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EfFicient pseudopotentials for plane-wave calculations
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We present a simple procedure to generate first-principles norm-conserving pseudopotentials,
which are designed to be smooth and therefore save computational resources when used with a
plane-wave basis. We found that these pseudopotentials are extremely efficient for the cases where
the plane-wave expansion has a slow convergence, in particular, for systems containing first-row ele-
ments, transition metals, and rare-earth elements. The wide applicability of the pseudopotentials
are exemplified with plane-wave calculations for copper, zinc blende, diamond, o.-quartz, rutile, and
cerium.

I. INTRODUCTION

Electronic-structure calculations performed within the
framework of the local-density approximation (LDA)
(Ref. 1) have demonstrated their ability to accurately pre-
dict different physical properties. Even with major ad-
vances in computer technology, the magnitude of the
computational effort needed to calculate the physical
properties of complex crystals is still enormous, and
therefore a large interest exists for improving the compu-
tational methods for the electronic structure of solids.

Replacing the effect that the chemically inert core
states exert on the chemically active valence states by an
effective pseudopotential, dates back to the early work of
Fermi and has seen a sizeable amount of interest and
further developments since the seminal work of Phillips
and Kleinman. The physically reasoning behind the
pseudopotential approximation is simple: since the core-
electron wave functions of an atom remain essentially un-
changed when placed into different chemical environ-
ments and since that the core wave functions' only major
contribution to chemical bonding is to enforce the
valence wave functions orthogonality to the core states,
the true atomic potential can justifiably be replaced by a
pseudopotential that effectively reproduces the effects of
the core electrons. With only this physical constraint, an
infinite number of pseudopotentials can be generated and
it has been the objective of much active work to try to
determine what auxiliary conditions are needed to pro-
duce a pseudopotential that both adequately reproduces
the all-electron behavior outside the core region when
placed in different chemical environments, and is still
computational efTicient.

Mathematically and numerically, a plane-wave-basis
formalism is one of the simplest and most natural for-
malism to implement for crystals. However, expanding
the core wave functions or the core oscillatory region of
the valence wave functions into plane waves is extremely
inefficient. Therefore, plane-wave basis sets are practical-
ly always used in conjunction with the pseudopotential
approximation. This combination of pseudo potentials
and plane waves has become one of the most popular
methods for electronic structure calculations. Tradition-

ally the pseudopotential plane-wave method has been
considered impractical for systems containing transition
and rare-earth metals, and inefficient for the most elec-
tronegative first-row elements. To handle crystal systems
containing these elements, other basis sets such as Gauss-
ians, linearized-augmented plane waves (LAPW), linear
muffin-tin orbitals (LMTO), and mixed basis sets are
commonly used. With the development of diagonaliza-
tion methods that can handle a basis set of several
thousand plane waves, there is no compelling reason
why these former impossibilities cannot be studied with
the pseudopotential plane-wave method. The examples
discussed in Sec. V of this paper will amply demonstrate
that the pseudopotential plane-wave method can be
efFiciently used in LDA calculations for any type of ma-
terial, including transition metals and rare earths.

In this paper we present a pseudopotential-generation
method which produces computationally efFicient pseudo-
potentials for use with a plane-wave basis set, particularly
for first-row, transition metal and rare-earth elements. In
Sec. II we present a brief review of the pseudopotential
method, followed by the problem of generating smooth
pseudopotentials in Sec. III. A simple recipe for soft
pseudopotentials is presented in Sec. IV, which is sub-
stantial improved over an earlier version previously dis-
cussed in a short communication. Finally, in Sec. V the
properties of these pseudopotentials are exemplified with
calculations for copper, zinc blende, diamond, o.-quartz,
rutile, and cerium. Atomic units are used throughout
this paper unless otherwise indicated.

II. GENERAL PSEUDOPOTENTIAL THEORY

The majority of the pseudopotentials currently used in
electronic-structure calculations are generated from all-
electron atomic calculations. Within the density-
functional theory this is done by assuming a spherical
screening approximation and self-consistently solving the
radial Kohn-Sham equation'
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where V[p; r] is the self-consistent one-electron potential

V[p;r]= + V [p;r]+ V„, (p(r)), (2)

f ' IRiPP(r)l'r'«= f ' IRi~'(r)l'r'« .
0 0

(4)

Last, almost redundantly, the valence all-electron and
pseudopotential eigenvalues must be equal,

PP AE
Et

If a pseudopotential meets the conditions outlined above,
it is commonly referred to as a "norm-conserving pseudo-
potential. " Constructing a pseudo-wave-function that
fulfills these requirements can be accomplished using
many different schemes. ' The nonuniqueness of these
pseudopotentials is a clear indication of the available
variational freedom that we will exploit to produce a
smooth pseudopotential. Once the pseudo-wave-function
is obtained, the screened (scr) pseudopotential is then
recovered by inversion of the radial Schrodinger equation
[Eq. (1)],

V„, ,(r)=E, , +—„,[rR, (r)] .pp I (I +1) 1 d pp

2r 2rR& (r) dr
(6)

p(r) is the sum of the electron densities for the occupied
wave functions R„l(r), VH[p;r] is the Hartree potential,
and V„, (p(r)) is the local-density approximation for
the exchange-correlation potential. Most pseudopoten-
tials are then constructed such that they satisfy four gen-
eral conditions. ' The first is that the valence (the
principal quantum number n is further omitted for sim-
plicity) pseudo-wave-functions generated from the pseu-
dopotential should contain no nodes. This stems from
the fact that we would like to construct smooth pseudo-
wave-functions and therefore the wiggles associated with
the nodes are undesirable. Second, the normalized atom-
ic radial pseudo-wave-function (PP) with angular momen-
turn l is equal to the normalized radial all-electron wave
function (AE) beyond a chosen cutoff' radius r,&,

R& (r) =R& (r) for r & r,&,

or converges rapidly to that value. ' " ' Third, the
charge enclosed within r, I for the two wave functions
must be equal,

A major consequence of the pseudopotential genera-
tion procedure just outlined is that each angular-
momentum component of the wave function will see a
different potential. The ionic pseudopotential operator is
then,

V ion(r)= Vion, local(r)+ 2 Vnolnocla, (lr)Pl
I

where V;,„l„,l (r) is the local potential and,

PP PP
Vnonlocal, I( ) Vion, I( ) Vion, local ( (9)

is the nonlocal (or more precisely semilocal) potential for
the angular-momentum component l, and P& projects out
the lth angular-momentum component from the wave
function. The local potential can, in principle, be arbi-
trarily chosen, but since the summation in Eq. (8) will
need to be truncated at some value of l, the local poten-
tial should be chosen such that it adequately reproduces
the atomic scattering for all the higher angular-
momentum channels.

The semilocal potential [Eq. (9)] can be transformed
into a nonlocal form by using a procedure suggested by
Kleinman and Bylander (KB),'

According to Eq. (6), for a nodeless pseudo-wave-
function the pseudopotential does not have any singulari-
ties, except possibly at the origin. From Eq. (6) we can
also see two more important details, if we wish the pseu-
dopotential to be continuous, then the pseudo-wave-
function must have continuous derivatives up to and in-
cluding the second derivative, and that if we wish to
avoid a hard-core pseudopotential with a singularity at
the origin, the pseudo-wave-function must behave as r'
near the origin.

The screening from the valence electrons depends
strongly on the environment in which they are placed. If
we remove the screening effects of the valence electrons
and generate an ionic pseudopotential, we can then use
this potential in a self-consistent procedure to determine
the electron screening in other environments. This is
done by subtracting the Hartree VH (r) and exchange-
correlation V„, (r) potentials calculated from the valence
pseudo-wave-functions from the screened potential to
generate an ionic pseudopotential,

VPP ( ) VPP ( ) VPP( ) VPP(

(10)

where V„,„„„«(r)is the semilocal potential [Eq. (9)], and
' (r) is the atomic reference pseudo-wave-function, in-

cluding the angular-momentum component for which the
pseudopotential was calculated. Substantial savings in
computer time and storage can be achieved using this se-
parable nonlocal expression.

Hidden in Eqs. (3) and (5) is an important detail that
we should further elaborate upon. The radial
Schrodinger equation is a second-order linear differential

ln[Rl(r, s)]d
dI' Ri(r, E)

dR, (r, E)

dI" r=r 0

equation. Given the screened all-electron potential and
an energy E (not necessarily an eigenvalue), the solution
of the equation is uniquely defined by the value of the
wave function R (r) and its derivative R'(r) at any given
point r0. Neglecting normalization, the wave function is
then uniquely determined by its logarithmic derivative



43 EFFICIENT PSEUDOPOTENTIALS FOR PLANE-WAVE CALCULATIONS 1995

dR,"(r,e)

R, (rE)
dRI (r, E)

(12)
dr

By construction this is true for a pseudopotential obeying
Eqs. (3) to (5) for the eigenvalue energy s&. For a "per-
fect" pseudopotential, this equality would hold for all en-
ergies close to cl and above the core-state energies. The
norm-conservation condition [Eq. (4)] imposes that the
above equality is closely satisfied for a region surrounding
cI, this follows because the solutions of the radial
Schrodinger equation obey a version of the Friedel sum
rule'"

at the point ro. If the screened all-electron potentials and
pseudopotentials are identical outside the radius r,&, then
the all-electron wave-function and pseudo-wave-functions
are proportional outside r, I if

eralizing Eq. (13), but have found that the corrections
achieved by setting the second energy derivative were
small and not comparable to the other errors present
within the local-density approximation. The easiest ap-
proach to increase the pseudopotential tranferability is to
simply decrease the cutoff radius r, I used to generate the
pseudopotential and pseudo-wave-functions, thereby re-
ducing the difference between the all-electron and pseu-
dopotential results. However, there are practical limits
on how far we can decrease r,I for example r, &

must be
larger than the outermost node of the all-electron wave
function if we insist on having nodeless pseudo-wave-
functions.

III. PSEUDOPOTENTIAL SMOOTHNKSS

& a a
lnR (r, s),

7 = I cl

Comparing the logarithmic derivatives [Eq. (12)] of the
all-electron and the pseudopotential wave functions as a
function of the energy c, at a radius ro ~ r,&, for the range
of energies of the valence and lower conduction bands in
the solid provides a quick picture of the quality of the
pseudopotential. Often ro is taken as the Wigner-Seitz
radius, but any useful radii can be used. However, the
logarithmic derivatives are calculated assuming that the
electron screening part of the potential is a constant.
This is not the case when the atomic environment
changes, and therefore a logarithmic derivative compar-
ison should not be taken as an absolute test of the quality
of an ionic pseudopotential.

The pseudopotential will accurately reproduce the all-
electron calculation in the reference configuration in
which it was generated. In practice we want it to closely
reproduce other all-electron calculations in different envi-
ronments, that is we want it to be "transferable. " The
logarithmic derivatives provide a first test of the transfer-
ability of the screened pseudopotential. Comparing the
all-electron calculations for excited atomic states pro-
vides an easy way to test the ionic pseudopotential. Do-
ing the same comparison for a prototypical crystal is, of
course, a better test of the transferability of the pseudo-
potential, but it is also a more elaborate costlier test.

A possible method to improve the transferability to the
solid is to generate the pseudopotential using an atomic
configuration that as closely as possible mimics the envi-
ronment in which it will be placed. This may require the
use of nonbound or noneigenvalued wave functions, as re-
cently suggested by Hamann. ' In general, ionic pseudo-
potentials are insensitive to reasonable variations in the
reference atomic configuration (or otherwise they would
not be transferable) and the improvements obtained in
this fashion are limited. Shirley et al. ' proposed equat-
ing additional energy derivatives of the logarithmic
derivatives of the wave function [Eq. (12)], that is gen-

A "smooth" pseudopotential is one in which there is a
rapid convergence in the calculated total energy of a sys-
tem, and therefore a rapid convergence of the systems
properties, with respect to an increase in the plane-wave
basis set. This convergence must be obtained irrespective
of the particular choice of the representative crystal
structure, its lattice constant, or any internal atomic posi-
tions. The Schrodinger equation for a crystal using a
plane-wave basis set and the pseudopotential approxima-
tion is written as '

g H; (k)a (G +k)=Ea (G;+k),
J

(14)

where H;.(k) is the momentum-space Hamiltonian ma-
trix for point k in the Brillouin zone,

H,, (k) =-,'s,, lG;+kl'+ v,.„,(G, —G, )

+ X Vnonlooai I(Gi +k& G '+k)
I

qI„(r)= g a (G, +k)e
J

The matrix elements for the nonlocal potential [Eq. (9)]
are

Vnon„„& I (GJ +k, G;+k)
2l + I

P((cosy )

X f V„.„&...&, ((r)jl(lG, +klr)

Xg((IG;+klr)r dr, (17)

the first term is the diagonal kinetic-energy operator,
V&„,&(q) is the Fourier-transformed local potential
V&„,&(r), which includes the self-consistent electron
screening potential, V„,„„„»(q,q') is the momen-
tum space representation of the nonlocal potential
V„,„„„»(r),and the a (G +k)'s are the coefficients of
the plane-wave expansion (Fourier series) of the wave
function,
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where l is the angular-momentum quantum number, Q is
the cell volume, V„,„&„,~ &(r) is the nonlocal potential,
j&( IG+ k

I r) are the spherical Bessel functions, and
P&(cosy) are the Legendre polynomials with

cosp = (GJ+k).(G;+k)
IG, +kIIG;+kl

If a Kleinman and Bylander' separable pseudopotential
is used [Eq. (10)] the matrix elements are

1 oo

f, /(r) ji(lqrl)r'«
Vnonlocal, i (r )

f @i (r) V„,„~„„&(r)j&(lq'rl )r dr
0

1

Y(m (q) Y(m (q '),
m= —I

where F& (q) are the spherical harmonics.
In practice the expansion of Eq. (16) must be truncated

at some point, and the wave function would only contain
plane waves with a kinetic energy less than a chosen
cutoff, —,'(k+Gz ) ~ E,„„. It is therefore desirable to
reduce the high Fourier components of the crystal
pseudo-wave-function by a suitable choice of a smooth
pseudopotential, however there are certain natural limita-
tions that occur. The atomic size imposes a length scale
to the problem which determines how large any Fourier
expansion of the pseudo-wave-function must be to accu-
rately describe its properties. A smooth pseudopotential
will avoid any unnecessarily large expansions, but cannot
make the expansion arbitrarily short.

It has long been a matter of speculation about which
atomic properties control the total-energy convergence in
the solid. A very common misconception is that the
Fourier transform of the pseudopotential V(q) should de-
cay rapidly to zero for large q. Although this is desirable,
it is not of paramount importance. Rappe et al. ' pro-
posed recently that the decay of the Fourier transform of
the atomic wave function +(q) provides a good estima-
tion of the convergence rate in the solid. This is a good
criterion, although, as we discuss later, it should be used
with some caution. Looking at the local potential energy,

such a way that we can generate a parametrized family of
norm-conserving pseudopotentials. The first step is to
continue the pseudo-wave-function inside the cutoff ra-
dius r, &

with an analytical function, which behaves as r
for small r and has no nodes. With this in mind, Kerker
defined the pseudo-wave-function as

Ri (r) if r ~r, i
Ri (r)= ' (21)r'exp[p(r)] if r ~r,i,

where p (r) is a polynomial of degree n =4,

p(r)=co+ g c,r'.
1 =2

In the polynomial expansion, the ci coefficient is not
present to avoid a singularity of the screened pseudopo-
tential V, , I(r) at r =0. The four coefficients of the poly-
nomial are determined from the four conditions: (i) con-
servation of the charge enclosed within the core radius r, I

[Eq. (4)], and (ii)—(iv) the continuity of the pseudo-wave-
function and its first two derivatives at r,I. One then ob-
tains the screened pseudopotential for r ( r, & by inverting
the radial Schrodinger equation [Eq. (6)], which can be
explicitly written in this case as

E) „)=g a(Gq) g V)„,)(IGJ —G;l)a(G, )

J I

= g V)„,) ( I G; I ) g a ( G )a ( Cir,
—G) ), (20)

V„, ,(r)=,
V~E(r) if r r, i

I+1 p'(r) p"(r)+[p'(r)] (23)
c.)+ + if r~rI .

r 2 2

we see that the local potential interacts in a complex
fashion with the wave vector, mixing low-frequency com-
ponents of the potential with high-frequency wave-vector
components and vice versa. Examining the matrix ele-
ments that are neglected by the truncation of the Hamil-
tonian matrix [Eq. (15)], we find that a small number of
large valued matrix elements corresponding to momen-
tum transfers of q =2m/d, where d is a typical interatom-
ic distance, are neglected. Also, a large number of small
valued matrix elements corresponding to large momen-
tum transfers are neglected. Finding a practical atomic
criterion for pseudopotential smoothness is far from a
trivial task, and the remaining portion of this section will
present the results of our investigation into that problem.

In developing an improved nonlocal pseudopotential
we started by generalizing the Kerker procedure' in

A distinct advantage of this procedure is that the
pseudo-wave-function R& (r), and the screened pseudo-
potential V„, &(r), are analytic functions within the cutoff
radius r,I. We generalized Kerker's method by simply
increasing the order n of the polynomial p(r); the addi-
tional coefBcients give us the variational freedom needed
for investigating smoothness properties for a
parametrized family of pseudopotentials.

Smoothness can be easily achieved by increasing the
cutoff radius r, I at which the pseudopotential is generat-
ed. However, in the process of doing this the transfera-
bility of the pseudopotential is compromised. We would
like to retain a constant transferability in order to justly
determine if one pseudopotential is smoother than anoth-
er. To do this, we used the logarithmic derivatives of the
original Kerker pseudopotential as a reference for
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TABLE I. The asymptotic dependencies (Ref. 19) for large q on the pseudopotential and pseudo-
wave-function for the local pseudopotential, the nonlocal potential [Eq. (17)] for l =0, and the Klein-
man and Bylander potential [Eq. (19)] for l =0. The AV' 's represent the difference between the
derivatives of the local pseudopotential and the all-electron potential at the cutoff radii r, and the func-
tion P™(0)represents derivatives of r times the pseudo-wave-function rA (r) at the origin.

Local
Nonlocal

l=O
Kleinman and
Bylander l =0

1/q
1/q4

1/q
1/q

1/q
1/q'

5 V'(r, )

6V"(r, )

V'(0)

5 V'"(r, )

AV" '(r, )

V"'(0)
a V"'(r, )

AV' "(r, )

V(v)(0)

Vnonloca] ( c )

V„',„]„,] (0)
V„",'„]„,](r, )

( Iv)
Vn, n]„,](r, ),
V„".'„,.„,(0)

(V)
Vnonlocal ( c )

(vI)
Vnonlocal ( c )

Vnonlocal (

V„',„]„,](r, )
lr

Vnonlocal ( c )

P'(0) V„',„„„,(0)
V„",'„]„,](r, )

P (0)V ] ](0) P (0)V ] ](0)
(v)Vn, n]„,] (r, )

Vnonlocal ( c ) ~ (0) Vnonlocal ( ) ~ ( ) Vnonlocal (

P" '(0) V„",„„„,(0),P"'(0)V„",'„„„,(0),P'(0) V„',„'„c„(0)

dm dm

dp dr
(24)

Similar results for the I =0 nonlocal and Kleinman and
Bylander integrations are listed in columns 2 and 3, re-
spectively, and are representative of the l =

[ 1,2, 3, . . . ]
cases. The dependencies for the pseudo-wave-function

transferability. The cutofI' radii r,&
of our generalized

pseudopotentials were then adjusted until their logarith-
mic energy derivatives matched the reference values.
This procedure of determining the core radii will be used
throughout the paper to assure a fair comparison be-
tween pseudopotentials.

We first studied the asymptotic behavior for large q.
To do this we integrated by parts the Fourier transforms
of the local pseudopotential and pseudo-wave-functions,
the integrals for the nonlocal potential [Eq. (17)] for

~ q ~

&)
~

q' ~, and the q component of the separated Klein-
man and Bylander potential [Eq. (19)]. In the first
column of Table I we show how V&„,&(q) is dependent on
the local potential V&„,&(r) for large q for up to I/q be-
havior, where the 6 V represents

for l =
[ 0, 1,2, 3 ] are shown in Table II, where

P(r)=rR (r). As should be expected, the asymptotic be-
havior depends on the matching of derivatives at the
cutoA' radii. In Table I we can see a pattern, the asymp-
totic behavior the pseudopotential is dependent on the
values of the odd derivatives of the pseudopotentials at
the origin. The data in Table II reveals that the asymp-
totic behavior of the pseudo-wave-functions can be im-
proved by setting all odd coe%cients c; to zero, which is
the same as setting the old derivatives of the potentials at
the origin to zero. We stress again that asymptotic be-
havior is helpful but not crucial in obtaining a smooth
pseudopotential and, therefore, the information in Tables
I and II should only be taken as a possible exploratory
guide.

To test the above possibilities, we picked diamond and
zinc blende as representative crystals containing first row
and transition-metal elements, and proceeded to calculate
the convergence of the total energy with respect to the
basis set size for the difterent types of possible pseudopo-
tentials. Setting the odd derivatives of the potentials at
the origin to zero was easily accomplished. For the first
derivative this translated into setting the c3 coeKcient to

TABLE II. The asymptotic dependencies (Ref. 19) for large q on the boundary conditions for the pseudo-wave-functions for the
l = [0, 1,2, 3] pseudo-wave-functions. The function P' ' represents derivatives of r times the pseudo-wave-function rR(r), and the
AP"'s represent the difference between the derivatives of the all-electron and pseudo-wave-functions at the cuto8'radii r, . For the
derivatives at zero, the corresponding dependence on the c; coefficients is also listed.

I=O l=2 l=3

1/q
1/q

1/q

1/q

hP"'(r, )

~P(")(r )

P'"'(0) c,exp(c, )

AP' '(r, )

aP(")(r, ),
P '(0) ~ [chic, +c, ]exp(co)

AP"'(r, )

AP(' '(r, )

AP( '(r, )

P' '(0) ~ c3exp(co )

hP'"(r, )

AP" '(r, )

AP' '(r )

P' "(0)~ c3exp(co )

AP'"(r, )

AP" '(r, )

aP( '(r, )

hP' "(r, )
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zero, and for the nth odd derivative the c„+2 coefficient is
set to zero. Determining how many derivatives of the po-
tential should be continuous at the cutoff radii involved
balancing between improving the transferability of the
pseudopotential and making the pseudopotential smooth-
er. We found that the best results were obtained when
two derivatives at the cutoff radii matched and all odd
coefficients of c„were set to zero, making the polynomial
[Eq. (22)] of degree n = 10.

To complete the generation procedure, we searched for
a smoothness estimator that could be used to further im-
prove the convergence rate for pseudopotentials with ad-
ditional variational degrees of freedom. We tried using
the minimization of the integral

f "l v„, , (q)lq "dq, (25)

to reduce the overall strength of the pseudopotential. We
found that using n =2 produces a smooth pseudopoten-
tial. In a few cases the resulting pseudopotential was not
optimal and therefore Eq. (25) should only be considered
as a useful rule of thumb.

We also tested the minimization of the kinetic energy
with reciprocal space wave vector q )q„

f l q(jq)l q dq ~6E~, (26)

0.0

-5.0
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I I

I

]
r (ao)

I I

C 2p

Diamond

as proposed by Rappe et al. ' Their idea is that conver-
gence is controlled by the kinetic energy of the atomic
pseudo-wave-functions. We found that the generated
pseudopotentials are extremely sensitive on the choice of
q, and this cutoff should be chosen using a procedure of
the type suggesting by Rappe et al. . While the potentials
generated with Eq. (26) show a fast total-energy conver-
gence in the solid around E,„,=(1/ )2q, , they produce
pseudopotentials with strong short-wavelength oscilla-
tions. Comparison of pseudopotential and all-electron
calculations for crystals indicated that these pseudopo-
tentials may have transferability problems to the solid,
which are not apparent from their atomic logarithmic
derivatives.

Both Eqs. (25) and (26) can be used to optimize pseudo-
potentials that depend on several free parameters. We
noticed that Eq. (25) produced pseudopotentials that are
very fIat near the origin, we therefore tested the condition

V,",„ t (0)=0,
as a smoothness controller for the case where the pseudo-
potential has only one free parameter. Because of its sim-
plicity and effectiveness, this is the criterion for smooth-
ness we prefer and use in the recipe of Sec. IV. This con-
dition is actually quite reasonable, for if a pseudopoten-
tial is obviously too deep it has a positive second deriva-
tive at the origin, while if it is too shallow it has a nega-
tive second derivative at the origin. Therefore by enforc-
ing the additional condition of zero curvature of the
pseudopotential at the origin V&"„,(0)=0, we are in fact
selecting a value of V&„,(0) that is about right. This
reasoning is illustrated in Fig. 1 using the carbon p pseu-
dopotential, where we generated three p pseudopoten-
tials, one with a positive curvature, one with a negative,

30 40 50 60 70 80 90 100
Plane-wave Cutoff Energy (Ry)

FIG. 1. The top panel (a) shows three examples of a screened

p pseudopotential for carbon picked from a one parameter fami-
ly of pseudopotentials. The bottom panel (b) shows the corre-
sponding convergence of the calculated total energy of diamond
per primitive cell with increasing plane-wave cutoA energy. The
pseudopotential with zero curvature at the origin (solid line in
both figures) has a better overall convergence than the pseudo-
potential with negative curvature (dotted line) or with positive
curvature (dash line). In the bottom panel the circles and
squares indicate the calculated values and the lines are obtained
by a spline interpolation. The total energy is relative to the
values calculated at 144 Ry.

and one with zero curvature at the origin. The s pseudo-
potential remained constant for all cases. It is clear from
Fig. 1(b) that the pseudopotential satisfying Eq. (27) is
not necessarily the one that has the fastest convergence
for a given cutoff energy, but is rather the one with the
best global convergence properties. For example, the po-
tential with negative curvature at the origin has the
fastest convergence at 36 Ry but then displays a poor
convergence for cutoff energies between 40 and 80 Ry.
Convergence could be optimized for a given cutoff energy
or for a tolerated error in the relative total energy as sug-
gested by Rappe et al. , however the gains of such a pro-
cedure are smaH and would yield a pseudopotential that
would be far from optimal when used with another cutoff
energy of tolerated error. The most important charac-
teristic of the pseudopotentials obeying Eq. (27) is that
they are very close to optimal for the entire range of
cutoff energies.
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IV. SIMPLE RECIPE
FOR SMOOTH PSKUDOPOTENTIALS

The seven coeKcients of the polynomial are determined
from the following seven conditions, which we write
down explicitly.

(i) Norm-conservation of charge within the core radius

2co+in I ' r"'+"exp[2p (r) —2co]dr

=ln R AE r 2r2dr
0

(29a)

(ii)—(vi) The continuity of the pseudo-wave-function
and its first four derivatives at r,I, which in effect imposes
the continuity of V„, &(r) and its first two derivatives at
"cI~

P(r„)
p(r, i)=in

r~(

p'(v„)
p ( ci): p(

(29b)

(29c)

p "(r,i ) =2V~E(r, i) —2el

2(l +1)p'(r„) —[p '(v„i ) ]
rcI

2(l + 1 )P"'(r.i) =2VAE(r. i)+
rcpt

2(l + 1)
p "(r,i ) 2p'(r, I )p "(r,l ), —

rcI

4(l +1)
rcpt

4(l +1) „2(l+1)
p vcr p vcr

rcl r i

2[p "(r,i )]'—2p—'(v, I )p"'(v, I ),

(29d)

(29e)

where P(r)=rR& (r), V~E(r) is the all-electron atomic
screened potential, and the primes denote differentiation
with respect to r.

(vii) The zero curvature of the screened pseudopoten-
tial at the origin V,",»(0) =0 is as follows:

c2+c4(2l +5)=0, (29g)

which gives nicely smooth pseudopotentials.
The derivatives of the wave function and screened po-

tentials are evaluated from the numerical all-electron
wave function and screened potential using the seventh-
order finite difference and the integration for the norm-
conservation condition is also evaluated numerically.

In this section we present our favorite recipe for gen-
erating smooth pseudopotentials. The radial part of the
pseudo-wave-function is first defined by Eq. (21), where

p (r) is a polynomial of order six in r,
p(r)=co+c~r +c4r +c6r +csv +c,or' +ci2r'

(28)

With the exceptions of Eqs. (29a) and (29g) all the equa-
tions are linear in c; and are trivially solved with the
Gauss-Jordan elimination. The nonlinear equations (29a)
and (29g) are solved with the robust methods of false po-
sition and bisection, respectively. In the final step the
screened pseudopotential is obtained through the stan-
dard method of inverting the Schrodinger equation [Eq.
(6)], which in this case can be written explicitly [Eq. (23)].

V. PSEUDOPOTENTIAL COMPARISONS
AND EXAMPLES

Using the procedure outlined in the preceding section,
we generated both relativistic and nonrelativistic pseudo-
potentials for all elements with Z (72 and a few for
Z & 72. For all reasonable choices of the cutoff radii r,I,
a solution of the nonlinear equations [Eq. (29)] was readi-
ly obtained, showing the procedure to be stable. We have
only encountered problems when the choice of r, &

was too
close to a node of the all-electron wave function, in which
case the norm-conservation [Eq. (4)] condition imposes a
double hump shape in the radial pseudo-wave-function.
We also found that as a result of equating both the first
and second derivatives of the potential, the cutoff radii
for our method can be chosen to be larger than those of
other methods. ' If we match pseudopotential
transferability as outlined in the preceding section, we
find that equivalent Kerker radii are =(0.05 —0.25)ao
smaller, and the Hamann-Schliiter-Chiang (HSC),
Backelet-Hamann-Schliiter (BHS), and Vanderbilt radii
are about half that of the present method.

We tested the convergence rate of the total energy of
solids using the pseudopotentials of the procedure de-
scribed in Sec. IV and compared them with those gen-
erated from other pseudopotential methods. We also
checked that the pseudopotential calculations reproduce
all-electron results for solids. We first compared the con-
vergence rates for crystals containing first-row elements,
namely carbon in the diamond structure and the two
oxygen-containing materials rutile (TiOz) and a-quartz-
(SiO2). Because these first-row elements contain no core
p electrons, their p pseudopotentials are very strong,
therefore materials containing these elements provide a
stringent test for pseudopotential smoothness. For simi-
lar reasons we looked at copper, zinc sulfide, and rutile
(Ti02), which contain problematic d-electron transition
metals. The two elements Cu and Zn represent the most
difficult transition metals to use with plane waves, a re-
sult due to the extreme depth of the d pseudopotential
and the localization of the d wave function. Last, we
shall present results for cerium, a 4f rare-earth element.

We compared the convergence of the carbon pseudo-
potential with the pseudopotentials of Hamann, Schluter,
and Chiang, Kerker, ' and Vanderbilt. ' We neglected
the nonlocality for the 3d scattering channel and generat-
ed the pseudopotential in the non-spin-polarized ground-
stare valence configuration 2s 2p . The cutoff radii are
r„=0.86a0 and r, =0.82a0 for the HSC, r„=1.43a0
and r, =1.47a0 for the Kerker, r„=r, =0.80a0 for the
Vanderbilt, and r„=1.50a0 and r, = 1.54a0 for the
present method and correspond to pseudopotentials that
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FIG. 2. The ionic pseudopotentials for carbon generated with the four different schemes are shown in both real and Fourier space.
The dotted and solid curves correspond to the s and p pseudopotentials, respectively.

have the same logarithmic derivatives. These pseudopo-
tentials and their Fourier transforms are compared in
Fig. 2. The p pseudopotential of carbon is very deep and
is the main factor controlling the total-energy conver-
gence. A total-energy versus plane-wave cutoff energy
E,„, curve for these pseudopotentials is shown in Fig. 3,
with the total energies referenced to the total energy ob-
tained at E,„,=100 Ry. The calculations were done with
carbon in the diamond structure at the experimental lat-
tice constant, using two special k points and the semilo-
cal form of the pseudopotential IEq. (17)j. From the
Fourier transforms, we can see that while the Vanderbilt
transform decays much faster to zero than the present
method it has a much slower convergence rate,
confirming that a faster decay rate of the Fourier trans-
form is not indicative of a fast total-energy convergence
rate. An extremely shallow pseudopotential depth is also
not a good convergence indicator, the HSC p pseudopo-
tential is 5 Ry less deep than the current method, yet it
has a slower convergence. For a total-energy conver-
gence error less than 100 meV, the Vanderbilt and Kerk-
er pseudopotentials require a matrix size of -700, while
the HSC pseudopotential requires a matrix size of —1000
as compared with the present pseudopotential matrix size
of -450. From Fig. 3 we see that the total energy is con-
verged to within 100 meV at a cutoff energy of E,„,=49
Ry with the present pseudopotential. The Kerker and
Vanderbilt pseudopotentials show a smooth uniform con-
vergence, while the HSC has a shoulder in the conver-
gence at —50 Ry, and the present method has a barely
visible shoulder at —60 Ry. This feature is quite impor-
tant because if the total-energy convergence calculation

had been stopped at 50 Ry, the HSC pseudopotential
would apparently have had the fastest convergence.

Using the present pseudopotential we calculated the
structural properties of diamond, using ten special k
points in the irreducible wedge of the Brillouin zone, an
energy cutoff' of 49 Ry, and the Ceperley and Adler '
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0.3
0

02—
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~
0
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30 40 60 60 70 80 90
Plane-wave Cutoff Energy (Ry)

100

FIG. 3. The calculated total energy of diamond per primi-
tive cell vs the cutoff energy of the plane-wave basis set for the
four different pseudopotentials shown in Fig. 2. For each curve,
the total energy is referenced to the total energy calculated for a
cutoff energy of 100 Ry. The squares, circles, and triangles are
the calculated data points and the curves are obtained by a
spline interpolation.
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TABLE III. We show structural and cohesive properties of diamond from pseudopotential plane
wave (PP-PW), pseudopotential Gaussian-type orbital (PP-GTO), and LMTO calculations. The calcu-
lated values of the lattice constant ao, bulk modulus Bo, pressure derivative of the bulk modulus Bo,
and the cohesive energy E, are compared with experiment.

ao (A)
Bo (GPa)
Bo
E, (eV/atom)

PP-PW'

3.607
517

2.52

pp-pwb

3.516
503

3.99
8.34

PP-GTO'

3.548
444

3.24
8.17

LMTO

3.59
430

8.2

This work'

3.541
455

3.77
8.80

Expt.

3.567'
443g

4.0"
7.37'

'Reference 24, using the Wigner exchange-correlation (xc) (Ref. 25), a BHS pseudopotential (Ref. 12),
and a plane-wave cutoff energy of E,„,=41 Ry.
"Reference 26, using the Ceperley-Alder xc (Ref. 21), as pararnetrized by Perdew and Zunger (Ref. 22),
a Kerker pseudopotential (Ref. 10), 10 k points, and E,„,=50 Ry.
'Reference 27, using the Hedin and Lundqvist xc (Ref. 28), a BHS pseudopotential (Ref. 12), and 10 k
points.

Reference 29, using the von Barth-Hedin xc (Ref. 30).
'This work uses the Ceperley-Alder xc (Ref. 21), as parametrized by Perdew and Zunger (Ref. 22), 10 k
points, and E,„,=49 Ry.
Reference 20.

g Reference 31.
"Reference 32.
' Reference 33.

correlation as parametrized by Perdew and Zunger.
The properties derived from a Murnaghan equation-of-
state fit to the calculated data points are listed in Table
III, along with other calculated and experimental values.
The agreement with experiment is typical of local-density
calculations: it is good for the bond lengths and bulk
modulus but there is a noticeable overestimate of the
binding energy.

The convergence of the total energy with plane-wave
cutoff is expected to be independent of the crystal envi-
ronment in which it is used. This is illustrated by Fig. 4
where we compare the total energy convergence of
rutile-Ti02 and e-quartz Si02, where in both cases, the
deep p potential of oxygen controls the convergence. In
Fig. 5 we show the oxygen pseudopotential and its
Fourier transform. The pseudopotential was calculated
in the 2s 2p" non-spin-polarized valence configuration
and the cutoff radii were r„=r, =1.45ap. The nonlocal
d component of the pseudopotential was neglected for the
solid calculation and we used the nonlocal Kleinman and
Bylander form [Eq. (19)] with the p pseudopotential as
the local component. The total energies of both systems
were then calculated as a function of plane-wave cutoff
energy, using the experimental lattice parameters and
internal coordinates, ' and two special k points in the
reduced Brillouin zone for the rutile structure and one
special k point for the a-quartz structure. In Fig. 4, the
total energy is given per molecular unit, and the conver-
gence curves are referenced to the total energy calculated
at E,„t= 144 Ry. As the figure shows, the two different
structures have nearly identical convergence curves, indi-
cating that the oxygen pseudopotential convergence does
not depend on the choice of oxide. The equivalent cutoff
radii for a BHS oxygen pseudopotential with the same
logarithmic derivatives is -0.73ap. This is slight smaller
than the core radii recently suggested for a BHS oxygen

pseudopotential. The convergence curve for that pseu-
dopotential would still be off scale of Fig. 4 at 60 Ry.
The electronic and structural properties of the two oxides
calculated with the present pseudopotential are in good
agreement with experiment and will be published else-
where. ""

There has been several recent all-electron and pseudo-
potential calculations for copper, making it an in-
teresting test of the new pseudopotentials. We compared
the total energy convergence characteristic of the present
pseudopotential with the pseudopotentials generated us-
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FIG. 4. The calculated total energy for o.-quartz and rutile
per molecular unit vs the cutoff energy of the plane-wave basis
set. The total energies are referenced to the total energy ob-
tained using a cutoff energy of 144 Ry. The squares and circles
are the calculated data points and the solid and dotted curves
are obtained from a spline interpolation.
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FIG. 5. The top panel (a) shows the ionic oxygen pseudopo-
tential in real space generated using the present method and its
Fourier space plot is shown in the bottom panel (b). The solid
and dotted curves correspond to the s and p pseudopotentials,
respectively.

FIG. 6. The logarithmic derivatives IEq. (11)] of the all-
electron (solid line) and separated pseudopotential (dashed line)
for the s, p, and d radial wave functions for atomic Cu are
shown at a radius of rp =2.6ap. The atomic eigenvalues are in-
dicated by the solid circles. The close agreement between the
two sets of curves in an indication of the high transferability of
the pseudopotentials. The absence of ghost states in the Klein-
man and Bylander form of the pseudopotential is clearly shown.

ing the methods of HSC, Vanderbilt, ' and Kerker. '

All four pseudopotentials were generated from a relativis-
tic all-electron calculation of the copper valence ground
state 3d' 4s'4p, and then weighted averaged over the
j +—,

' and j —
—,
' orbitals. As before, the cutoff radii were

adjusted to provide a similar transferability as measured
by the logarithmic derivative plots (Fig. 6). In Fig. 6 we
have plotted the logarithmic derivatives calculated using
the separated Kleinman and Bylander form of the pseu-
dopotentials [Eq. (10)], demonstrating the absence of
"ghost states"' ' '" in the plotted energy range. The
equivalent cutoff radii are r„=r, =1.10ao and
r,d =1.00ao for the HSC, r„=r, =1.20ao and
r,d

= 1.09ao for the Vanderbilt, r„=1.98ao and

rcp cd 2' 08a 0 for the Kerker, and r„=r,d
=2.08a 0

and r, =2.30ao for the present pseudopotentials. The
pseudopotentials and their Fourier transforms are shown
in Fig. 7. From that figure we can see that the HSC d
pseudopotential is the most shallow but contains some
extra wiggles, the Kerker pseudopotential has the deepest
d potential and the Vanderbilt has the fastest decay in re-
ciprocal space. We then separated the pseudopotentials
using the Kleinman and Bylander procedure using the s
potential as the local component. For each of the above
four pseudopotentials we then calculated a total-energy
curve as a function of plane-wave cutoff energy E,„„us-
ing ten special k points in the reduced Brillouin zone and

the experimental fcc lattice constant. The results of
these calculations are plotted in Fig. 8, using the total en-
ergy calculated at E,„,=225 Ry as the baseline reference
energy. We again find that our pseudopotential has the
fastest convergence. To obtain a total-energy conver-
gence within —100 meV, the Vanderbilt pseudopotential
would require a matrix size of —1550, the HSC would re-
quire a matrix of —1800, the Kerker requires a matrix of
at least 3000, and the present method needs only a matrix
of —850.

Using the present pseudopotential, generated from
both nonrelativistic and relativistic all-electron atomic
calculations, we calculated the structural properties of
Cu in both the fcc and bcc structures using a plane-wave
cutoff energy of E,„,=72.25 Ry, which corresponds to a
total-energy convergence of within —100 meV. The cal-
culations were carried out using 64 and 44 special k
points in the irreducible wedge of the Brillouin zone for
fcc and bcc, respectively, and the Ceperley and Adler '

correlation as parametrized by Perdew and Zunger.
The properties derived from a Murnaghan equation-of-
state fit to the calculated data points are listed in Table
IV. The agreement between the present pseudopotential
calculation to that of the linearized-augmented-plane-
wave calculation (LAPW) is excellent, both of which
show similar deviations from experiment. The agreement
with the accurate LAPW results is important because it
shows that the pseudopotential approximation is excel-



0—

-20-

-4p

-0-

-8p

2p—

r (ao) -2p

"40-

-60- I
I
I

I

-80

0—

r (ao) -2p

-40-

-60-

-8p

r (a,)

0-

-60- ..
-8p-

r
I

I
I

I
I

I
I

I
I

I

EFFICIENT PSEUDOPOTENTIIALS FOR pLANE-~AV

0—

LCULATIO NSECA

r (ao)

2O03

20—

CQ 10

0
U
0"-10-
U

2p—
I 'I

'L

I
I
I I

I
I

i'Ip—

2p—

10-

-112
q (ao) ]p

I

I

I

;I

',q (a,')

1p—

I r%+r'
12

q (ao')

0

-20-

0

-10—

-20-

I

-112
q (a,')-10—

-20—

I
I
I
I
I
I

I
I

I

P~~sent W,

-2p—

«rker

to the s,

&ent (~

~p, and

al-densit

claimed b
ouble minm

s. 4O a d 41

fo
y the authors

m for the b, we did

from R f
of Ref. 39

cc struct

e rate pf th

al en ergy com
with all-ele

Pared wjth pu

electron
P per we cp

P»sion. 49

n zinc-sulg
compared t

d
ca culatipn

.
calcu]at.

s of a»ll

escr&bed in R
~ng the earli

n to a pseud
er version

ppo

greement b t
n that w k

n of our m th

e ween th
or we f

e seu
ound

e pd

P udpppte
excellent

Qg

nd -electr p

1.Q

0.8

p 0.6

P 04
~O

0.2
Co
(9

O.p

o.8

0.7

0.6

0.5

0.4

0.3

o.2

0.1

p
CD

UJ

CQ

~O

CD

CQ

CD
IX

Wprk
8

nS

I

6p

I

8p

I

SO 1pp

I

Plane
110 120

ave CUtoff EA

14

T

ergy (R

o.0

FI~
hecuto ff

la ed tot
energy of th

energy of f

Potential s show
'

Plane-wave ba
'

Cu Plotted a

arerf
own in Fig. 7

asis set for th
gainst

reer enced
. The tota

e four s

of225
o the to

Ry
ener

l energy f
P eudo

or all fo

data-
squ~res c.

gy calculated a
ur curves

Pomts a„d
rcles, and

at a cutoff

tion.
curves are

iangles are th
ergy

obtained f
e calcu»t d

P & e interpol

I I I

W

6p 70 8p

I I

SO 1pp

I

p
11Q 12p

I

ve CUt

15Q 16Q

"elegy (Ry)

FIG
e cutof

lated tot l

g crated from
P ane-wave b

.
S Plotted a

opoien

cuto& ener
eferenced to

t e method

calculated
of l69 R

o the total e
Ref.

The s
ergy obta'

&nterpolati
P ints and the

quares and
'

ained

ation
rves are

'«les are t
«m a spl

FIG 7
solid d

Pper
otted, and d

P eudopotent' l

shed curves
s for four d;ff

orrespond
erent Pseud

enderbIlt

d
opotentlals m h

P udopot
.

s ys shoet od
» s, res

n in real
pectively.

space and Fourier s ace



N. TROULLIER AND JOSE LUIS MARTINS

TABLE IV. We show structural and cohesive properties of fcc Cu and bcc Cu from pseudopotential mixed basis PP-MB, LAPW,
PP-GTO, and PP-PW methods, for semirelativistic (SR) and nonrelativistic (NR) calculations. The calculated values of the lattice
constant ap, bulk modulus Bp, pressure derivative of the bulk modulus Bp and the cohesive energy E, are compared with experi-
ment.

ap (fcc) (A)
ap (bcc) (A)
Bp (fcc) (GPa)
Bp (bcc) (GPa)

Bp (fcc)
Bp (bcc)

E, (fcc) (eV)
E, (bcc) (eV)

(meV)

PP-MB
(SR)'

3.62
2.81,2.93

150
126

3.35
3.31

41

LAPW
(SR)

3.56
2.84

183
179

4.42
4.37

49

This work
(SR)'

3.57
2.84

174
175

5.2
5.3
4.38
4.35

25

PP-GTO
(NR)

3.62
2.87

188
185

3.83
3.81

20

PP-PW
(NR)'

3.71

148

3.90

LAPW
(NR)b

3.61
2.86

162
160

4.14
4.12

18

This work
(NR)'

3.60
2.86

160
160

5. 1

5.1

4.19
4.16

22

Expt.

3.61'

142g

5.28g

3.50"

'Reference 39, using the Ceperley-Alder xc (Ref. 21), as parametrized by Perdew and Zunger (Ref. 22), a BHS pseudopotential (Ref.
12), and 29 (30) k points for fcc (bcc).
Reference 40, using the Wigner xc (Ref. 25) and 60 (40) k points for fcc (bcc).

'This work uses the Ceperley-Alder xc (Ref. 21), as parametrized by Perdew and Zunger (Ref. 22), 60 (44) k points for fcc (bcc), and
Ecut =72 25 Ry

Reference 41, using the Hedin and Lundqvist xc (Ref. 28), a Kerker pseudopotential (Ref. 10), and 60 (44) k points for fcc (bcc).' Reference 18, using 44 k points and E,„,=49 Ry.
Reference 46.

g Reference 47.
"Reference 48.

methods for both structural and electronic properties,
demonstrating the high transferability of our pseudopo-
tential generation procedure. The structural and elec-
tronic results calculated with the present pseudopotential
are very similar to those of Ref. 50 and are in good agree-
ment with accurate all-electron calculations. However,
the energy convergence with the basis set size is faster
with our present recipe (Fig. 9). The only significant
difference between the present and old schemes is in the
use of an even polynomial instead of a mixed polynomial
in Eq. (22). Both calculations used the Kleinman and By-
lander separation procedure on the pseudopotential and
the experimental lattice constant. ' In both cases the s
potential was treated as the local component to avoid p
and d ghosts states. A total-energy convergence of 100
meV is achieved with —3000 plane waves in the present
method and -6000 plane waves in the earlier method.

The toughest job for a plane-wave expansion would be
a 4f wave function. We have applied our method to Ce,
and show in Fig. 10 the pseudopotential and its Fourier
transform. The pseudopotential was generated using the
valence configuration 6s 6p 5d'4f ' and the cutoff radii
r„=3.5ao, r, =4. 1ao, and r,d=r,f =3.0ao. The corre-
sponding total-energy curve for the experimental geom-
etry of o.-Ce is shown in Fig. 11. The calculation was
done using 10 special k points in the reduced Brillouin
zone and the Ceperley-Adler ' exchange correlation as
parametrized by Perdew and Zunger. A convergence of
total energy to within 100 meV is obtained with —1350
plane waves. The Fermi level for this system lies within
the 4f band and therefore the curve in Fig. 11 is
representative of the convergence in energy for the 4f
electrons.
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FIG. 10. The ionic cerium pseudopotential generated using
the present method is shown in both real space, top panel (a)
and Fourier space, bottom panel (b). The solid, dotted, dashed,
and chain-dot curves correspond to the s, p, d, and f pseudopo-
tentials, respectively.
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FIG. 11. The calculated total energy of a-Ce vs the cutoff'en-

ergy of the plane-wave basis set. The total energies are refer-
enced to the total energy obtained at a cuto6'energy of 100 Ry.
The squares are the calculated data points and the curve is ob-
tained from a spline interpolation.

VI. CONCLUSIONS

We presented a simple recipe for generating smooth
pseudopotentials for use in plane-wave calculations and
illustrated their applicability with calculations of systems
containing elements from several regions of the Periodic
Table, including the transition metals and rare earths.
To give an example of the improvements achieved, the
benchmark pseudopotential from the BHS table for Zn
would require a plane-wave cutoff energy of -900 Ry
versus the -70 Ry of the present work. For zinc blende
this means that -3000 plane waves can be used instead
of —140000. Of course, most of the improvement is due
to the use of a larger core radius in our method. In our
work we tried to make a fair comparison between
different pseudopotentials by adjusting the core radii un-
til their transferabilities, as judged by logarithmic deriva-

tive plots, were matched. The comparisons of Fig. 3 and
Fig. 8 show that for these transferability matched pseu-
dopotentials our method is better than other traditionally
used pseudopotentials. Diagonalizing a matrix of 3000
by 3000 with a Givens-Householder algorithm would still
be prohibitively expensive, as it would take 500 times
longer to diagonalize than the 400 by 400 matrices of a
LAPW calculation of equivalent precision. However,
modern plane-wave codes using iterative diagonalization
procedures can easily work with such matrices. In our
case the fully self-consistent total energy for ZnS with the
3000 plane-wave matrices took only 2 min on a single
Cray-2 processor, the 100 meV total-energy converged Ce
and rutile calculation required 6 min ( —1350 plane
waves) and 4 min ( —3800 plane waves), respectively. For
a-quartz, determination of the minimum total energy
with respect to the internal coordinates for a given lattice
constant required —1 h ( —6000 plane waves) on a single
Cray-2 processor.

We have shown that, used with iterative diagonaliza-
tion methods, our pseudopotentials can be used to study
crystals containing elements from any region of the
Periodic Table. The old restrictions limiting the pseudo-
potential plane-wave method to certain regions of the
Periodic Table are obsolete, because these new pseudopo-
tentials are as efficient and accurate as the best all-
electron methods for first row atoms, transition metals,
and rare earths.
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