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The (111) twin-boundary and stacking-fault energies of aluminum and palladium were investigat-
ed with use of the all-electron total-energy linear muffin-tin orbitals method based on the local-
density approximation. Fault energies are determined by comparing the total energies obtained for
the same-size supercells for each of two cases (with and without fault). The calculated values of the
twin, intrinsic, and extrinsic fault energies, 130+15 (97+5), 270+50, and ~ 330 ergs/cm? for alumi-
num (palladium) are generally 30% larger than experiment. This discrepancy between the calculat-
ed and observed values may be attributed to the neglect of relaxation, the effect of the (finite) size of
the supercell (at most 28 atoms/cell), and/or the use of the local-density approximation. Our calcu-
lated results appear to verify the correctness of the empirical relationship 2E,, ~Egg, where E,
and Egy are the twin and stacking-fault energies, respectively.

I. INTRODUCTION

Twin and stacking-fault energies (in the broad sense,
interfacial energies), have intrigued many metallurgists
and solid-state physicists for years because of their im-
portance for determining many physical properties.
Thus, for example, it is well known that the mechanical
properties are closely related to the existence of twin or
stacking faults in alloys.! Despite the fact that a large
amount of experimental data about twin and stacking-
fault energies have been accumulated for pure metals,?
there are still large uncertainties in the measured values
of such interfacial energies. For example, the values of
the twin energy for Cu range' from 20-160 ergs/cm?.
Direct measurements of these interfacial energies require
very delicate techniques (such as the weak-beam electron
microscopy method) to measure an extended single dislo-
cation. Moreover, the measured value of such an interfa-
cial energy depends sensitively upon many factors, such
as the existence of internal stresses, impurities in the ma-
trix (which are experimentally very difficult to control),
temperature, etc. Nevertheless, experimental data show
that the relation 2E,, ~ Egr generally holds’ to within an
accuracy of 25%, where E,, and Egg are the twin and
stacking-fault energies, respectively. Similarly, the
theoretical values of twin and stacking-fault energies ob-
tained by the pseudopotential method>* are quite
dispersed; in addition, the calculated values are, in gen-
eral, lower than experiment. Thus, it appears worthwhile
to study twin and stacking-fault energies and to deter-
mine their values from first-principles all-electron calcu-
lations. Very recently, a first-principles study of the in-
trinsic stacking fault in face-centered cubic metals was re-
ported by means of the layer Korringa-Kohn-Rostoker
(LKKR) method.’ These authors studied the electronic
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structures of (111) twin stacking faults in Cu, Ir, and Al,
and succeeded in reproducing the experimental trend of
the twin-fault energy for Cu, Ir, and Al

In the present work,® we employed a total-energy ap-
proach based on Hohenberg-Kohn-Sham local-density-
functional theory’ to study the electronic structure and
energies of twin and stacking faults, namely the all-
electron self-consistent linear muffin-tin orbitals (LMTO)
method in the atomic-sphere approximation (ASA).8
Overall, the calculated fault energies for pure aluminum
and palladium yield the right order of magnitude, but are
30% larger than experiment. This appears to be the
correct trend for the model employed since the relaxation
around the fault region may contribute to lower the fault
energy, especially in the stacking-fault case. The calcu-
lated twin energy and the overall density of states for Al
are in fairly good agreement with the results of Ref. 6.
Moreover, the calculated results appear to show the
correctness of the experimental finding' that 2E,, ~ E .

II. METHODOLOGY

It is well known that in the fcc crystal the fault planes,
which are also the glide plans, are the close-packed (111)
planes. The close-packed fcc structure can be generated
by stacking these close-packed layers on top of one
another along the [111] direction in the (normal) se-
quence - - ABCABC --- [Fig. 1(a)]. Twins and stack-
ing faults are considered to be the two kinds of simplest
stacking disorder: the twin orientation means that atom-
ic positions above and below the fault plane are related to
each other via a 180° rotation or a mirror plane reflection,
i, - ABCACBA --- [Fig. 1(b)]. The stacking faults
can be further classified as intrinsic and extrinsic—two
categories suggested by Frank.! The intrinsic (extrinsic)
stacking fault may be created in a fcc crystal by removing
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FIG. 1. Vertical sideview of a unit cell for (a) fcc and (b)
twin-boundary configurations stacking along the [111] direction.
Open, crossed, and solid circles denote A4, B, and C layers, re-
spectively.

ing (inserting) part of a close-packed plane, as shown in
Figs. 2(a) and 2(b). Alternatively, the stacking fault can
be formed by a shear on the (111) planes along the [211]
direction with a vector 1[211], and displacements 4 — B,
B —C, and C— A4 relative to positions on the original
plane. The intrinsic and extrinsic stacking faults can be
represented in the notation -+ ABCBCABC --- and
-+ ABCBABC - -+, respectively. A distinguishing
common feature for both intrinsic and extrinsic stacking
faults is that there is a local hcp environment around the
fault plane, and the relaxations may occur around the
fault region [for instance, removal (or insertion) of part of
the close-packed plane (cf. Fig. 2)].

In our calculations, we preserved the close packing in
the fault crystal, and only considered the stacking order
difference (i.e., stacking disorder) along the [111] direc-
tion. For simplicity, the model of the stacking fault is
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FIG. 2. (a) An intrinsic stacking fault formed in a fcc crystal
by removing part of a close-packed plane. (b) The addition of
an extra close-packed plane to a fcc crystal produces an extrin-
sic stacking fault (both after Ref. 15).
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formed by removing (inserting) one whole close-packed
(111) layer [cf. Figs. 3(a) and 3(b)]. Figures 1(a) and 1(b),
and Figs. 3(a) and 3(b) represent a side view of the super-
cell of the fcc, twin (tw), and intrinsic and extrinsic stack-
ing faults (ISF and ESF), respectively; Fig. 4 shows the
top view (or bottom) of the (rectangular) supercell. Note
that we prefer to choose the rectangular bottom instead
of the primary (rhombus) one because we found that, us-
ing the linear tetrahedron scheme, better accuracy of the
total number of electrons is obtained. Each supercell
contains 12, 20, and 28 atoms for twin, ISF, and ESF, re-
spectively.

The fault energy is simply defined as the total-energy
difference between fault and perfect crystal. Note that
the fault energy, which has a value of order 1073 to 1077
of the total energy, is obtained by subtracting two total
energies (with and without fault); therefore, we must be
cautious and obtain highly precise total energies. Now, it
is well known that the total energy depends upon the
number of k points sampled within an irreducible wedge
of the Brillouin zone (IBZ), and the shape and size of the
IBZ. In principle, for obtaining reliable values of such
interfacial energies an accurate value of the total energy
extrapolated to an infinite number of k points in the IBZ
is required.® However, owing to the large supercell em-
ployed, we are capable of carrying out the calculations by
sampling only a few hundred k points within the IBZ.
Therefore, we studied not only the dependence of the to-
tal energy on the number of k points, but also compared
the total energies of perfect and fault systems as obtained
from two unit cells having exactly the same size and
shape and use the same (finite) number of k points to
eliminate systematic errors.

Relaxation and entropy contributions are not taken
into account in the calculations, and we assume that
stacking faults in neighboring cells do not interact with
each other. The core states are treated fully relativistical-
ly and the valence states semirelativistically (i.e., omitting
the spin-orbital interaction). Self-consistency was as-
sumed when the deviation between input and output po-
tential was less than 1 mRy. The Hedin-Lundqvist for-
mula was adopted for the exchange and correlation po-
tential. ° The tetrahedron integration scheme!! is em-
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FIG. 3. Vertical side view of a unit cell for (a) the intrinsic
and (b) extrinsic stacking fault along the [111] direction; a
double-sized cell is adopted in the calculation for comparison
with the same size hcp-structured supercell. Open, crossed, and
solid circles denote A, B, and C layers, respectively.
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FIG. 4. Bottom of rectangular unit cell in the closed-packed
(111) plane.

ployed to obtain the density of states. The charge distri-
butions are constructed using the ‘“‘pseudo-muffin-tin-
orbital” (pseudo-MTO) procedure'? in which the spheri-
cally symmetric potential and charge obtained from the
previous self-consistent results were employed to con-
struct pseudo-MTO’s and then the pseudo-MTO charge
density in the whole space (including the interstitial re-
gion) is plotted as contour curves.

III. RESULTS

It is known that, in the linear tetrahedron k-space in-
tegration scheme, the total energy varies with the number
of k points as (Ref. 9) n, 2/*, where n, is the number of k
points in the irreducible wedge of the BZ. Figure 5 ex-
hibits the variation of the total energy of Al versus n; /3
in the fcc and twin supercells. It is expected that the
larger the number of k points adopted in the calculation
the lower the value of the total energy obtained. Howev-
er, up to n, =362, the total energy still fluctuates with
the number of k points (n, 2/®) within 2.5 mRy/atom.
Therefore, it appears at a first glance that we cannot ob-
tain the fault energy by simply subtracting the total ener-
gy (per atom) of the fault system from that of the perfect
fcc cell Al. However, the energy difference between the
twin and the fcc-structured supercells remains nearly
constant (within 0.3 mRy/atom) for n; >90. Therefore,
the twin-fault energy can be readily obtained from the en-
ergy difference of these two supercells using the same
finite number of k points. Thus, as stated above, the pur-
pose of choosing the same-size supercell for both twin
and fcc structures in order to eliminate any systematic er-
ror seems to be accomplished.

Likewise, the value of the ISF total energy fluctuates
with the number of k points, as shown in Fig. 6. There-
fore, based on the same strategy, we evaluate the ISF en-
ergy by subtracting the two total energies (with and
without fault) obtained from the two same-size supercells.
However, in the SF case we chose the same-size hcp-
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FIG. 5. Dependence of the total energy (from which —483
Ry/atom has been subtracted) (Ry/atom) vs n ~2/3 for Al, where
n is the number of k points in the linear tetrahedron scheme.
Solid circle and rhombus denote fcc and twin boundary super-
cell configurations, respectively.

structured supercell instead of the fcc-structured super-
cell to produce a cancellation of systematic errors, be-
cause it is computationally easier to.choose a relatively
small-size hcp-structured than a fcc-structured supercell.
But in order to obtain the SF energy we need to compare
the total energy of the fault system with that of the fcc-
structured supercell. Hence, we make use of the parallel
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FIG. 6. Dependence of the total energy (from which —483
Ry/atom has been subtracted) (Ry/atom) vs n 2’3 for Al in in-
trinsic stacking-fault configuration (see Fig. 5).
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FIG. 7. Dependence of the total energy (from which —483
Ry/atom has been subtracted) (Ry/atom) vs n ~2/3 for Al. Solid
circle and rhombus denote fcc and hep primary cells, respective-

ly.

dependence of the total energy versus n 23 (up to
m; = 1440) between primary cell fcc- and hcp-structured
Al (cf. Fig. 7). After extrapolating to an infinite number
of k points, the total energy (per atom) of hcp Al is about
5.8 mRy higher than that of fcc Al (Fig. 7). Therefore,
the SF energy Egp=(Egg—Ey,)—(ep, —eg )N, where
Egr and E,, denote the calculated total energy of SF
and hcp supercell, respectively, and ey, and ey denote
the total energy per atom of hcp and fcc primary cells, re-
spectively. N denotes the number of atoms contained in
the supercell. However, the error bar in the stacking-
fault energy increases due to the second term in the above
formula, which turns out to be N times the error of
(ehcp T €fec )

The calculated twin and SF energies for Al and Pd are
listed in Table I.1*7!® The calculated intrinsic fault ener-
gy (280+40 ergs/cm?) for Al has approximately the same
value as the extrinsic one (~260 ergs/cm?). It is expect-

2021

ed from their structural arrangement, i.e., in ISF (or
ESF), a layer is removed (or added) into the otherwise
normal sequence along the [111] direction. We still do
not understand the experimental trend, i.e., the extrinsic
fault energy for Al is approximately 25% higher than
that of intrinsic fault (cf. Table I). As seen, our calculat-
ed results appear to provide the support for the experi-
mental finding that 2E,, ~Egr (Ref. 1) for both Al and
Pd. Moreover, the calculated twin energy (130£15
ergs/cm?) is in fairly good agreement with the result of
Ref. 5 (118 ergs/cm?) obtained from the LKKR method;
however, it is, in general, 30% larger than that observed
value (extrapolated to O K) for Al. A possible reason for
the discrepancy between the calculated and experimental
values might be attributed to (i) neglect of the relaxation
around the fault region, (ii) effect of the (finite) size of the
supercell (or of neglecting the interactions between the
two faults), and/or (iii) use of the local-density approxi-
mation. (We should note that we have found a similar
overestimated value for the calculated antiphase bound-
ary energy for NiAL!7)

In order to understand the stacking disorder from the
microscopic viewpoint, we inspect the electronic struc-
tures of fcc Al and Pd with and without faults. Figure 8
plots the density of states (DOS) for various stacking
configurations (such as twin, ISF, and ESF, etc.) of Al
and, for comparison, the DOS of pure fcc- and hep-
structured Al. Note that the general features (bandwidth
and peak positions) of the DOS of Al in the twin
configuration resembles that of the fcc structure; in par-
ticular the Fermi level lies on a dip of the DOS and only
one prominent change (a peak) in the DOS twin can be
seen in the energy region above 1 eV below Ep. Further,
the density of states at Ep (=0.3 states per eV atom) for
the twin is not visibly modified compared with the fcc
configuration. On the other hand, the DOS at E in-
creases to ~0.4 states per eV atom for Al in the ISF or
EFS configurations, because then the Fermi levels lie on a
small but prominent peak of the DOS (instead of a dip),
which might imply an instability. In fact, it merely
reflects a local hep structure contribution to the DOS [ex-
isting in the SF, cf. Fig. 8(e)]. Note that the overall
features of the DOS of Al in the twin configuration (espe-
cially the peak positions near E) agree qualitatively with
those of Ref. 5 using the LKKR method except for the

TABLE I. Twin and stacking-fault energies for Al and Pd (in ergs/cm?).

Al Pd
Twin ISF ESF Twin ISF

This work 13015 280+40 ~260 97+5

Ref. 5 118
Calc. Ref. 13 57 145 130

Ref. 4 61 160 133

Ref. 14 55 142

Ref. 1 75 166 180
Expt. Ref. 15 120 200 180

Ref. 16 75-100 135 180
0 K (extrapolated) Ref. 2 100-125 160 ‘ 200
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FIG. 8. Total density of states for Al: (a) twin boundary, (b) intrinsic stacking fault, (c) extrinsic stacking fault, (d) fcc supercell,

and (e) hep primary cell.

TABLE II. Total energy and its differences between the twin (or ISF) and fcc-structured supercell

for Al, where AE,, =E., — Efc o

percell and EISF :EISF _Efcc supercell (in Ry/atom)-

fce
No. of k Twin ISF supercell AE,, AEsp
90 —483.8270 —483.8262 —483.8286 0.0016 0.0024
300 —483.8280 —483.8270 —483.8296 0.0012 0.0023
362 —483.8273 —483.8261 —483.8288 0.0015 0.0027
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TABLE III. The number of kinks within a unit cell and the
kink energy obtained from the twin, ISF, ESF, and hcp super-
cell (energy in ergs/cm?).

Twin ISF ESF

hep supercell

Number of kinks 1 2 2 5
Single kink energy 130 140 ~ 130 ~200

location of Eg. Similarly, in the Pd case the general
features (bandwidth and peak positions) of DOS for twin,
cf. Fig. 9(a), is very similar to that of the fcc
configuration, Fig. 9(b), except for several minor features
appearing around the energy region 2 to 4 eV below Ej.
The DOS at E is essentially not greatly altered for twin
(32.7 states/eV formula-unit) as compared with the fcc-
supercell (31.9 states/eV formula-unit).

As expected, the stacking disorder leads to a charge
redistribution around the fault region. Figures 10 and 11
exhibit the valence charge-density contour plots for Al
and Pd [in units of 1073 electrons per (a.u.)’] for twin
and SF; for comparison, charge-density contour plots for
the fcc and hep structures are also included (Figs. 10 and
11). It is indeed seen that there is a marked charge accu-
mulation (shaded region in Figs. 10 and 11) around the
fault plane (or mirror plane) in the twin. (In contrast, no
visible change was seen in the DOS at Ej for the twin as
compared with the fcc supercell.) Moreover, note that
the charge distortion is seen to be more profound in the
SF case [Figs. 10(b) and 10(c)] than in the twin case [Fig.
10(a)] for Al, and more so in Al [Fig. 10(a)] than in Pd
[Fig. 11(a)] for the twin case. This may explain, qualita-
tively, why the twin energy is smaller than that of the SF
energy for Al, and why the twin energy of Pd is smaller

(d) (e)

FIG. 10. Valence charge-density contours for Al: (a) twin boundary, (b) intrinsic stacking fault, (c) extrinsic stacking fault, (d) fcc
supercell, and (e) hep primary cell [linear scale, in units of 107 number of electrons/(a.u.)*], where shaded regions denote high

charge density [35X 107 electrons/(a.u.)*].
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(a)

(b)

FIG. 11. Valence charge-density contours for Pd: (a) twin
boundary and (b) fcc cell [linear scale, in units of 107> number
of electrons/(a.u.)’], where shaded areas denote high charge
density.

than that of Al (cf. Table I).

One further remark is appropriate here: any fault
(such as twin or SF, etc.) existing in an otherwise perfect
fcc crystal structure can be viewed simply as introducing
a different number of kinks along the [111] stacking
direction. Furthermore, if we assume that the interaction
between the two kinks is negligible, then the distinguish-
ing feature between the twin and the SF is merely due to
the difference in the number of kinks within a unit super-
cell. Table II lists the total energy (per atom) and its
differences between the twin (or ISF) and the fcc-
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structured supercell for Al. Note that the energy
difference between the ISF and the fcc-structured cell is
nearly twice as large as that between the twin and the
fce-structured supercell. This can be understood in terms
of the difference in the number of kinks, because there are
one and two kinks within each cell for the twin and ISF,
respectively. Now, a single kink energy can be defined as
the fault energy divided by the number of kinks within a
unit supercell. Table III lists single kink energies ob-
tained from the twin, ISF, ESF, and hcp supercells. It is
interesting to note that the energy for creating a single
kink is roughly 130-200 ergs/cm? energy in pure fcc Al;
obviously, since our calculated results may be overes-
timated by 30%, the kink energy may be in the range
100-150 ergs/cm?, which to a certain extent verifies
theoretically the observed range of coherent interfacial
energies (up to about 200 ergs/cm?). !®

In fact, we have studied the fcc/hcp interfacial energy
of pure aluminum using the simple model as ABCAB A
stacking along [111] direction, which is indeed equivalent
to the ISF in removing a C layer from the normal se-
quence. The fcc/hcp interfacial energy for Al turns out
to be ~140 ergs/cm?/interface. Note that the value of
the kink energy also coincides with the energy difference
between the hcp and fcc structures; as stated above,
€nep ~€1ec = 5.8 mRy/atom (i.e., ~100 ergs/cm?) for Al.
In a sense, creating a kink in an otherwise perfect fcc
crystal is nothing more than introducing a local hcp
structure.
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