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Dynamic properties of double-barrier resonant-tunneling structures
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In this paper we present an approach to the dynamic transport properties of a double-barrier
resonant-tunneling system. Based on the nonequilibrium-Green s-function technique and the
Feynman-path-integral theory, the essential ingredients of this microstructure will be properly
treated in a self-consistent way: the quantum interference across the structure, the nonequilibrium
distribution of tunneling electrons driven by the applied bias voltage, and the eff'ect of reservoirs
(electrodes). The transient behavior of the tunneling current, immediately after the switching on of
a dc bias voltage, is characterized by the building-up process of tunneling electrons in the quantum
we11. The novel negative di6'erential conductance demonstrates itself as a function of frequency of
the small ac signal superimposed upon a dc bias. The imaginary part of admittance is shown to be
related to the conductance via a Kronig-Kramers relation.

I. INTRODUCTION

For years the double-barrier resonant-tunneling system
(DBRTS) has been the focus of intense experimental and
theoretical investigations. ' ' On the one hand, this is
due to its technological importance. On the other hand,
the DBRTS provides us with an ideal prototype system
where nonequilibrium and quantum effects of a small-
sized open system may become significant. Since its con-
ception by Tsu and Esaki' and the first realization of
significant negative differential resistance by Sollner
et al. , many aspects of this system have been intensively
studied, e.g. , dc characteristics, phonon and laser-
assisted tunneling, ' time-dependent processes, ' ' fre-
quency response, ' ' noise characteristics, ' ' and
effects of elastic scattering. ' ' The steady-state proper-
ties of the DBRTS have been understood quite well and
are mainly characterized by an I-V curve shown in Fig. 1,
where a regime of pronounced negative differentia1 resis-
tance (NDR) appears. However, the dynamical aspects
of the system, which are of particular importance both
for the physical understanding and for the device applica-
tions, need to be carefully investigated on the basis of a
time-dependent quantum statistical treatment. Tradi-
tionally, most theoretical analyses are based upon solving
the Schrodinger equation for the scattering wave function
and integrating the obtained transmission coeKcient to
derive the stationary tunneling current as a function of dc
bias voltage. This kind of approach may not be capable
of describing the dynamic processes of the system such as
frequency response and noise processes because, in this
prevalent scattering approach, the quantum interference
is well accounted for, but the nonequilibrium statistics
cannot be self-consistently derived. Actually, the none-
quilibrium distribution of tunneling electrons is crucial to
the novel negative differential resistance phenomenon in
this kind of system, which needs to be consistently deter-
mined by bias voltage and by the coupling of the elec-
trodes (reservoirs). Recently, we were able to employ the
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FIG. 1. A typical (qualitative) current-voltage characteristic
of the DBRTS. Point a —zero biased, n —biased so that the
resonance level is equal to the conduction-band bottom of the
emitter electrode.

nonequilibrium-Green's-function approach to get a better
understanding of the dynamic properties of the DBRTS.
The preliminary results have been reported in Refs. 12,
15, and 17. In this paper, we shall provide the details of
this method in Sec. II. Based on a time-dependent quan-
tum statistical treatment, the following topics will be
studied, respectively, in Secs. III and IV: (i) The tran-
sient behavior of the tunneling current in response to a
sudden switch on of a dc bias V; (ii) the frequency-
dependent response of the DBRTS to a small ac signal
u(t) —uoe ' ' superimposed upon a dc bias voltage V.
The final section consists of a conclusion and a discus-
sion.
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II. GENERAL DESCRIPTION

In order to describe the essential ingredients of a
double-barrier resonant-tunneling structure, we choose
the following Hamiltonian for a one-dimensional model
system:

Hr =H+H'(t),

where

(2.1)

is the Hamiltonian of a DBRTS under a dc bias voltage V
and

H'(t)=c c[ aeu—(t)]+ g b bz[ eu(—t)] (2.3)

is the perturbation due to the ac signal u (t), which is su-
perimposed upon the bias V. ak (ak ), c (c ), and b (b )

are, respectively, the annihilation (creation) operators of
electrons (fermions) in the left electrode, in the central
quantum well, and in the right electrode. E, =co—aeV
(a is structure dependent, a=0. 5 for a symmetrical
structure) is the resonance level as affected by the dc bias.
c.k =k /2m and g =p /2ppz —pV are the single-particle
energy of the left and right electrodes. The starting point
for the energy level is chosen to be the conduction-band
bottom of the left electrode and aeV and eV are, respec-
tively, the potential drops of the resonance level and the
conduction-band bottom of the right electrode caused by
the bias V. [Actually, the choice of the energy starting
point is arbitrary. When it is chosen as the position of
the resonance level, the difference thus brought is only a
constant E,(gkaka„+c c+ +~blab~ ) which does not
effect any physics. ] The fourth and the fifth terms of Eq.
(2.2) describe the coupling between quantum-well elec-
trons and the two reservoirs. The tunneling matrices TLk
and T~ depend on the barrier profile including the effect
of the bias V.

Since the electrode electrons respond to an applied field
much faster than the quantum-well electrons, they are
generally treated as reservoirs. Thus the density matrix
for the DBRTS can be written as

L f R

p=e PXk k &L~ k k PXpI &R
p g P P (2.4)

where 1/P is the temperature of the system. The left and
right electrode subsystems are separately in their own
equilibrium states with chemical potentials pl and pz,
respectively (pL —p~ = e [ V+ u (t) ] ). The central
quantum-well electrons are in a nonequilibrium state with
the density matrix p, to be determined by their coupling
to the two reservoirs and to the applied electric field. In
the practical calculation of the present problem, the
path-integral method not only enables us to treat the tun-
neling coupling nonperturbatively, which is essential to
the resonant phenomenon, but it also allows us to work

H= g Ekakak+E. ,c c+ g e~b b
k

+ g ( TLk c"a
k + TLk a„c) + g ( Tzi bJ c + Tet c b~ )

k

(2.2)

out analytically the statistical average with a nonequili-
brium density matrix as shown in Eq. (2.4) in a tractable
fashion. Moreover, the two density matrices for the two
electrode subsystems (with different chemical potentials)
can be incorporated into the effective-action functional
by replacing the free propagators of the lead subsystems
with their thermodynamic counterparts.

To describe the nonequilibrium state of electrons in the
center quantum well, the retarded, advanced, and distri-
bution Green's functions are introduced as follows:

iG„(t, , t2)=0(t, —t2)( [c(ti),c (t2)[ ),
iG, (t„t,)= 0(t, —t, )( jc—(t, ), c (t, ) j ),
iG'(t, , t, )= —(c (t, )c(t, )),

(2.5)

(2.6)

(2.7)

where ( ) represents the nonequilibrium statistical
average Tr( )p. A more symmetrical form of the
nonequilibrium closed-time-path Green's functions
(CTPGF) (Ref. 20) would be much easier to treat. They
are defined along a closed time path that runs from —~
to + ~ along the positive "+"branch and then returns
from + ~ back to —~ along the minus "—"branch:

iG p(t, , t2) = ( T c (t, )cp(t2) ), (2.8)

where a(P)=+ or —means t, (t2) is located on the"+"or "—"branch, respectively. T is the generalized
chronological operator ordering physical operators along
the closed time path:

iG++(t„t2) = ( Tc(t, )c (t2) ),
iG+ (t„t,)= —(c"(t,)c(t, )),
iG +(t„t,)=(c(t, )c"(t,)),
iG (t„t,)=(Tc(t, )ct(t, )),

(2.9)

(2.10)

(2.11)

(2.12)

with T and T being, respectively, the chronological and
the antichronological ordering operators. The four com-
ponents of G &

are related to the physical G„G„and
G as

G„——,'g' qpG p,
G, =

—,'r) gpG p,
G =6+
0= —,'g r]pG p,

(2.13)

(2.14)

(2.15)

(2.16)

which can be easily proven by using the definitions of
them. Here, g+ =g =g+ = —il = 1 and the repeated
indices are summed over the "+"and "—"branches.

For electrons in the left electrode, the Green's func-
tions

p(k tl tz ) = ( ~pak (tl )asap(t2 ) ~

have the equilibrium form
1

A„~,~(k, tc ) =
co —

Ek + ( —)i'
(2.17)

(k, co)= fL(co)[ A, (k, co) —A—,(k, co)],
while for right electrode electrons the Green's functions
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B~p(p, t, —t2)—:( TPbPa(t()bP(3(t2) )

are given by

l
B„(,)(k, co) =

co —ok+( —)ig

B (k, co)= fR(c—o)[B„(k,co) B,—(k, co)] .
(2.18)

In Eqs. (2.17) and (2.18), fL(co) and fR(co) are, respec-
tively, the Fermi-Dirac distribution functions with their
chemical potentials as pL and pz. g is a positive
infinitesimal.

In the path-integral formalism, the quantum statistical
average over the nonequilibrium ensemble for this
DBRTS can be expressed as

( ' ' ' ) = f [dak][dak] f [dbk][dbk] f [dc )[dc]( . )e

where

L(t) = g akt(t)(iB t)a k(t) +g bk(t)(i Bt)bk(t)+c (t)(iB t)c(t) H(t)—
k k

(2.19)

(2.20)

is the Lagrangian of the DBRTS without the ac signal u (t). f dt = f +"dt++ f + "dt =g f + dt is the time in-

tegration along the closed time path. Since the closed-time-path action f L(t)dt contains only bilinear terms of the ak
and b variables, these variables can be eliminated exactly in the following path-integration formula by carrying out the
Gaussian functional integrations of them:

f [dak](dak] f (dbk][dbk] f [dc ][dc]O[c,c;ak, ak', bp, bp]e

iI,~tc, ct]
[dc ]fdc]O c,c;i t, —i —;i,i—'

5(TLkc ) 5(TLkc)
'

5(TRPc )
'

5(TRPc)

60 c,c;E l
5(TL„c )

6 . 5 . 6
5(TLkc) 5(TR~C )

'
5(TRPC) .tt ' (2.21)

where 5/5( ) is the functional derivative. 0[ ] is an arbitrary functional of c, a„, and b„Grassman variables.
I,ff is the effective action of tunneling electrons:

I„=f dt "(t)( a, —E, )c(t)—f dt f dt'c (t) g ~T „~ A(k, t —t')+ g ~T ~ B(p, t —t') c(t')
k

(2.22)

including the quantum influence of reservoir (electrode) couplings. Therefore the efFect of the density matrices of the
two electrodes [see Eq. (2.4)] are incorporated into their propagators A & and B & ( A carries distribution fL and B
carries fR).

For later discussion, we present here four equations of functional integrations involving only one of the ak and b~
variables:

f [dak][dak] f [dbk)fdbk] f [dc ][dc]( . . )ak(t)e P = f dsTLk A(k, t —s)f [dct]fdc]( )c(s)e

f [dak)[dak] f [dbk)[dbk] f [dc ][dc)( )ak(t)e P =f dsTIk A(k, s —t) f [dc ][dc]( )c (s)e

i L(t)dt iI [cc ]f [dak][dak] f [dbk][dbk] f [dct][dc]( )b (t)e P = f dsTR B(p, t —s) f [dc ][dc]( )c(s)e
P

f [dak][dak] f [dbk][dbk] f [dc ][dc]( )b (t)e P = f dsTRPB(p, s —t)f [dct][dc]( )c (s)e

(2.23)

(2.24)

(2.25)

(2.26)

III. TRANSIENT RESPONSE

In this section we examine the transient response process of a DBRTS when a step bias voltage V(t) =g(t) V is im-
posed [u (t) =0]. We will examine the transient response of the Green's function and then demonstrate how the tunnel-
ing current evolves onto its steady-state limit. The time evolution of the system is mainly determined by the building up
of a nonequilibrium distribution of tunneling electrons in the central quantum well and, therefore, the crucial time scale
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of the problem will be the inverse of the resonance level width.
To derive the kinetic equations for 6 p, we first take derivatives of Eq. (2.8) with respect to t, and t~, respectively,

and utilize the Hamiltonian in Eq. (2.2) and the Heisenberg equation to obtain a set of equations which involve the c
variable as well as the ak and bk variables.

La, G.p(t, , t, )= ,'(~.-+qp)5(t, t, —) LE—(, T c (t )cp(t ))
—

L g TLL ( T&ak (ti )cp( 2) ~ L 2 TRp( Tpbp (ti)cp(t2) ~

k

Lc), 6 p(t, , t2)= ,'(rt +——rip)5(t, t~)+—LE, (T c (t, )cp(t2))

+i g TL*L, ( TL, c (t i )a&p(t2) ) +i g TLLL, ( TL, c (t) )bL,"p(t2 ) ) .
k

(3.1)

(3.2)

Expressing the nonequilibrium ensemble average in the form of Eq. (2.19), the statistical average becomes a path in-
tegration. Then carry out the Gaussian functional integrations over aL, and bk variables by using Eqs. (2.21)—(2.26). As
a result, we have

i cj, 6 p(t„t )= ,'(g +gp)5—(t,—t )+E,G p(t, , t )+ g IT kl jdt'A, (k, t, —t')rt G p(t', t )
k

+ & IT,L,
I' jdt'B, (k, ti t')q, G—p(t', t, ), (3.3)

id, G p(t—„t )= ,'(rt„+q—p)5(t,—t )+e,G p(t„t )+ g IT I
Jdt'6, (t„t')ri A,p(k, t' t )—

k

+ g IT«I' Jdt'G .(t„t')rt+.p(k, t' t, ) . —
k

(3.4)

It should be emphasized here that the Green s functions A &,8 & for the left and right lead electrons are equilibrium
functions and thus are time translationally invariant while Green s functions 6 p are not. The relative time t = (t i

—t2 )

dependence of 6 p(ti, t2) describes the spectrum of the quantum-well electrons, while its T=(t, +t2)/2 dependence
corresponds to the transient evolution of their state. Therefore, in the following discussion we use (t, T) variables for
G(ti, t2) =—6(t, T). Fourier transforming the t variable in 6(t, T) yields 6(co, T).

Making use of the relations between 6„,6„6,and 6 p as described in the preceding section [Eqs. (2.13)—(2.16)],
we could get kinetic equations for 6„,G„and 6 . Then changing the variables (t„t2) to (t, T) and taking the Fourier
transform of the t variable, we arrive at the following results:

(co —c., )6„(,)(co)=1+ g ITLkl A„(,)(k, co)+ g ITRL, I B„(,)(k, co) 6„(,)(cL)),
k k

(3.5)

& I T« I'[ A, (k, ~)—A. (k, ~)]+ y I T&k I'[B,(k, ~)—B,(k, ~)]

xG (co, T) [6„(cLL) G, (co)] ——g ITLL, I
A (k, co)+ g ITLLkl B (k, co)

k k

(3.6)

1
6„(,)(c)L)=

co E +( )Ll'(co)

where c.,' is the renormalized resonant level and

y(~) =yL(~)+yLL(a))

is its width and

(3.7)

(3.8)

&L (~)=—Q I TLk I [ A, (k, co) A(k, co)], —
k

(3.9)

Equation (3.5) yields the information of spectrum and
dissipation:

rLL =1/y(s,'). rL( here is found to be dependent upon the
barrier profile via the relative position of c„pL, and pR
and via the tunneling coefticients in which the applied
bias is included. The above result of the resonance level
deduced from Eq. (3.5) does not have a dependence upon
T since the resonance level only depends upon the barrier
potential profile and the potential profile responds very
fast to an applied bias voltage. This point has also been
emphasized in Sec. II when we introduced the nonequili-
brium density matrix in Eq. (2.4).

From Eq. (3.6), we have the following time-dependent
solution, which characterizes the transient tunneling pro-
cess:

yL((co)= —g I TRk I [B,(k, a)) —B,(k, co)] .
k

(3.10)

The inverse of y is the lifetime of the resonance state

6 (co, T)= —IF(co) [F(co) Fo(co)]e— —

X [6„(co)—6, (co)] (3.11)
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with

fL(~)1 L, (~)+fR(~)3 R(~}
F(ai) =

y(a~)
(3.12)

current fiowing into the quantum well IL = (Ir (t ) ),

IL(t)—: i—e H, g ak(t)ak(t)
k

(3.13)

being a Fermi-Dirac-type distribution for the quantum-
well electrons. In Eq. (3.11), Fo(co) is the initial distribu-
tion. When a dc bias is applied at T=O, the two subsys-
tems of lead electrons very soon reach their own new
equilibrium states separately (with distribution fi and

fz, respectively). The evolution of quantum-well elec-
trons is determined here by the distribution Green s func-
tion G given above. It takes a time ~z = 1/y for the
transient part of Eq. (3.11) to die out after which the
quantum-well electrons arrive at a steady state with none-
quilibrium distribution F(co).

Just after a bias voltage V is applied at t=O, the

is not equal to that fiowing out of the well Iz = (Iz (t ) ),

I~(t)=ie H, g b k(t)b k(t)
k

(3.14)

during the building up of electrons in the well. However,
when a steady transport state is established after a certain
long time, IL and I~ should reach the same limit. Using
Eq. (2.2) to make the commutators and Eqs. (2.19) and
(2.21) to carry out the path integrals, we have the follow-
ing time-dependent current (IR as an example) expressed
in terms of the nonequilibrium Green s functions dis-
cussed above:

I~(t)=e g ~T«~ J dt'[B„(k, t t')G —(r', t) —G (t, t'}B,(k, t' t)—
0

+B (k, t t')G, —(t' —t}—G„(t—t')B (k, t' —t)] . (3.15)

After substitution of the Green's functions into Eq.
(3.15), we arrive at the final result

den 2[fL (ai) fz(ai)]I=e 4$L pg
27r (~—E' )~+y 2

(3.18)

Iz(T)=I 1+ e ~ for T&) ~„rd .
Fo

L R 1 L

(3.16)

Following the same procedure, we could derive an ex-
pression for IL (T),

IL(T)=I 1+ e ~ for T))r&„d .
L R 1 R

Obviously, it takes a time rz = I /y for I~ (t) and Ir (t) to
reach their steady-state limit I if FOWF, i.e., the initial
distribution of electrons in the quantum well is not the
very nonequilibrium steady-state distribution F. If ini-
tially the Fermi level of the two electrodes is below the
resonance level before the bias is applied, then the initial
distribution Fo=0 and IL (t) and Iz(t) will have an
overshoot and undershoot transient behavior, respective-
ly, as shown in Fig. 2.

(3.17)

In Eqs. (3.16) and (3.17), r~„d is the response time of the
electrodes which is assumed to be much shorter than
1/y. I is steady state tunneling current

2.00
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I
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IV. FREQUENCY RESPONSE

In the presence of a time-dependent field u (t), the elec-
tric currents Aowing into the quantum well and Rowing
out of the well IL(t) and Iii(t) are not in balance. The
terminal current is given by I=(IL+I~ )/2, in accor-
dance with the Ramo-Shockley theorem

O

I(t) = — g [TLkc (t)ak(t) —Tz&ak(t)c(t)]
k

+ x[T~~b~(t)c(t) —Tg~c (t)b~(r)]), (4.1)

0.50

0.00
0.0 2.0 4.0 6.0 8.0

where ( . ) is defined as in Eq. (2.19). In order to cal-
culate the ac current i(t) induced by the small signal
u (t), we expand the functional integral in Eq. (4.1) as
defined by Eq. (2.19) to the linear order in H' [thus linear
in u (t)]. Then it is straightforward to obtain the follow-
ing linear-response result for i (t):

FICx. 2. Transient behavior of tunneling current IL(t) and
I~(t). IL and IR are normalized by I. yL =y~ after the bias is
switched on. Initially before the bias is applied the Fermi level
of the electrodes is below the resonance level so that Fo =0.

el(t)= f dt'II„(t —t')u(t')
4m

(4.2)

where H„ is a retarded correlation function and its
closed-time-path form is
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b) ~ ) 2~( X )+Lk~ ) )+k))) Tlk k)
k

+ g[T,„b,"(t)c(t) T—,",c "(t)b„(t)] 'rzc )t')c(t') + X b, (t')b )t')
l

.

p P

(4.3)

In Eq. (4.3) ( ) represents the path integral in Eq. (2.19) with FI =0. Carrying out the path integrations in Eq.
(4 3) will enable us to find the desired admittance Y'(Il ): i(6)= Y(Q)u (II), as a function of frequency 6, i e.,

Y(A)= II„(Q, ) .
4~

Since

II,(t t')= ,'g—rjpII —p(t t')—

(4.4)

(4.5)

is a retarded function, its Fourier transform II„(Q) and thus Y(&) will be analytical in the upper half plane of the corn
plex variable n. Consequently, the conductance a(n) =Re Y(n) and the imaginary admittance Im Y(n) can be related
through the Kronig-Kramers relations.

In order to calculate the correlation function II in Eq. (4.3), we utilize Eq (2.2. 1) to eliminate the ak and b variables
and then carry out the path integrations of the c variable. As the result, we have

II p(t —t )= 2rtorI fd» .(t —s)G.p(s t')Gp (t—' t) Gp(—t t—')G—p, (t' s)A,—(s —t)

+G p(t t')Gp, (t' ——s)B (s t) B—(t —s)G—p(s t')Bp (t—' t)—
+G, (t —s) QB,p(p, s —t')~ T~ ~ Bp (p, t' t)—
—gB p(p, t —t')~)T~, ~)2Bp.(p, t' s)G, (s t) '——

+2~q„g.g, f ds, f ds, f ds,

X 3 „(t—s, )G„(s,—s~) QB„p(p, s2 —t')~TR~~ Bp (p, t' —s3)G (s, t)—
—G „(t—s, ) +B„p(p,s, t')~Tz~~ Bp, (p, t—' s2)G (sz —s3—)A (s3 t)—
+G „(t—s, ) QB„p(p,s, t')tT~

~ Bp —(p, t' —s~)G (s2 —s3)B (s3 t)—
In Eq. (4.6),

B „(t s&)G„(s& s2) QB,p(p s2 t')ltTgzl Bpz(p~t' s3)G«(s3 t)

(4.6)

(4.7)& p(t):—Q ITlgI'~ p(k, t), B p(t): Q ITg~I'B p(p—, t) .
k

Next we use the relations in Eqs. (2.13)—(2.16) to express the retarded correlation II„ in terms of the retarded, ad-
vanced, and distribution Green s functions. In such a substitution procedure, the following four relations are repeated-
ly utilized. The first one is

,'g rtpC p(t t')Dp —(t' t)=—C (t t')D—.(t' —t)+C„(t t')D'—(t' t), — —

where C and D could be combinations of Green's functions 2, B, and G. For the combination defined as

C p(t —t') = f ds, f ds2 J ds„ C"„'(t—s, )q„C„',I(s, —s~)q, rt C'"p'(s„ —t'),
we have the three more identities:

C (t t')= f ds, fds„IC"—' (t —s, )C,' '(s, —s2) . CI"'(s„—t')

+C„"'(t—., )C""(s,—s, ) . C."(s„—t )

+ +C„"'(t—s, )C„"'(s,—s ) C'"' (s„—t') j,

(4.8)

(4.9)
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C, (t —t')= f ds, f ds„[C„'"(t—s, )C„' '(s, —s2) . C„'"'(s„t'—)],
C, (t' t—)= f ds, . . . f ds„[C,"'(t' —s, )C,' '(s, —s2) . . C,'"'(s„t)]—.

(4.10)

(4. 11)

To prove these four identities [Eqs. (4.8)—(4.11)] is quite straightforward by using the basic relations in Eqs.
(2.13)—(2.16). With the help of the above-mentioned relations, it is easy to show that each term of II„(t—t ) [see Eqs.
(4.5) and (4.6)] has the common factor 6(t —t') coming either from 6„(t—t') or from G, (t' —t), which explicitly
confirms that II„(t—t') is retarded and thus II„(Q) is analytical in the upper half plane of complex Q.

The Fourier transform II„(Q) is found to be

II„(Q)=ccf dcoI2i[y (+)f (+)—y (+)f (+)]6,(+)6,

2i(yL f—L yg f—g )G„(+)6„+[&„(+)
—&.—8„(+)+8, ][6'(+ )G, +6„(+)6 ']]

+ f dcoIG (+)I,(co, Q) —6 I „(co,Q) —2i[ y~(+)f~( +) y~f~] ——[6„(+)—6 ]

1—2i[ y, (+)f, ( +) y, f,—]G„(+)G.—[a„(+) —W. —8„(+)+8.]
+2i[yt (+ )fL(+ ) yz(+ )fg(+ )]6.(+ )6.1,(co, Q) —2i(yLfL y~ f~ )—6„(+)G„r„(co,Q)

+I, (co, Q)6 (+)G, [A„(+) —A, —8„(+)+8, ]

+I „(co,Q)6„(+)6 [ A, , (+ ) —2, 8„(+)+—8, ]], (4.12)

I „(co,Q)—:+8„(p,co+Q)IT~ I'8, (p, co),

I, ( co, Q ) = g 8, (p, co+ Q ) ~ T~ i 8, (p, co ) .
P

In deriving Eq. (4.12), we have also used

A (co) =2)fL(co)yL (co), 8 (co) =2ifg (co)y~(co),

QB (p, co+Q)~T~ i 8, (p, co)

(4.13)

(4.14)

(4.15)

~here yL, I~~(+) and yt, ~,, etc. , stand for, respectively,
yL, ~~~(co+Q) and yL, ~,(co), etc. , I „and I, are intro-
duced as

0(Q)
l~(O) f

(16yLyR+Q )y, Q
tan

4y, y R (Q'+4y')Q y

4y y (Q+4y ) y
(4.18)

yL(co) and yR(co) are assumed to be constants yL and
y~, respectively. Further carrying out the co integrations
in Eq. (4.12), the conductance and the imaginary part of
the admittance can be shown to have the following com-
pact forms:

f~ ( co+ Q )y ~
—( co+ Q ),2l

(4.16) 1.60

QB„(p,co+Q)~Tz~~ 8 (p, co) 1..20

f~ ( co+)Q y(
—co+ )Q.

2l
(4.17) 0.80

Equation (4.12) is our central result for the frequency
response characteristics. Using the non equilibrium
steady-state Green's functions derived in Eqs. (3.7) and
(3.11) and Eqs. (2.17) and (2.18) to carry out the frequen-
cy integrations, we can obtain the Anal expressions of
conductance cr(Q) and imaginary admittance Im Y(Q)
for various cases.

When the temperature I/P=O, the dc bias V=O (point
a in Fig. 1) and for a system whose resonance level is
equal to the Fermi level of the two electrodes, i e.,
E, =pz =pz, the distribution of tunneling electrons
F(co)=fr (co)=fz (co)= 0(E,, —co). Approximately,

0.40

0.00

r
i'Im Y(O)//cr(0)/

-0.40
0.0 2.0 4.0 8.0

FIG. 3. Frequency-dependent conductance and imaginary
part of admittance of the DBRTS with zero bias. The system is
asymmetrical so that yL =0.9y, yz =0.1y.
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Im1"(0) (16yiy~+ &')y' n'
1n 1+

8yLy~(A +4y )A y
2 2

'Yz 'Y

tan
2yiy~«'+4y')

(4.19)

0.00

-0.20

-0.40

The numerical results for Eqs. (4.18) and (4.19) are shown
in Fig. 3. In response to an applied ac voltage, the elec-
trons tunnel into the center well from one electrode and
tunnel out of it into the other electrode. This response
decreases monotonically as shown in Fig. 3 with the in-
creasing frequency when 0 & Ao. The characteristic fre-
quency for this behavior is given by the resonance level
broadening Ao=2y. When 0))Ao, tunneling electrons
will not be able to follow the applied field and the tunnel-
ing current becomes vanishing. For an asymmetrical sys-
tem such as that shown in Fig. 3 (YL =9y~ ), the low-

frequency conductance shows a capacitance behavior
since the terminal current is mainly controlled by one
(left) barrier, which is in good agreement with a Kubo
formula study (third reference of Ref. 14).

Also at zero temperature, when the DBRTS is biased
at V„(point n in Fig. 1) so that the resonance level is

equal to the conduction-band bottom, i.e., c =Fp —o=0,
and yL(co) and yz(co) can be approximated as yLO(co)
and yR, respectively. Since pL »0 and pR &&0, the dis-

tribution functions fL ——1, fz-0, and F(co)=yL(co)/

-0.60

-0.80

-1.00
0.0 2.0 4.0 6.0 8.0

y(co). With these approximations, the negative conduc-
tance cr(A) and imaginary part of the admittance
Im F(Q) are derived from Eq. (4.12) to have the following
expressions:

FIG. 4. Frequency-dependent conductance and imaginary
part of admittance of the DBRTS biased at NDR (V= V, so
that c, =a& O=0). The system is asymmetrical and it becomes
symmetrical when biased: yL =y& =0.5y.

ye+4 y+YR y i 0, g'y 0,—tan —+ ln 1+
4y 0 y sy' "y'

y+k y+yz y &
II gy 0—tan + ln 1+

4yR yR 8yR
(4.20)

Im Y(Q) y~+4 y+y~ y II + gyln 1+ + tan
la(0) I 4YR 2& y 4yg

R 4YR
(4.21)

2y~ —yL(y+y~ )

0 +(y+y~)
(4.22)

and is consistent with the main feature of experiments. '
The imaginary part of the admittance is shown as the
dashed curve in Fig. 4, which matches the experimental
results as far as its magnitude is concerned. '

For an asymmetrical DBRTS, if the right barrier is
higher and/or thicker than the left one, yL »yR at
V=O. However, it may become symmetrical yL =yR
when a proper dc bias is applied. In Fig. 4 we plot the
conductance and imaginary part of the admittance as
functions of frequency 0 for such an asymmetrical struc-
ture. The differential conductance (negative) o(Q) rolls
oA with a characteristic frequency given by the width of
the resonance level Ao=y+yR and remains significantly
negative until Q equals approximately several Ao. This
behavior agrees with a previous numerical investigation'

V. CONCLUDING REMARKS

To conclude, we have presented a nonequilibrium-
Green's-function treatment for the time-dependent prop-
erties of double-barrier resonant-tunneling systems. With
the help of the Feynman path-integral theory, the tunnel-
ing couplings are treated exactly (nonperturbatively),
which is essential to the resonant phenomena. The other
essential of the problem, i.e., the nonequilibrium statis-
tics, has also been well accounted for in this approach.
The distribution of tunneling electrons in the central
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quantum well, driven far from equilibrium by the bias, is
determined by the couplings to the two reservoirs (elec-
trodes) with different chemical potentials. Especially, in
response to an oscillating voltage, the tunneling electrons
oscillate into and out of the well and so does their distri-
bution. The duration time for the tunneling electrons to
follow the varying applied voltage yields a characteristic
frequency given by the resonance level broadening at
which the differential conductance begins to roll ofF. Fi-
nally the present time-dependent quantum statistical ap-
proach can be generalized to treat three-dimensional sys-

tems including both the elastic- and inelastic-scattering
efFects.
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