing bulk dielectric response properties across the boundaries of adjoining media at the slab faces (including their com-
plement of bulk quantum efFects). Such a "diagonal" approximation is also in fact exact in the semiclassical limit where
the electron dynamics are governed by purely classical laws, while statistica1 averaging is carried out with a Fermi-
Dirac distribution. In general, the "diagonal" approximation may be expected to be valid for samples which are large
in comparison with the characteristic distance to which surface-induced spatial inhomogeneities penetrate the polariza-
tion properties, l ))(2QF) . In this case, the "nondiagonal" term —Ag of Rg, in Eq. (5b) may be neglected, and
the resulting diagonality of R& ~ and E& ~ yields

E 'g .=6 /[(q +Q )e(q, Q)], (22)

where

e.(q, Q)=1+4irDg /(q +Q ) (23)

is approximately the bulk quantum-mechanical dielectric function [Lindhard, generalized for temperature and magnetic
field, within the random-phase approximation (RPA)] for 2QF l ))1. Thus, in the "diagonal" approximation,
Kg (x,x'0) is given by the finite slab result
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gx
K (x,x', Q)=8( —x) 5(x —x') —e~"5(x')+ [(2+e +e )5(x') +( e —E')5(l —x')]g 2(1+eg )(1+Fg )

+0(x')8(l —x')e~" Zg 6'g
'(Q, x', 0)+ e '(Q, x', 0)

1+kg

+~(x)@l—x) —[5(l —x') —5(x')] a(g, x, n)+[5(l —x')+5(x')] ~ a(g, x, /)6g Zg

1+kg I+eg

+ ,'9(x')6(l——x') e '(Q, x+x', 0)+ e'(Q, x —x', 0)+e '(Q, x+x', fl)

26g
+Z '(Q, x —x', 0)— e '(Q, x', Q)a(Q, X, Q)

1+kg

2E'g
e '(Q, x', Q)a(Q, X,A)

1+Eg

+g(x —l) 5(x —x') —e &' "5(l —x')

—g I x —11

+ [(e —e )5(x')+(2+e +e )5(l —x') —8(x')8(l —x')e ~' "]
2(1+eg )(1+Kg )

Gg Zg
X e '(Q, x', 0)— 7 '(Q, x', II)1+&g

'
1+kg

(24)

where

eg(II)= g E 'gq (II)
odd

(25a)

E 'g (II)
q, q' even

4Q ~ 'qq

„,„ lql e(q, Q)
(25b)

2 + cos(qx)l,dd e(q, fl)

cos(qx)
'(Q, x, Q) =-l, ,„,„e(q,&)

2g + cos(qx )

t q.« lql'e(q, n) '

qlq cos( qx )
a(Q, X,Q)=

,„,„ lql e(q, A)

(26a)

(26b)

(27a)

(27b)



2112 CUI, HORING, AND GUMBS 43

These results for the "diagonal" approximation are in agreement with those of Bechstedt and Enderlein ' ' for slab
dielectric response.

Finally, in the semi-infinite limit of the "diagonal" approximation,

Kg(x, x', fl) =0( —x) 5(x —x') — e~"5(x')+8(x')e~ e '(Q, x', Sl)
1 +6'g 1 +E'g

+8(x) 5(x') a(g, x, Q)+8(x')[e '(Q, x —x', 0)+e '(Q, x+x', 0)]1+E'g

26@—0(x') a(g, x, fl)e '(Q, x', fl)
1+eg

(28)

and

,
(

Ql f d f d, 2n5(q .—q')
ir o o l ~q'~ e(q, A)

2Q ~d 1

)q) e(q, Q)
(29)

and

1 f d cos(qx)
o e(q, 0)

(g ~) 2Q f ~d cos(qx)

~q~ e(q, Q)

(30)

(31a)

It is often convenient to use the notation

v(g, x, fl) =a(g, x, fl)/Q
2 ~ cos{qx)

~q~ e(q, Q)
(31b)

III. MAGNETIC-FIELD EFFECTS ON SHIELDING
AND IMAGE PHENOMENA NEAR A SURFACE

Our treatment of static shielding phenomena will be fo-
cused on the role of quantum magnetic-field effects with a
single bounding surface for a thick slab. In this, we will
analyze the shielding integral

V(r, tab oo )

=(2m) fdx' f d Qe'~

X Kg(x, x', A~i 0+ ) U(g, x'),
(32)

Equations (28)—(31) are in agreement with earlier results
for l~ ~. In the high-frequency —low-wave-number ap-
proximation, describing local, long-wavelength plasma
behavior, we have e(q, Q) —+e(O, A)~e(A).

tribution at 2Q& (Qz is the Fermi wave number), which
we take to be in a much higher wave-number regime
2Q~ ))Qi „t so that the singularities contribute with
negligible interference. It is well known that at zero mag-
netic field the Friedel-Kohn oscillatory contribution is
important at large distances from the impurity. Qualita-
tively, one may surmise this by expanding the shielded
potential integrand in the vicinity of 2Q+ in powers of the
small polarizability contribution

~ q
—2Q~ ~

ln
~ q

—2Q~ ~,

whose long-range oscillatory contribution in position
space is never quenched. The introduction of a strong
magnetic field, however, leads to a qualitative change: In
the anisotropic quantum strong field limit (all electrons in
the lowest Landau level), A'co, )g the branch-cut polariza-
bility contribution —ln(q —2Q~) is very large near 2Q+
(Appendix), precluding any possible expansion in powers
of it, and in fact its largeness in the shielding integrand
denominator diminishes the contribution from —2QJ;, re-
ducing the Friedel osci11atory shielding component in
high magnetic field.

For a thick slab of solid-state plasma, with Coulombic
source and field points at distances xo, x ) (1/2Q~) from
the surface, we employ the semi-infinite "diagonal" ap-
proximation for K&(x,x') given by Eq. (28) (zero frequen-
cy limit, Q~O) for the evaluation of V(r, t~ ~ ) in Eq.
(32) to examine the effects of shielding on image phenom-
ena. Executing the x' integrals involved we obtain a re-
sult having four distinct analytic structures depending
on whether the field point x and source point xo are
within or outside of the plasma slab, as follows (Jo is the
Bessel function and Q~O throughout for the static limit;
also, recall v=a/Q):

Case I, x (0 and xo (0:
V +Z dQJ (QR)g

~r
—

ro~ o Qv(Q, O)+1
(33a)

Case II, x & 0 and xo & 0:

where U(g, x') is the two-dimensional (2D) Fourier
transform of an impressed Coulombic impurity potential
of strength Ze centered at ro={xo,0,0). Our examina-
tion will treat contributions from the vicinity of an aniso-
tropic Thomas-Fermi shielding pole -Q~i; at low wave
numbers, and a Friedel-Kohn oscillatory branch-cut con-

V„=Ze f dQ Jo(QR)g v(Q, x —xo)+v(g, x+xo)
0

2Q v( Q, x )v( Q, x o )

Qv(Q, O)+ 1

(33b)
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Case III, x & 0 and x )0:

oo Q'g", -a(-)
Viii 2Ze f dg Jp(QR)

0

Case IV, x )0, and xo &0:

(33c)

llN q

Viv =2Ze f dQ J()(QR) ' e (33d)

The bulk static dielectric function involved has been
thoroughly examined, and for the quantum strong-
field limit (A'co, &g) it takes the zero-temperature form
[Ref. 5(b)]

e(Q, q)=ep —[4ire /(Q +q )](p/A)(m/2q g)'~

&&e
' ln~(q —2QF)/(q+2QF)~,

where we have neglected higher-order terms
0 (A'Q /2m co, )" with n ) 1 for the examination of shield-
ing at large transverse distances R. Also, (=A Q~/2m is
the Fermi energy, I is the effective mass,
p=m ~ co, g'~ /2' ir iri is the uncorrelated density ex-
pression for Iico, )g, ep is the background dielectric con-
stant, and co, is the cyclotron frequency. The quantity
a (Q, x)=a(g, x, Q=O) is of central importance in the ap-
plication of Eq. (28), and

-2QF 2QF Re q

FIG. 2. Contour for the q integration of Eq. (35).

and in this low-wave-number reg™eq —QrF ((2QF we
may approximate Eq. (34) using an expansion in powers
of wave number as

a (g,x):—Q v(g, x )

=(Q/ir) f dq e'~'
[/( q+Q2)e(q)]

e(q)=epI 1 —[4i).e /ep(q +Q )]

X( —Bp/c)g+ Aq +Bg )I, (37)

due to the even property of e(q). The analysis of the q in-
tegral of Eq. (35) is facilitated by noting that there are
two types of singularities of the integrand, an anisotropic
Thomas-Fermi shielding pole around QT„and branch
points at +2QF, which are well separated for 2QF &)QT„.
With this in view, we deform the q contour off the real
axis as indicated in Fig. 2, to a large semicircle in the
upper half q plane, thus encircling the isolated pole about
QT„and encircling the vertical branch cuts originating at
the branch points +2QF as shown. This yields two dis-
tinct contributions (recognizing that the semicircular
parts of the contour produce null contributions):
a(Q, x)=aT„(g,x)+a„K(g,x). The Thomas-Fermi pole
contribution is

aT„(Q,x)=(g/ir)(tI(T„„, )dq e' /[(q +Q )e(q)] (36)

A =(iri /12m)c) p/c)g

B =[1/mco, ][c)(T/c)g —p]
~ [1/m co, ][()rico, /2)()p/c)g —p] .

(38a)

(38b)

The last part of Eq. (38b) pertains to the quantum
strong-field limit with o.~he@,p /2. Corresponding re-
sults for A, B,p, o., etc. for arbitrary magnetic field
strength and temperature are given in Refs. 6 and 7. The
q integration of arF(g, x) involves only a simple pole,
with the result:

where an anisotropic effective Thomas-Fermi shielding
length is manifested by the nonidentical expansion pa-
rameters A, B: We employ the notation QTF
=4me c)p/c)g and A, B are given in terms of the bulk
electron density p and bulk energy density cr by

aTF(Q, x)=[Q/(C +EpQ )' ]expI —~z~[(C +EpQ )'~ /(1 —4ire A/ep)' ep]I

where

C'= e,(1 4ire'A /e, )g T, —

and

(39)

(40)

Ep =e()(1 4ne A /ep)(1 4ire—B/ep) —. (41)

Qualitatively, we note that C-ep Qr„, Ep ep and for Q (QT„we have
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—~~lg
arp(g, x)-(g«o"QTp)e '" ' with arp(g 0) (Q/&o Qrp) .

There are two identical branch-cut contributions to apz(g, x) from the contour segments in the vicinity of +2QF,
which may be obtained by setting q =(2QF+iu), and writing

apK(g, x)=(2Q/Tr)Ree f~z& &„„,hindu e ""/[(2Q F+iu) +Q ]e(q) . (42)

Introducing e(q) =e(g, 2QF +iu) of Eq. (34) to explicitly exhibit the role of ln(q —2QF )~lnu, and taking account of its
discontinuity across the vertical branch cut of Fig. 2, the integrals on the two sides of the cut combine to yield

ap~(g, x)= — b Re e f du
&o

(2QF +i u )e

(2Q F+i u) +Q (2QF+iu)+b ln
4QF+iu

(43)

' 1/2

b:— exp( fig /—2mco, ) =bo exp( fig /2m—co, ) .
A'eo 2

The asymptotic behavior for large x ))1/2QF is dominated by behavior near the u origin where lnu is large in the
denominator of the integrand, whence (set u

' = u /4QF )

21gFX
ap~(g, x)= — bRe e— du'

co 0

e
—4Q u'x

[(2QF) +Q (2QF) b lnu'—] +
2

2 (44)

and we obtain the result
—4QFxu'

oo

apK(Q, x) cos(2QFx) du
beo (lnu ') (4Sa)

agonal quantum interference terms which have been
eliminated in this diagonal analysis. Finally, we note that
in the absence of a significant branch cut contribution

a(Q, O) =arp(Q, O),
Further information concerning the evaluation of this in-
tegral for 4QFx )) 1 is presented in the Appendix, where
we show that

Q 1 cos(2QFx )
apK(g, x)=-

b&o 4QFx [ln(4QFx) ]

X 1+0
ln(4QFx )

Above, we have also set Q —+0 corresponding to large R
in the sense that R ) fi/2m', -r, (r, is the radius of the
lowest Landau state). In applying this to the determina-
tion of apz(Q, O) involving x ~0, we bear in mind that
the validity of the diagonal approximation is contingent
upon 2QFx ) 1, so that quantum interference eA'ects asso-
ciated with wave-function reAection at the boundary may
be neglected. Therefore Eq. (4S) may be understood con-
sistently as making a vanishingly sma11 contribution to
apK(Q, O) in the limit of small x (modulo x ) 1/2QF)
within the framework of the diagonal approximation. A
more careful examination of apK(Q, O) starting from Eq.
(42), eliminating the restriction x ) 1/2QF in the limit
x —+0, reveals a featureless and small contribution to
a pz ( Q, O) lacking Friedel-Kohn oscillatory structure,
which may be safely ignored as indicated above. Never-
theless, a fully proper treatment should restore the nondi-

the Thomas-Fermi pole is the major contributor to
a(Q, O). It is important to note that to the extent that
shielding phenomena are determined by the Thornas-
Fermi (Debye) pole, there is no need to limit considera-
tion to the quantum strong-field limit, and arbitrary
lower magnetic-field strength regimes are admissible, in-
cluding nondegeneracy as well as degeneracy, provided
the results of Refs. 5 —7 are employed. On the other
hand, for large x ) 1/2QF, we combine a Tp(g, x)
+apK(g, x) to obtain the result for a (Q, x) as

g TF 0I@2+g2 / )
I/2

a(Q, x)=-
'o I Q'+QTp«o]'"

g 1 cos(2QFx )

boeo 4QFX [ln(4QFx)]'

where bo= b(g =0). —
It is straightforward to carry out the determination of

the shielded potential V(r) in Eq. (33) using the evalua-
tion of a(g, x) discussed above. For case I, in which
both the source and field points are outside the medium
in vacuum (x (0, xo (0), there is no charge present in
the outside region to support a Friedel-Kohn wiggle (i.e.,
spatial oscillatory structure) of density or potential,
which thus cannot occur. Mathematically, this is mani-
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—g)x —xo/' —eV, (r)=Ze f dQ Jo(QR)(e

+ f dQ QJO(QR)e

—gix+x )0

(1+Q2~2/( 2)1/2 Q/C

1 —
Q (1—Eo )/C

fested in the fact that only a (Q, O) appears in V, (r) as
given by Eq. (33a), and a (Q, O) =ar„(Q,O) [Eq. (46)] and
hence V, (r) is therefore determined by the Thomas-
Fermi pole alone and is devoid of Friedel-Kohn oscillato-
ry phenomena. The Q integral of Eq. (33a) may be eval-
uated using Eq. (39) [aTF(Q, O)=Q(C +EOQ )

'/ ], tak-
ing the form

Vi(r) =
[x —x, f

Ze
ix+x, f

4Ze
C [x+xof

+I(R =0), (51)

able because the image distance behind the surface is too
short to accommodate an assemblage of shielding
charges, and shielding is thus rendered ineffective.

It is of interest to treat the case R —+0 (modulo
R ) r, -0) in which Jo(QR)~1 in Eq. (48) for arbitrary
values of ~x+xo ~, which bridges the large and small sepa-
ration regimes discussed above. This case is analytically
tractable in closed form for Eo = 1 (neglect quantum
effects and eo~ 1; C —QTF ) with the result

(48)
The first integral is well known (Ref. 8, p. 712, No.
6.623.1), and it describes the bare source potential and its
ideal image. Evaluating the last integral of Eq. (48) for
large separations between the impurity, image, and field
points, QT„~x+xo~ ))1, QT„R ))1, we expand the term
in large parentheses in powers Q «QT„(&2QF, and re-
taining only the leading term we find

where

I(R =0):— f dQ Qe '(Q +C )'/
(2 0

2Ze 2

C Bp

X [H, (Cp, ) —N, (Cp)] —C (52)
Ze Ze

(R 2+ ~x +xo ~

2)i/2V, (r)=
(R 2+ ~x ~2)1/2

~x +xo+
(R +ix+xoi )

(49)

We note that as a result of nonlocal static shielding
effects, the coefficient of the second (ideal image) term in
Eq. (49) is —1 and not the conventional image strength
factor (1—eo)/(I+eo). One could anticipate this result
directly from Eq. (33a) by noting the smallness of
a(Q, O)-aT„(Q,O) —(Q/eo QT„) &(1 for large separa-
tions. However, dependence on the background dielec-
tric constant eo is carried in the third term in the struc-
ture of C and Eo, and the same may be said for the quan-
tum magnetic field parameter Ace, . Of course, semiclassi-
cal and classical magnetic field parameters will not enter
Thomas-Fermi (Debye) static shielding phenomena at
any (arbitrary) magnetic field strength since the Lorentz
force of classical dynamics cannot do work and it is
therefore incapable of supplying energy which would be
required for a redistribution of static shielding charge.

We may examine V, (r), Eq. (48), for separations that
are small in the sense that QTF~x+xo~ (1, QTFR &(1
[notwithstanding our commitment to 2QF(x, xo) )) 1 and
R ) r, ] by expanding the last integrand factor of Eq. (48)
in parentheses in inverse powers of Q (QT„(Q (2Q+),
obtaining [ ]~ [C/Q (1+ Eo) ], with the integrated result

Ze
V, (r)= (R'+ ~x —x, ~2)'/2

zo Ze+
+Eo (R +~x+xo~ )'

(50)

The image strength factor here, (1 Eo)/(1+Eo), is on—ly
slightly modified from what it would be in the absence of
static shielding of the image. This is physically reason-

Viii(r)—=2Zev„i:(O, xo)~x ~/(R +x ) (53b)

Similarly, we approximate V,v(r) for case IV [Eq. (33d)]
with large separation as

V,v(r)—=2ZevFK(O, x)~xo~/(R +xo) / (54)

evaluated at p= ~z +zo~. In this, Hi is a Struve function
and Ni is a Neumann function (Ref. 8, p. 316, No.
3.366.3).

Vi(r), having x &0 and xo &0 is determined by the
Thomas-Fermi (Debye) pole and is devoid of Friedel-
Kohn wiggle behavior. As pointed out above, in such
cases the results we have obtained describe all regimes of
magnetic-field strength (not just the quantum strong-field
limit) provided that the identifications of Refs. 5 —7 are
employed for lower fields and nondegenerate as well as
degenerate statistics.

Focusing attention on the "cross-boundary" shielding
cases where either source point xo )0 is inside the medi-
um while field point x &0 is outside (case III) or, on the
other hand, where field point x )0 is inside the medium
while source point xo (0 is outside (case IV), we note
that the inside point in either case involves perturbed
electron density which is capable of supporting a
Friedel-Kohn wiggle of the potential as a function of the
inside point. Noting that such a Friedel-Kohn wiggle
dominates the large-separation behavior of
a (Q, x)-a„K(Q,x) & 1, and further recalling that
a(Q, O)-arF(Q, O) «1, we may approximate V», (r) for
case III [Eq. (33c)] as

Viii(r)-2Ze f dQ Jo(QR)ti(Q~xo)e
—gl I (53a)

0

and considering large R separation as well as large x,xo,
we have [recall from Eq. (35) the definition
v(Q, x) =a (Q,x)/Q; vF~(Q, x) =a„~(Q,x)/Q]
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Friedel-Kohn wiggle behavior is manifested through
vFK(0 xp ) and vFK(O, x) as functions of source point xo
and field point x in Viii(r) and Viv(r), respectively.

Finally, we consider V„(r) for case II in which both
the source point x0 )0 and field point x )0 are inside the
medium. Qualitaively, we may expect Friedel-Kohn wig-
gle behavior of the potential in its dependence on both
source and field points, since both points are inside where
the perturbed density is capable of sustaining such phe-
nomena. For large separations, a ( Q, x or xo )

-aF&(Q, x or xz) ( I, and again a (Q, O) —aTF(Q, O) « I,
so that V»(r) [Eq. (33b)] may be approximated as

V,i(r)=Ze f dg Jz(QR)[a(g, x —xz)+a(Q, x+xo)
0

On the other hand, for displacements along the
magnetic-field direction and perpendicular to the surface
R —+0, the exponential envelope factor exp( —2QFR )~1
is unity, signaling the dominance of the highly anisotrop-
ic Friedel wiggle contribution to the shielded potential
over the Thomas-Fermi (Debye) contribution. An ordi-
nary Hartree-Fock calculation of this Friedel wiggle in
the presence of a surface was presented in Ref. 9, includ-
ing the role of quantum interference eFects, and also in
Ref. 10 a numerical RPA calculation is given for the
Friedel wiggle shielded potential in the presence of a sur-

2.0-
—2a(g, x)a(g, xo)] . (55)

The first and second terms of the integrand of Vii(r) in
Eq. (55), which are exact, correspond to the bulk shielded
potentials of an impurity charge sited at (xo, 0,0) and of
an image charge of identical strength sited at the image
position ( —xo, 0,0), respectively. It is worthwhile noting
that the approximation Eq. (45b) for aF~(g, x) leads to
Friedel oscillatory contributions which exhibit high Q-
wave-number divergences in the first two terms of the
form

o.e-
CF

0.4-

Ze[vFK(0, x —xo)+v„K(0, x+xo)]

x f dye, (g)

due to the low-wave-number approximations undertaken
in deriving Eq. (45b). This limitation also results in a
similar high Q-wave-number divergence in the third term
of Vii(r) in Eq. (55), which is of the form

~1o2
O

I

1.O B.O

2ZevFy(0 x)vFK(0 xo) f ding ~o(g)
0

R 2.0—

The restoration of higher Q-wave-number dependence re-
quisite for removal of the divergences in the branch-out
integral (associated with Friedel-Kohn wiggle oscillatory
shielding phenomena) involves due consideration of a
Coulomb pole term —[(2QF ) +Q ] heretofore neglected
in the denominator of the integrand of aFK(g, x) in Eqs.
(43) and (44). While this substantially complicates analyt-
ical evaluation, we may gain an appreciation of its role
from an earlier ordinary Hartree-Fock-type treatment of
the Friedel wiggle in the quantum strong-field limit,
which showed that the Coulomb pole couples the aniso-
tropic branch cut to source-field displacements parallel to
the surface such that for large displacements the Friedel
wiggle contribution to the shielded potential dies oA very
rapidly with an exponential envelope factor
exp( —2QFR). Consequently, for such large parallel
displacements in the first two bulk terms of V»(r) in Eq.
(55), the more slowly decaying exponential falloff
exp( —

QTFR ) of the bulk Thomas-Fermi (Debye) contri-
bution dominates the statically shielded potential. Simi-
larly one may expect the third term of V»(r) in Eq. (55)
to yield a negligible Friedel wiggle shielding contribution
for large 2QFR ))1.

1.2—

Q.4—CV

~= Q.Q

-0.4—

-0.8—

O
I

LQ
1

2.0
I

S.Q

FIG. 3. Plots of the "inside" shielded potential V«
(R =O, x) /(4ne QF ) as a function of (QFx) for a Coulombic im-
purity sited within the plasma on the axis at a distance (a)
xp QF and (b) xo =2QF ' from the surface. The solid curve is
for a background dielectric constant co=10.94 and the dashed
curve is for so= 1. The magnetic field is H = 10' G.
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face, but without quantum interference effects. ' Here,
we present a similar numerical RPA evaluation of the full
"inside" shielded potential embodying the Freidel wiggle
contribution along with the Thomas-Fermi (Debye) con-
tribution based on Eq. (33b) for R =0, again without
quantum interference effects, but including the role of the
background dielectric constant appropriate to semicon-
ductors in which the quantum strong-field limit can be
achieved.

The appropriate bulk dielectric function e(Q, q) for
such a full static shielding analysis involves more struc-
ture than is given in Eq. (34), even for the strong-field
limit, since the higher-order terms O(A'Q /2m', )" can-
not be neglected out-of-hand with R ~0, and the ap-
propriate form for e(Q, q) is given in Ref. 5(b). The nu-
merical results for V,i(r) are shown in Figs. 3a and 3(b)
for R =0 and values of QFxp & 1, so that the role of omit-
ted quantum interference terms may be expected to be
relatively unimportant in accordance with the results of
Ref. 9. In the calculations, we take the magnetic field to
be H =10 G, and for GaAs we use an electron effective
mass m =0.066Sm„bulk density p = 10' cm
op=10. 94, Fermi wave number Q~=0.0013 A ', chemi-
cal potential (=9.65 X 10 eV, and cyclotron frequency
co, =2.65X10' sec '. For these values A'co, &g and the
quantum strong-field limit is achieved with only the
lowest Landau state occupied. The Friedel-Kohn wiggle
is prominent in the RPA shielded potential shown as a
function of x distance from the boundary for R =0 in all
parts of Fig. 1 for various values of QFx & 1. In addition
to the solid curves which show V»(x) for GaAs with
ep= 10.94, the corresponding results for op~ 1 (but with
all other numbers characteristic of GaAs the same as in-
dicated above) are shown in dashed curves to emphasize
the importance of incorporating the proper value of the
background dielectric constant eo.

IV. SUMMARY

We have analyzed the electrostatic fields and dielectric
response of a finite slab of Landau quantized magneto-
plasma subject to the boundary condition of specular
reflection at the slab faces (infinite barrier model). In
this, the RPA inverse dielectric function has been con-
structed quite generally, avoiding any commitment to po-
tentials having special symmetry across the slab, and the
role of "nondiagonal" quantum interference effects has
been included. Special limits and approximations of par-
ticular interest for K(1,2) are explicitly determined. "
This rather forrnal work will find many useful applica-
tions for a finite slab, including the analysis of fast parti-
cle energy loss to a film to be presented in a companion
paper, and a variety of other surface response properties
governed by the longitudinal dielectric response function
of the slab.

Our analysis of magnetic-field effects on static shielding
phenomena and images in the vicinity of a magnetoplas-
ma surface has been exhaustive. In this, we have treated
all cases and phenomena of interest in a magnetic field,
including shielded image potentials when both source and

field points are outside the plasma surface, and "cross-
boundary" shielding when one of the points is inside the
plasma boundary and the other is outside. Finally, we
studied the surface-corrected bulk shielding when both
the source and field points are inside the plasma surface,
presenting a numerical study for a realistic sample. Our
shielding work in all cases incorporates the role of
Thomas-Fermi (Debye) shielding phenomena and
Friedel-Kohn wiggle shielding effects for a highly aniso-
tropic bounded magnetoplasma in the quantum strong-
field limit. This case, in which only the lowest Landau
eigenstate is occupied, is more complicated than its zero-
field isotropic counterpart because the quantum strong-
field limit polarizability becomes large at q —2Q+, rather
than small. Notwithstanding this, we have obtained both
closed form analytical results, as well as numerical re-
sults, for the anisotropic Friedel-Kohn wiggle shielding
contribution in the vicinity of a surface, as presented in
Sec. III.

Beyond the formal considerations, some interesting
shielding phenomenology in the presence of a bounding
surface and a magnetic field has been elucidated in our
analysis. For the "outside" case, V, (r) exhibits image po-
tential structure whose strength is substantially changed
from the conventional (local) image strength factor
(1—ep)/(1+op) to image strength (

—1) for large dis-
tances 2QF & Q» & (R ', ~z+zp

~

') due to nonlocal stat-
ic shielding. On the other hand, for distances too small
(Q»~z+zp~ & I, Q»R «I) to accommodate an assem-
blage of shielding charges, the conventional local image
strength factor again emerges, because the shielding is
thus rendered ineffective. Our exact treatment of the spe-
cial case R =0 bridges the large-and small-distance re-
gimes for ~z+zp~ discussed separately above. In these
considerations, an anisotropic Thomas-Fermi pole
(modified by quantum magnetic-field eff'ects) dominates
shielding phenomena since the absence of charge density
outside the boundary precludes any possibility of sup-
porting a Friedel-Kohn wiggle shielding contribution.

In the "cross-boundary" shielding cases where either
the source point or the field point is inside the medium
(and the other point is outside), the inside point in either
case involves perturbed electron density. This provides
the capability of supporting a Friedel-Kohn wiggle con-
tribution (as a function of the inside point), which dom-
inates the long-distance shielded potential V», , V»
across the boundary. Our explicit analytic evaluation of
the Friedel-Kohn wiggle shielding integral shows that the
highly anisotropic quantum strong-field limit involves a
polarizability whose largeness in the shielding integrand
denominator at q-2QF diminishes the high field FK
wiggle.

For the "inside" shielded potential Vii, with both field
and source points inside the medium, the charge density
perturbation of the medium again sustains a Friedel wig-
gle component of the shielded potential. Under the high
magnetic-field conditions of this quantum strong-field
limit study, the "inside" Friedel wiggle dies off exponen-
tially for R & I/(2Q~) due to a Coulomb pole which cou-
ples the anisotropic branch cut to source-field displace-
ments parallel to the surface, leading to an envelope fac-
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tor exp( —2QFR), and then the more slowly decaying
Debye-Thomas-Fermi exponential falloF exp( —QrFR)
characterizes shielding. However, for R ( I/(2QF) the
Friedel wiggle is in fact dominant over the Thomas-
Fermi contribution, and the shielded potential for R =0
is evaluated numerically here including the role of the
background dielectric constant eo. The results presented
in Fig. 3 for A =0 exhibit the prominence of Friedel os-
cillations, and they also emphasize the importance of in-
corporating the proper value of eo for semiconductors.
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I=f du'(u') e "/( —1nu')~
0

=(I/P +
)f dt t e '/(ink, —lnt)~

0

where we have set u'=tA, '. Alternatively written,

I=(1/1, +')[I/(in', )~]

X f dt t e '(1 —1nt/lniL)
0

(A 1)

an expansion in inverse powers of 1niL )) 1 (for
4QFx ))1) yields

I—= [I (a+ I )/1, +'][I/(ink, )~

+Pg(a+1)/(in', )~+' . . ], (A3)

where

APPENDIX

We provide further detail about the evaluation of the
integral of Eq. (45). Setting A. =4Q&x, it is of the form
(a=0,P=2)

z =a+1

=I"(a+1)/I (a+1)=g(a+1) .
z =a+1

g(a+1)=[1/I (a+1)]f dt e 't lnt

= [1/I (a+1)] (d ldz) f dt e 't '(e''"')
0

=[I/I (a+ 1)] (dldz) f dt e 't'
0

(A4)

Here, I"(x) is the gamma function and p(x) is the digamma function. This provides us with the leading term of the
evaluation I [Eq. (45)] and its next correction as

I= [I (a+1)/& '][ I/(»k)~+pg(a+ I )/(ink )i +'+ ] (A5)

««=4QFx»1. It should be noted that in our case, a=0 and p=2, and the requisite value of the digamma function
in the correction is P(1)= —C where C is Euler's constant.
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