Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface

N. P. Ong
Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544

(Received 2 July 1990)

Abstract

The Hall conductivity $\sigma_{x y}$ of a two-dimensional metal in the weak-field, semiclassical, limit has a simple geometric representation. $\sigma_{x y}$ (normalized to e^{2} / h, where e is the electron charge and h is Planck's constant), is equal to twice the number of flux quanta ϕ_{0} threading the area A_{l}, where A_{l} is the total "Stokes" area swept out by the scattering path length $\boldsymbol{l}(\mathbf{k})$ as \mathbf{k} circumscribes the Fermi surface (FS). From this perspective, many properties of $\sigma_{x y}$ become self-evident. The representation provides a powerful way to disentangle the distinct contributions of the three factors, FS area-to-circumference ratio, anisotropy in l_{k}, and negative FS curvature. The analysis is applied to the Hall data on $2 \mathrm{H}-\mathrm{NbSe}_{2}$ and the cuprate perovskites. Previous model calculations of $\sigma_{x y}$ are critically reexamined using the new representation.

I. INTRODUCTION

In the weak-field semiclassical limit, the Hall conductivity ${ }^{1,2} \sigma_{x y}$ of a metal is very sensitive to the local curvature ${ }^{3}$ of the Fermi surface (FS). Since FS shapes may be quite complex, it is usually a difficult task to compare the observed $\sigma_{x y}$ with predictions of band structure. In twodimensional (2D) systems, however, there exists an appealing geometric representation of the weak-field Hall conductivity that brings out explicitly its precise relation to FS curvature. The representation clarifies the way in which the local curvature and anisotropy in the scattering length interact to determine the Hall current. It also provides insight into the many attempts to systematize model calculations of $\sigma_{x y}$ using highly idealized FS models. ${ }^{4-8}$
The geometric interpretation is as follows. Consider moving a point \mathbf{k} around the FS (Fig. 1). The "scattering path length" vector, defined as $l(\mathbf{k})=\mathbf{v}_{\mathbf{k}} \tau_{\mathbf{k}}$, sweeps out, in the plane $l_{x}-l_{y}$ (the " l space"), a closed curve that is usually more complicated than the FS curve ($\hbar \mathbf{v}_{\mathbf{k}}=\partial \varepsilon_{\mathbf{k}} / \partial \mathbf{k}$ and $\tau_{\mathbf{k}}$ is the relaxation time). For instance, the l curve may self-intersect at several points. Regardless of the FS shape, however, the weak-field $\sigma_{x y}$ (normalized to e^{2} / h) is equal to twice the number of flux quanta ϕ_{0} threading the l curve (e is the electron charge and h Planck's constant).

In Sec. II the Jones-Zener solution of the Boltzmann equation is recast as a map from \mathbf{k} space to l space, to derive the representation. The nature of the l curve is discussed in Sec. III with emphasis on self-intersecting segments. The geometric consequences of this representation are described in Secs. IV and V, and the variation of $\rho_{x y}$ in Secs. VI. In Sec. VII, applications to $2 H-\mathrm{NbSe}_{2}$, and the cuprate perovskites are discussed. In the former, a surprisingly good agreement between the band structure and the high-temperature Hall coefficient is obtained. In the latter, the conventional Boltzmann model fails. The analysis provides a clear statement of what is
anomalous about the temperature dependence of R_{H} Previous model calculations ${ }^{4-8}$ are compared in Sec. VIII. I conclude with a discussion of the physics underlying the geometric representation in Sec. IX.

II. GEOMETRIC REPRESENTATION OF $\boldsymbol{\sigma}_{\boldsymbol{x}}$

I assume that the Boltzmann approach is valid, and anomalous contributions to the Hall scattering (such as magnetic skew scattering ${ }^{9}$) and magnetic breakdown effects ${ }^{10}$ are absent. From the Jones-Zener ${ }^{11}$ solution to the Boltzmann equation, the weak-field Hall conductivity is
(a)

FIG. 1. (a) Mapping from the FS in \mathbf{k} space to the l curve in the space of $l(\mathbf{k})$. (b) Map from an elliptical FS to its l curve, assuming isotropic τ.

$$
\begin{equation*}
\sigma_{x y}=2\left(e^{3} / \hbar\right) B \sum_{\mathbf{k}}\left[\frac{-\partial f_{\mathbf{k}}}{\partial \varepsilon}\right]\left(v_{y} \tau_{\mathbf{k}}\right)\left[v_{y}\left[\frac{\partial}{\partial k_{x}}\right]-v_{x}\left[\frac{\partial}{\partial k_{y}}\right]\right)\left(v_{x} \tau_{\mathbf{k}}\right), \tag{1}
\end{equation*}
$$

where f_{k} is the Fermi-Dirac distribution and ε the electronic energy. The magnetic field \mathbf{B} is taken $\|-\hat{\mathbf{z}}$, and the electric field $\mathbf{E} \| \hat{\mathbf{x}}$. For my purpose it is instructive to derive Eq. (1) as follows. The Hall current J_{H} arises from the secondorder displacement of the FS by $\delta \mathbf{k}_{B}=\left(e \tau_{\mathbf{k}} / \hbar\right) \mathbf{v} \times \mathbf{B}$, i.e., $J_{H}=2 e \sum_{\mathbf{k}} v_{y}\left(\delta \mathbf{k}_{B} \cdot \nabla\right) \delta f_{E}$. Here, δf_{E}, the first-order displacement due to \mathbf{E}, is given by $\left(e \tau_{\mathbf{k}} / \hbar\right)(\mathbf{E} \cdot \nabla) f_{\mathbf{k}}$. Thus, $J_{H}=2 E\left(e^{3} / \hbar\right) B \sum_{\mathbf{k}}\left(-\partial f_{\mathbf{k}} / \partial \varepsilon\right)\left(v_{y} \tau_{\mathbf{k}}\right)(\mathbf{v} \times \mathbf{B}) \cdot \nabla\left(v_{x} \tau_{\mathbf{k}}\right)$, which is equivalent to Eq. (1). For a 2D system (at temperatures $T \ll$ Fermi energy ε_{F}), Eq. (1) simplifies to
$\sigma_{x y}=\left(e^{3} / 2 \pi^{2} \hbar\right) \int d k_{t}|\mathbf{v}|^{-1}\left[v_{y} \tau_{\mathbf{k}}(\mathbf{v} \times \mathbf{B}) \cdot \nabla\left(v_{x} \tau_{\mathbf{k}}\right)\right]$,
where $|\mathbf{v}|^{-1}$ is the density of states factor, k_{t} the component of \mathbf{k} along $\widehat{\mathbf{t}}$ (the unit vector tangential to the FS curve), and the integral, taken around the FS curve, is evaluated at ε_{F}. Since $\mathbf{v} \times \mathbf{B} /|\mathbf{v}|=\boldsymbol{B} \hat{\mathbf{t}}$ in a 2D system, the integral reduces to $B \int d k_{t}\left(\hat{\mathrm{t}} \cdot \nabla l_{x}\right) l_{y}=\boldsymbol{B} A_{l}$, with A_{l} defined by

$$
\begin{equation*}
A_{l}=(\mathbf{B} / B) \cdot \int d l \times l / 2 \tag{3}
\end{equation*}
$$

A_{l} is the area swept out by the vector $l(\mathbf{k})$ as \mathbf{k} moves around the FS. Because its sign is determined by the "circulation" of $l(\mathbf{k})$, I will call it the "Stokes" area. In terms of A_{i}, Eq. (2) reduces to

$$
\begin{align*}
\sigma_{x y} & =\left(e^{2} / h\right) A_{l} /\left(\pi l_{B}^{2}\right) \tag{4a}\\
& =\left(e^{2} / h\right) 2\left(\phi / \phi_{0}\right), \tag{4b}
\end{align*}
$$

where $l_{B}=\sqrt{\hbar / e B}$ is the magnetic length, $\phi=B A_{l}$ the magnetic flux threading the l curve, and $\phi_{0}=h / e$ the flux quantum.

The transformation from an integral in \mathbf{k} space [Eq. (1)] to one in l space [Eq. (3)] is valid for arbitrary $l(\mathbf{k})$ and an arbitrary 2D FS. The geometric representation immediately implies that (regardless of the symmetry of the 2 D crystal) $\sigma_{x y}$ is a scalar quantity independent of rotation of the $x-y$ axes relative to the crystal's principal axes in the $x-y$ plane. (The shape of the l curve cannot depend on the axis orientation)

Equations (3) and (4) are related to Tsuji's well-known expression ${ }^{3}$ for $\sigma_{x y}$ in terms of FS curvature. However, Tsuji's expression (an integral in \mathbf{k} space) makes no reference to the curve in l space. The geometric relation between $\sigma_{x y}$ and the flux threading A_{l} (especially the Stokesian nature of the l curve), and the many implications for real metals, seem to have gone unnoticed. ${ }^{1-4}$

The three-dimensional (3D) generalization of Eq. (4a) is

$$
\begin{equation*}
\sigma_{x y}^{3 \mathrm{D}}=\left(e^{2} / h\right) \int\left(d k_{z} / 2 \pi\right) A_{l}\left(k_{z}\right) /\left(\pi l_{B}^{2}\right), \tag{5}
\end{equation*}
$$

where the integral is over slices of the FS, of thickness $d k_{z}$, parallel to the $x-y$ plane, and A_{l} is as defined in Eq. (3), with l replaced by its projection $l_{\perp}=(\boldsymbol{l}-\boldsymbol{l} \cdot \mathbf{\mathrm { z }})$.

III. SECONDARY LOOPS IN THE \boldsymbol{l} CURVE

As the point \mathbf{k} moves around the FS curve, the vector $l(\mathbf{k})$ traces out its own curve. Whether the two vectors \mathbf{k}
and l rotate in the same, or opposite, sense is determined by the local curvature κ of the FS. $[\kappa=d \theta / d s$, where θ is the angle $l(\mathbf{k})$ makes with x , and s the arc length along the FS. Hereafter, I rewrite $d k_{t}$ as $d s$.] A positive κ implies that \mathbf{k} and $l(\mathbf{k})$ rotate in the same sense. I shall restrict attention to FS curves in which κ is finite or zero everywhere, i.e., cusps are excluded. (Obviously, the FS curve cannot self-intersect.) If the FS is a convex closed curve (κ non-negative everywhere), the l curve is closed and simple (does not self-intersect). For example, for an elliptical FS with effective mass m_{x} and m_{y} along x and \mathbf{y}, respectively [Fig. 1(b)] the l curve is also an ellipse with semiradii $\hbar k_{F x} \tau / m_{x}$ and $\hbar k_{F y} \tau / m_{y}$ (τ is assumed isotropic). Using $A_{l}=\pi \hbar^{2} \tau^{2}\left(k_{F x} k_{F y}\right) / m_{x} m_{y}$ in Eq. (4a), I obtain the correct $\sigma_{x y}$ in the weak-field limit.

The more interesting cases arise when the FS is nonconvex and $l_{\mathbf{k}}[=|\boldsymbol{l}(k)|]$ is \mathbf{k} dependent. The l curve is then a nonsimple closed curve with the same symmetry as the FS. Suppose we move \mathbf{k} anticlockwise along a segment $P Q$ in which κ first changes from positive to negative, and then back to positive (Fig. 2). In the $l_{x}-l_{y}$ plane, $l(\mathbf{k})$ reverses its sense of rotation each time κ changes sign. Hence, if $l_{\mathbf{k}}$ takes on different values on the negative and positive κ segments, the l curve must intersect itself, describing a closed loop that does not encircle the origin. (To distinguish the closed loops from the single loop that encircles the origin, I refer to them as secondary and primary, respectively.) The circulation of the secondary loop is the same as (opposite to) that of the primary loop when l_{k} is smaller (larger) on the negative- κ segment, compared with its value on the neighboring segments (Fig. 2).

The elemental area $\delta A_{l}=\hat{\mathbf{z}} \cdot l \times \delta l / 2$ shares the same sign as the local FS curvature κ. Hence, as $l(\mathbf{k})$ sweeps out the secondary loop in the example above, the contri-

Fermi Surface

1 curve

FIG. 2. The l curve generated by a fourfold symmetric FS . The negative- κ segments on the FS along [110] give rise to negative secondary loops in the l curve. l_{1} and l_{2} are the scattering path-length vectors at the points where κ vanishes.
bution of segment PQ to the total area A_{l} includes the area A_{s} enclosed by the secondary loop, so the total area is

$$
\begin{equation*}
A_{l}=A_{p}(\text { primary })+\sum_{m} A_{s}(\text { secondary loop } m) \tag{6}
\end{equation*}
$$

The sign of A_{s} is the sign of each secondary loop as determined by its circulation. To summarize, each segment of the FS with negative κ generates a secondary loop that is positive (negative) if l_{k} on that segment is shorter (longer) than l_{k} on its neighbors. The area of the secondary loop adds algebraically to that of the primary loop. The sensitivity of A_{l} to the sense of circulation is conveniently expressed in the flux language [Eq. (4b)], since $A_{l} B$ is precisely the net magnetic flux threading the self-intersecting l curve. The geometric representation shows that $\sigma_{x y}$, rather than being a simple sum over independent segments, actually describes a global property of the FS curve (and the \mathbf{k} dependence of $l_{\mathbf{k}}$). $\sigma_{x y}$ cannot be computed by decomposing the 2D FS into a series of arcs and summing the contribution from each arc. This procedure introduces large errors at the points where arcs join (see Sec. VIII). Each segment's contribution is strongly influenced by the behavior of κ and l_{k} on its neighbors.

IV. ARBITRARY FS WITH ISOTROPIC l

Some general results are easily derived. First, I consider 2D closed FS curves, in which l_{k} is a constant l_{0} everywhere (the "isotropic-l" assumption). The area of all secondary loops collapses to zero, and the primary loop is a circle of radius l_{0}. Thus, in the isotropic- l approximation, all closed FS shapes have the same value for $\sigma_{x y}$, aside from the scaling factor l_{0}^{2}. [In this case the Hall coefficient reduces to the isoperimetric ratio (Sec. VI).] This simple result contradicts model calculations which purport to show that (within the isotropic-l assumption) $\sigma_{x y}$ may become electronlike even though the FS cross section has global holelike topology because large segments with electronlike curvature may dominate smaller segments with holelike curvature (see Sec. VIII).

As a second example, I consider an open FS in 2D (Fig. 3). The vector $l(\mathbf{k})$ assumes the same orientation at two Bragg planes separated by a reciprocal lattice vector. As we move along the FS between the planes, $l(\mathbf{k})$ traces out a closed loop which does not include the origin. If l_{k} is a constant, the area A_{l} vanishes. Hence, $\sigma_{x y}$ of all open surfaces is zero, unless l_{k} is anisotropic, in which case the sign of $\sigma_{x y}$ is determined by the segments with the largest l_{k}.

V. ARBITRARY CLOSED FS WITH k-DEPENDENT l

In general, when $l_{\mathbf{k}}$ varies with \mathbf{k}, the l curve will be far from circular and, usually, nonsimple. As discussed above, secondary loops are generated when κ is negative over finite FS segments. For concreteness, I consider the two closed Fermi surfaces in Fig. 4. both have fourfold

FIG. 3. The l curve (the two crescents) generated by an open FS with anisotropic, $l_{\mathbf{k}}$. If $l_{\mathbf{k}}$ is isotropic, $\sigma_{x y}$ vanishes.
symmetry in the plane and have segments with very large curvature sandwiched between segments of small curvature (the "fingers" along [100] in Fig. 4(a), and the "fjords" along [110] in Fig. 4(b)). If I assume that l_{k} is larger on the low- κ segments than on the high- κ segments on both FS (as drawn), their respective l curves are shown in Figs. 4(c) and 4(d), respectively. In Fig. 4(c), the "flatter" segments along [110] generate the secondary loops. Since l_{k} is longer there, the loops are negative. In Fig. 4(d), the large, negative- κ segments on the fjords generate secondary loops that are positive because l_{k} is shorter there. [If the opposite assumption on $l_{\mathbf{k}}$ is adopted (i.e., l_{k} is longer on the high-curvature segments), the signs of the secondary loops will reverse in both FS.]

These examples illustrate the crucial role the anisotropy in l_{k} plays in determining the sign of the contribution from a particular segment. In Fig. 4(d), the secondary loops are positive despite the existence of negative- κ segments, so $\sigma_{x y}$ is always positive, regardless of the magnitude of κ on the negative- κ segments. For a particular segment to generate a negative contribution to $\sigma_{x y}, l_{\mathbf{k}}$ must be longer on that segment than on its neighbors (in

FIG. 4. Two nonconvex closed FS and their corresponding l curves. In panel $a(\mathrm{~b})$, the arc length of each negative- κ segment is long (short). If $l_{\mathbf{k}}$ varies as drawn (short on the largecurvature segments), the l curves qualitatively resemble the closed curves in panel c (d). However, if $l_{\mathbf{k}}$ has the opposite variation, the l curves in c and d are interchanged.
addition to κ being negative).
The global nature A_{l} is nicely illustrated by the clover leaf FS in Fig. 4(b). Let us consider the limit in which both the arc length and l_{k} of the high-curvature segments (the fjords) become very short. (Thus, the conductivity $\sigma_{x x}$ is dominated by the positive- κ segments.) It might be inferred that the contribution of the fjords to $\sigma_{x y}$ is also negligible. However, examination of Fig. 4(d) shows this to be incorrect. In this limit, the secondary loops increase in size until they are collectively comparable in area to the primary loop, i.e., their contribution to A_{l} becomes comparable to that of the primary (and of the same sign). In general, small segments of high curvature strongly influence $\sigma_{x y}$; their contribution is readily assessed by examining \mathbf{A}_{l}.

For a large class of FS curves that possess negative- κ segments, the secondary loops are negative. This is true if $l_{\mathbf{k}}$ decreases with increasing $k=|\mathbf{k}|$ everywhere [as in Fig. 4(c)]. (A segment that has negative κ is, on average, closer to the origin than its positive- κ neighbors. Thus, the condition $d l_{\mathbf{k}} / d k<0$ implies that $l_{\mathbf{k}}$ assumes a smaller value on this segment than on adjacent segments.) A common example occurs when the energy contours near the Fermi level are similar in shape except for a uniform scale factor. Under uniform dilation, segments with large, positive κ [the "fingers" in Fig. 4(a)] have contours that are more widely separated compared with the smallκ segments. Conversely, segments with large, negative κ have closely separated contours [the "fjords" in Fig. 4(b)]. Thus, the velocity v_{k} is small in segments with large, positive κ (and large in segments with large, negative κ.) I will call such behavior of v_{k} "conventional." If I assume that τ is isotropic, then l_{k} is proportional to v_{k}, so that $d l_{\mathbf{k}} / d k<0$ is satisfied for both cases. Thus, FS shapes which are scale invariant always generate negative loops, provided τ is isotropic.

In general, however, the anisotropy of $l_{\mathbf{k}}$ is controlled by the physics of electron scattering, rather than by geometry. ${ }^{12}$ At high $T\left(\geq \Theta_{D}\right.$, the Debye temperature) scattering of the electrons by phonons tends to be isotropic so that the isotropic- τ assumption is valid. Dugdale and Firth ${ }^{13}$ report that this assumption accurately describes their Hall measurements in Cu and Al lightly doped with impurities when $T \geq \Theta_{D}$. In this regime, l_{k} is proportional to v_{k} over the whole FS. At low temperatures, however ($T \ll \Theta_{D}$), scattering by phonons becomes more intense on FS segments with small calipers. ${ }^{12}$ This tends to increase l_{k} on large- κ segments (the fingers and fjords in Fig. 4), relative to small- κ segments which have large diameters. In the case of Fig. 4(a), lowering T tends to favor the formation of negative loops [4(c)], whereas in the case of Fig. 4(b), it favors positive loops [4(d)].

In the impurity-scattering dominated regime at very low T, the scattering path length tends to become isotropic, since the average distance between impurities within the 2D plane is independent of direction. In this regime, A_{l} approaches πl_{0}^{2}, and $\rho_{x y}$ approaches a number Γ which just measures the area-to-circumference ratio (Sec. VI). Such a situation may be realized experimentally by studying the low- $T \sigma_{x y}$ in samples doped with impurities.

Thus, in the Bloch-Boltzmann theory with phonon scattering, ${ }^{12}$ the variation of the anisotropy $\Delta l / l$ with T defines three characteristic regimes. In the first regime ($T \geq \Theta_{D}$) the isotropic- τ approximation is valid, and \mathbf{k} dependence of l_{k} follows that of v_{k}. Since $\Delta l / l$ does not change with further increase in T, R_{H} is T independent at high temperatures. In the second regime, in the vicinity of $0.2 \Theta_{D}$, phonon scattering becomes highly anisotropic, and segments with high curvature and small caliper suffer increased scattering. R_{H} is strongly T dependent, often showing nonmonotonic behavior, as observed in transition metals. In the limit of zero T, however, the system approaches the isotropic-l approximation in the presence of impurities, and R_{H} is again a constant. (Inclusion of electron-electron interaction and weak localization effects complicate this regime.) The implications for $\rho_{x y}$ will be described next.

VI. VARIATION OF $\rho_{x y}$ WITH ANISOTROPY AND TEMPERATURE

Single band. Band-structure effects can greatly alter the value of the Hall coefficient R_{H} from the "freeelectron" value $1 /(n e)$. For a single band, it is customary to define the "Hall factor" $r \equiv(B / n e) \rho_{x y}$, with $\rho_{x y}=\sigma_{x y} /\left(\sigma_{x x} \sigma_{y y}\right)$. I consider crystals that have N-fold symmetry in the $x-y$ plane. If N is larger than 2 , the inplane conductivity is a scalar given by (Appendix A)

$$
\begin{equation*}
\sigma_{x x} /\left(e^{2} / h\right)=\sigma_{y y} /\left(e^{2} / h\right)=l_{\mathrm{av}} S /(2 \pi), \tag{7}
\end{equation*}
$$

where S is the FS circumference and l_{av}, the average of l_{k} over the FS, is given by

$$
\begin{equation*}
l_{\mathrm{av}}=\int d s \frac{l_{\mathrm{k}}}{S} \tag{8}
\end{equation*}
$$

Using Eqs. (4), (7), and (8), r is a scalar equal to

$$
\begin{equation*}
r=\Gamma A_{l} /\left(\pi l_{\mathrm{av}}^{2}\right) \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma=\left[(4 \pi) A_{\mathrm{FS}} / S^{2}\right] \tag{10}
\end{equation*}
$$

Here, $A_{\text {FS }}$ is the area enclosed by the FS curve [$n=A_{\mathrm{FS}} /\left(2 \pi^{2}\right)$] and A_{l} is the Stokes area defined in Eq. (3). Equation (9) will be used to compare the present approach with calculations of $\rho_{x y}$ on simplified FS models (Sec. VIII).

If we specialize to the isotropic- l case, r is simply equal to Γ (setting $l_{\mathrm{av}}=l_{0}$, and $A_{l}=\pi l_{0}^{2}$). By the isoperimetric inequality, $\Gamma \leq 1$, with equality holding for the circle. Thus, for a 2D metal with N-fold symmetry $(N>2)$ and an isotropic l_{k}, the Hall factor r is a direct measure of the FS area-to-circumference ratio, and is always ≤ 1. [The oft-repeated "rule" ${ }^{4}$ that $r \leq 1$ in a wide range of FS shapes is merely a restatement of the isoperimetric inequality. In effect, the author(s) tacitly adopt the isotropic-l assumption.] For $N=2$, the same argument applies if the quantity $4 \sigma_{x y} /\left(\sigma_{x x}+\sigma_{y y}\right)^{2}$ is used in place of r (see Appendix A). If the FS is circular, but l_{k} is anisotropic, the inequality $\int(d \theta / 2 \pi) l_{\mathrm{k}}^{2}>l_{\mathrm{av}}^{2}$, together with

Eq. (9), implies that $r>1$. Thus, any anisotropy in a circular FS always increases r, a result previously known. ${ }^{14}$

Returning to the general l_{k} case, Eq. (9) shows that r (or $\rho_{x y}$) is strongly influenced by three factors: the circumference S, the existence of negative curvature segments (which generate secondary loops in the l curve), and anisotropy in l_{k}. While the effect of S is always to reduce r, as described for the case of isotropic l, the anisotropy in l_{k} may reduce or enhance r, depending on the local κ.

There are four cases to consider. For definiteness, I assume fourfold symmetry (the extension to N-fold is direct). These curves are either convex (cases I and II) or nonconvex (cases III and IV). In case I (II), l_{k} attains a maximum (minimum) on segments of large curvature. The nonconvex curves are distinguished by the sign of their secondary loops which are either negative (case III) or positive (IV). The results of Appendix B show that r deviates from Γ significantly as $\Delta l / l$ changes from zero. An examination of the four trends shows that, in the high-temperature (isotropic- τ) regime, cases II and III may be considered as conventional in the sense of Sec. V (i.e., v_{k}, hence l_{k}, scales inversely as $|\mathbf{k}|$), while the other two are anomalous. In the conventional cases, the bound $r \leq \Gamma \leq 1$ is valid (at high T). (The other cases I and IV, which require anomalous variation of l_{k} over the FS, have the opposite bound, $r>\Gamma$.)

Multiple bands. When the FS is comprised of several pockets, the above considerations for R_{H} are altered in an interesting way. If the arguments above are generalized to multibands in the standard way, I get

$$
\begin{equation*}
e R_{H}=(2 \pi)^{3}\left[\sum_{i} A_{l i}\right] /\left[\pi \sum_{i} l_{\mathrm{av} i} S_{i}\right]^{2} \tag{11}
\end{equation*}
$$

where subscript i denotes the i th band. (Each FS pocket generates its own A_{l}.) Again the two important regimes are the isotropic- $\tau\left(T>\Theta_{D}\right)$ and isotropic-l $(T \rightarrow 0)$ extremes. It is convenient to introduce the reduced quantity $r^{\prime}=\left(\sum_{i} n_{i}\right) e R_{H}$, where n_{i} is the carrier density enclosed in pocket i.

In the isotropic- τ case $l_{\text {avi }}$ scales as the Fermi velocity in the i th pocket $v_{F i}$. First, consider the denominator in Eq. (13). By the isoperimetric inequality, $S_{i} \leq \sqrt{\left[(2 \pi)^{3} n_{i}\right] .}$ Thus, r^{\prime} satisfies the inequality

$$
\begin{equation*}
r^{\prime} \leq\left[\sum_{i} n_{i}\right]\left[\sum_{i} A_{l i}\right] /\left[\pi \sum_{i} l_{\mathrm{av} i} \sqrt{n_{i}}\right]^{2} \tag{12}
\end{equation*}
$$

In the important case when all pockets obey a quadratic dispersion (low carrier density metals), $l_{\text {avi }}$ is proportional to $\sqrt{\varepsilon_{F}} \sim \sqrt{n_{i}}$, viz.,

$$
\begin{equation*}
l_{\mathrm{av} i}=\beta \sqrt{n_{i}} \quad\left(\varepsilon \sim k^{2} \text { and } \tau \text { isotropic }\right) \tag{13}
\end{equation*}
$$

(where β is a constant). For the numerator, the discussion in Sec. V implies that for "conventional" variation of l_{k} in the isotropic- τ limit

$$
\begin{equation*}
\left|A_{l i}\right| \leq \pi l_{\mathrm{avi} i}^{2} \tag{14}
\end{equation*}
$$

Using inequality (14) and Eq. (13) in Eq. (12), I get the general bound

$$
\begin{align*}
r^{\prime} & \leq\left[\sum_{i} A_{l i}\right] /\left[\pi \beta^{2} \sum_{i} n_{i}\right] \\
& \leq\left[\sum_{i}\left(l_{\mathrm{av} i} / \beta\right)^{2}\right] /\left[\sum_{i} n_{i}\right]=1 \tag{15}
\end{align*}
$$

For this bound to hold, it is sufficient that τ be isotropic, and Eqs. (13) and (14) be valid in all pocketes. [We have assumed that all $A_{l i}$'s >0. If some of the $A_{l i}$'s are negative, the second inequality in Eq. (15) is stronger.] Actually, in physical systems, the interband anisotropy overwhelms the intraband anisotropy, i.e., $|\Delta l / l|_{\text {inter }} \gg|\Delta l / l|_{\text {intra }}$, so that the bound Eq. (14) is less crucial than Eq. (13) for the derivation [i.e., the former may be slightly violated without invalidating Eq. (15)]. Thus, in the high-T limit, the Hall coefficient of a 2D multiband system, normalized to the total carrier density (counting all FS pockets), is less than or equal to one, if quadratic dispersion is valid. For the special case when all FS pockets are circular r^{\prime} is precisely 1 (even if the $l_{\mathrm{av} i}$'s are all distinct). We encounter an example in the next section.

The zero- T case will be considered briefly. If $l_{\mathbf{k}}$ is isotropic with the same value in all FS pockets, Eq. (12) reduces to

$$
\begin{equation*}
r^{\prime} \leq\left[\sum_{i} n_{i}\right] M /\left[\sum_{i} \sqrt{n_{i}}\right]^{2} \equiv \Omega \tag{16}
\end{equation*}
$$

where M is the total number of pockets and the number Ω is as defined. It is readily seen that $\Omega \geq 1$ for all $\left\{n_{i}\right\}$, so that a useful bound cannot be imposed on r^{\prime} (except when all the pockets are circular, in which case $r^{\prime}=\Omega \geq 1$). This situation contrasts with the single-band case where r equals $\Gamma \leq 1$. The physical origin of this difference is that in the isotropic- l limit, all pockets contribute equally to $\sigma_{x y}$ whereas $\sigma_{x x}$ is dominated by the large caliper pockets. (We have not considered scattering mechanisms other than impurity scattering in this limit. The inclusion of electron-electron scattering may alter this picture significantly.)

VII. APPLICATIONS

$2 \mathrm{H}-\mathrm{NbSe}_{2}$. The dichalcogenide $2 \mathrm{H}-\mathrm{NbSe}_{2}$ is a quasi2D layered compound that undergoes a charge-densitywave (CDW) ${ }^{15}$ transition at 38 K . The band-structure results of Mattheiss ${ }^{16}$ show that the FS in the first zone is comprised of a cylindrical hole surface (FS1) with its axis along KH (Fig. 5). ${ }^{17}$ A second hole surface (FS2) is either closed (an oblate spheroid centered at A) or an open cylinder like FS1 with axis along ΓA (the calculation is not accurate enough to decide).

The measured ${ }^{18}$ Hall coefficient $R_{H}{ }^{\text {meas }}$ equals $+4.60 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{C}$, and changes by $<2 \%$ between 350 and 60 K . Below $\sim 40 \mathrm{~K}, R_{H}$ meas decreases steeply, becoming negative at low T. From Mattheiss' calculations, ${ }^{16,17}$ the FS cross sections are very close to circular. I compute the FS areas $A_{\mathrm{FS} 1}, A_{\mathrm{FS} 2}$ to be 0.129 and 0.245 , respectively, in units of $(2 \pi / a)^{2}$, which implies that $n_{1}=2.19 \times 10^{14} \mathrm{~cm}^{-2}, n_{2}=4.14 \times 10^{14} \mathrm{~cm}^{-2}$. (The lattice parameter $a=3.440 \AA$. Note that $2 n_{1}=n_{2}$, to a few

FIG. 5. The first zone of $2 \mathrm{H}-\mathrm{NbSe}_{2}$ showing the holelike Fermi surfaces calculated by Mattheiss (Ref. 16). The lower drawing shows a vertical section the the zone. The surface FS2 is either an oblate spheroid centered at A (broken lines) or an open cylinder (solid lines).
\% accuracy.) Thus, the total density predicted from the band structure is $n_{2 \mathrm{D}}=2 n_{1}+n_{2}=8.51 \times 10^{14} \mathrm{~cm}^{-2}$. (There are two FS1 pockets.) This number ($0.872 / \mathrm{Nb}$) is $\sim 13 \%$ lower than the "chemical" estimate of 1 hole/Nb. However, if I calculate the reduced quantity $r^{\prime}=n_{2 \mathrm{D}} e R_{H}$ meas , instead, I find that it equals 1.00, i.e.,

$$
\begin{equation*}
e R_{H}^{\text {meas }}=1 /\left(2 n_{1}+n_{2}\right) \quad(T \sim 350 \mathrm{~K}) . \tag{17}
\end{equation*}
$$

Since the system is quasi-2D above 38 K (the anisotropy ρ_{c} / ρ_{a} is between $20-30$, and T independent ${ }^{19}$), I may apply the reasoning (in reverse) of Eqs. (11)-(15) to this three-pocket system. From Eq. (11),

$$
\begin{equation*}
e R_{H}=(2 \pi)^{3}\left(2 A_{l 1}+A_{l 2}\right) / \pi\left(2 l_{\mathrm{av} 1} S_{1}+l_{\mathrm{av} 2} S_{2}\right)^{2} \tag{18}
\end{equation*}
$$

As the FS pockets are close to circular, $A_{l i}=\pi l_{\mathrm{avi}}{ }^{2}$, and
 Eq. (18), and comparing with the measured value in Eq. (17), I obtain the equation $\left(2 l_{\mathrm{av} 1}^{2}+l_{\mathrm{av} 2}{ }^{2}\right) /\left(2 l_{\mathrm{av} 1}\right.$ $\left.+l_{\mathrm{av} 2} \sqrt{2}\right)^{2}=\frac{1}{4}$, which has the solution $l_{\mathrm{av} 1} / l_{\mathrm{av} 2}=1 / \sqrt{2}$, i.e., the path length on FS1 is shorter than that on FS2 by the factor $\sqrt{2}$. Since the Fermi velocity ratio $v_{F 1} / v_{F 2}=1 / \sqrt{2}$ (both FS1 and FS2 have quadratic dispersion ${ }^{16}$), I conclude that at 350 K the scattering time is isotropic, and that the high- T_{H} in $2 \mathrm{H}-\mathrm{NbSe}{ }_{2}$ confirms Eq. (15).

The two assumptions that the dispersion in NbSe_{2} is 2D above 60 K , and that the FS cross sections are as given by Mattheiss, provide a quantitatively accurate and self-consistent analysis of the high- T Hall coefficient. The scattering time is found to be isotropic, and the scattering path lengths scale as the Fermi velocities in the two inequivalent pockets, as expected for $T \geq \Theta_{D}$. The self-consistency achieved favors an open cylinder for FS2 over an oblate spheroid.

This system should also provide a test of the $T \rightarrow 0$ case [Eq. (16)], but the situation below the CDW transition is quite complicated. Magnetothermal oscillation experiments ${ }^{17}$ below 3.5 K reveal the existence of a small FS pocket that is not apparent in the band structure. The large swing of R_{H} to negative values implies a drastic change in FS topology.

Layered cuprate perovskites. An important class of
quasi-2D conductors are the cuprate oxides that become superconducting at high T. Conductivity anisotropies in these families range from 10^{2} (in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ or " $1: 2: 3$ ") to 10^{4} in the Bi -based materials $\left(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}{ }^{\text {" }} \mathrm{Bi}\right.$ 2:2:1:2" and $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CuO}_{6}$ " Bi 2:2:0:1"). ${ }^{20}$ The Hall coefficient has been extensively studied in single crystals of these compounds as well as in $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4}$ (" 214 "). ${ }^{21}$ There appears to be a pervasive pattern of behavior in the R_{H} vs T curves. ${ }^{22}$ In the compounds 1:2:3, Bi 2:2:1:2, and $214(0.14<x<0.25), R_{H}$ is strongly T dependence, and approximates the behavior R_{H} $=(c+d T)^{-1}$. In Bi 2:2:0:1, the T dependence is less pronounced, but still significant.

The interesting question is Can the T dependence of R_{H} (particularly in 1:2:3) be explained within the conventional Bloch-Boltzmann theory, assuming phonon scattering alone? As discussed in Sec. V, in the conventional theory R_{H} is T dependent only if the anisotropy $\Delta l / l$ changes with T. In principle, even with one band, an increase of $\Delta l / l$ with decreasing T can cause R_{H} to grow significantly (as in case III).

However, if phonon scattering alone is operative, the variation of $\Delta l / l$ must display the three distinct regimes determined by Θ_{D} (as discussed in Sec. V). At $T>\Theta_{D}\left(\sim 440 \mathrm{~K}\right.$ in 1:2:3), R_{H} should saturate to a T independent value. In 1:2:3, Fiory and Grader have measured ${ }^{23} R_{H}$ up to 600 K , and find no evidence of saturation. More high-temperature measurements of R_{H} are clearly desirable. At very low T, R_{H} again saturates to a different constant. Unfortunately, the low- T regime is inaccessible in 1:2:3. Interestingly, in $\mathrm{Nd}_{2-x} \mathrm{Ce}_{x} \mathrm{CuO}_{4}$, in which the superconductivity can be suppressed with an 8-T field, Wang et al. ${ }^{24}$ have found that R_{H} remains strongly T dependent down to 2 K , in contrast with $\sigma_{x x}$ which is T independent below 20 K . The persistence of the monotonic variation of R_{H} with T in these cuprates over such a wide range in T is anomalous. The absence of any saturation in R_{H} in 1:2:3 at T above 440 K (if further corroborated) shows that the T dependence is not caused by phonon scattering. This anomaly shows, even more clearly than the linear- T behavior of the resistivity, that the scattering mechanism is not phononic alone but dominated by an anomalous mechanism, probably electronic in origin.

VIII. COMPARISON WITH PREVIOUS MODEL CALCULATIONS

Over the years there have been systematic efforts ${ }^{4-8}$ to understand the factors that influence the weak-field $\sigma_{x y}$. Most of these studies have relied on direct calculations on families of FS shapes approximated by simple geometric figures (cubes, spheroids, dodecahedra, etc.). Some empirical rules have been deduced, based on these studies. However, due to their empirical nature, these rules have limited ranges of validity. A significant advantage of the present geometric picture is that many such calculations are greatly simplified. Moreover, the insight afforded clarifies why certain approaches fail in the weak-field limit.

First, we consider a cubic FS in 3D (or a square in 2D). Early attempts ${ }^{4}$ found that, in the isotropic-l approximation, r equals $\frac{1}{2}$ in both 3D and 2D. ("Edge" and "face" of a 3D polygon will be taken to mean "vertex" and 'side" when referring to a 2D polygon.) Subsequently, it was realized that the large Hall angle at the sharp edges violated the weak-field assumption. Instead, if the edges are replaced by a rounded surface of curvature $1 / \Delta k$, then r is found to be $\pi / 4$ (in the limit $\Delta k \rightarrow 0$). ${ }^{6}$ This may be seen to be a direct consequence of the isoperimetric inequality. By Eq. (9), r simply equals Γ (when l is isotropic) for any value of Δk, and $\Gamma=\pi / 4$ for a square. It is instructive to see why the direct computation yields an r $\left(=\frac{1}{2}\right)$ that differs from the limiting approach $(\pi / 4)$. In the former scheme, the velocity [hence $l(\mathbf{k})$] is a constant, say $v \widehat{\mathbf{x}}$, along one face of the cube (or one side of the square in 2D), and another constant $v \widehat{\mathbf{y}}$ along an adjacent face. I assume $\mathbf{E} \| \widehat{\mathbf{x}}$ and $\mathbf{H} \| \widehat{\mathbf{z}}$. Under the Lorentz force, all electrons on the (100) face and within δk of the edge "spill" over the edge onto the (010) face $(\delta k=e \tau v H / \hbar){ }^{5} \quad$ The total Hall current i_{y} equals $\left(4 / h^{3}\right) \delta k\left(2 k_{F} e E \tau / \hbar\right) e v \quad[\mathrm{I}$ will call this the "edgecurrent" argument. For instance, this argument is central to the "planar-faced energy surface" (PFES) scheme, ${ }^{5}$ which approximates the FS by a finite number of plane faces.]

Now, since \mathbf{v} is a constant vector over each planar face, the whole face maps into a single point $l(\mathbf{k})=\mathbf{v} \tau$, when we go into the space of $l(\mathbf{k})$. Therefore, the edgecurrent model for an N-sided FS defines only N points in l space, instead of a closed curve. Without specifying in detail the path between two two points, the computation of A_{l} (and hence, r) is left ambiguous. In general, then, $\sigma_{x y}$ cannot be computed by approximating a FS by a finite number of planar surfaces (or polygon in 2D). The contribution of the planes to $\sigma_{x y}$ is identically zero (because their image in l space has zero measure). On the other hand, the jump in the angle of \mathbf{v} at the edge actually accounts for all of the area, but its path is left undefined in such models. The path corresponding to the edge-current argument disagrees with the isotropic-l path.

Six years after the introduction of the PFES scheme, Cowley and Allgaier (CA) ${ }^{7}$ in effect showed its failure in

FIG. 6. The star-shaped FS studied in Ref. 6. On each plane surface, $l_{\mathbf{k}}$ varies linearly from l_{1} to l_{0} as shown. The l curve of this FS resembles a fan with four blades. (Overlapping lines are drawn displaced for clarity.)
the weak-field limit by rounding the sharp cusps in the four-fold "star" FS (Fig. 6). (CA relegate the PFES results to the "intermediate-field" regime, but this has not been justified, to my knowledge.) It is interesting to derive their results from the present picture. To study anisotropy effects, CA also let $l_{\mathbf{k}}$ vary linearly on each face from l_{0} on the " α edge" to l_{1} on the " β edge." They obtain

$$
r=(\pi / 8)(1+\sin \alpha-\cos \alpha)\left(1+6 q+q^{2}-8 q \alpha / \pi\right)
$$

where $q=\left(l_{1}-l_{0}\right) /\left(l_{1}+l_{0}\right)$. CA implicitly assume that $l_{\mathbf{k}}$ is frozen at the value $l_{0}\left(l_{1}\right)$ when \mathbf{k} moves around the smoothed α edge (β edge). Thus, the l curve is a complicated self-intersecting loop that resembles a fan with four blades (Fig. 6). Its Stokes area is that of the hub minus that of the blades, i.e.,

$$
\begin{aligned}
A_{l} & =\pi l_{0}^{2}-\pi\left(l_{1}^{2}-l_{0}^{2}\right)(1-2 \alpha / \pi) \\
& =\pi l_{0}^{2}\left(1+6 q+q^{2}-8 q \alpha / \pi\right) /\left(1+q^{2}\right)
\end{aligned}
$$

Using the result that $l_{\mathrm{av}}=\left(l_{0}+l_{1}\right) / 2$, we see that r is just the product of $\Gamma=(\pi / 8)[1+\sin \alpha-\cos \alpha]$ and the factor $A / \pi l_{\mathrm{av}}{ }^{2}$, in agreement with Eq. (9). [When q is $<0(>0)$ this example belongs to case III (IV), as described in Sec. V.]

Banik and Overhauser ${ }^{8}$ also use the edge-current argument to explain why aluminum has an electron-type weak-field $\sigma_{x y}$ even though the FS has global holelike topology. They approximate the FS by N arcs joined at a sharp cusp. Using the isotropic-l approximation, they purport to show that r is determined by the arcs and is therefore electronlike. However, in the weak-field regime, the results of Sec. VI show that r will be strictly equal to Γ, and no change in sign can be expected. (The contributions of the cusps, if appropriately rounded and the limit $\Delta k \rightarrow 0$ taken, must dominate the negative curvature arcs to give precisely πl_{0}^{2} for A_{l}, as shown in Sec. IV.) Banik and Overhauser ${ }^{8}$ add the caveat that their model does not apply to the weak-field limit (the cusps are assumed to be infinitely sharp).

The present picture also shows a way to calculate accurately the weak-field $\sigma_{x y}$ of an arbitrary FS. The prescription is that the actual summation must be done in l space. If a 2D FS is approximated by an N-sided polygon, the map into l space consists of N points. $\sigma_{x y}$ is best estimated by computing the Stokes area of the l curve approximated by joining the N points with smooth arcs, rather than by computing the edge current between two adjacent faces. [From the preceding, it is also necessary to know (or specify) how l_{k} changes from face to face, because by assuming an isotropic l_{k}, one merely recovers $r=\Gamma$.]

IX. DISCUSSION

The simple geometric representation for $\sigma_{x y}$ in 2D suggests that there may exist a connection between the flux threading A_{l} and the Hall current, that is more fundamental than indicated by the Boltzmann derivation. Although I have not uncovered this connection, it seems
that there are two lines of speculation worth pursuing. Is there a relationship between Eqs. (4) and the quantized Hall effect ${ }^{24}$ (QHE), i.e., is the former a semiclassical "echo" of the latter? A positive answer may seem unlikely since the two phenomena are at opposite extremes of field. [In the QHE case, $\sigma_{x y} /\left(e^{2} / h\right)=n \phi_{0} / B$, i.e., $\sigma_{x y}$ varies inversely with B, whereas in the weak-field limit, $\sigma_{x y}$ is linear in B.] Nonetheless, the fact that in both limits the number of flux quanta (in a physically well-defined area) precisely determines $\sigma_{x y}$ seems to me highly suggestive. [The extra factor of 2 in Eq. (4b) is due to spin degeneracy.]

The close similarity between A_{l} and magnetic flux threading through a twisted loop also suggests the following picture. Equation (4b) implies that the weak-field $\sigma_{x y}$ normalized to e^{2} / h is the total change in the AharonovBohm phase $\Delta \phi / 2 \pi$ of a charged particle taken around the closed l curve. Within the time τ, each electron maintains phase coherence (I assume τ is the dephasing time). It may be possible to relate A_{l} to the phase change of electrons on the FS in the time τ, and from the phase change to $\sigma_{x y}$, in suggestive analogy with Thouless et al. ${ }^{25}$ One may also interpret the area A_{l} as a measure of the "divergence" of the flow of the electron gas in the time τ. (If the FS is flat, both the divergence and A_{l} are zero, whereas for a convex FS both quantities are a maximum.) It is plausible that the notion of spreading implied by the divergence is related to the phase change of the total wave function of the system, through the flux penetrating the spreading area in the time τ, although this has not been demonstrated.

These speculations aside, the geometric representation provides a powerful way to assess the Hall current in quasi-2D systems regardless of FS shape. A major difficulty in comparing the experimental $\sigma_{x y}$ with predictions of band-structure models is that the integral in Eq. (1) is difficult to estimate. ${ }^{1,2}$ However, most of this difficulty stems from working in the wrong space, as I have argued here. In \mathbf{k} space, $\sigma_{x y}$ is dominated by FS regions with very large curvature, and schemes such as the edge-current argument exacerbate errors by introducing artificially sharp edges. By going into the space of l, these difficulties are largely avoided. Part of the appeal of the geometric representation is its simplicity. Regardless of the FS shape, $\sigma_{x y}$ may be effectively calculated, often simply by approximating the area A_{l}, as shown in Appendix B.

The new perspective enables one to disentangle the influences of three major factors that determine $\sigma_{x y}$ the ratio of $4 \pi A_{\mathrm{FS}} / S^{2}$, the anisotropy λ, and the local curvature κ. The separation of physical effects (scattering) from purely geometric effects (such as the isoperimetric inequality) clarifies the variation of R_{H} with T. It seems that Hall measurements performed near the Debye temperature are considerably easier to compare with bandstructure calculations, than those obtained at low T. In both single and multiband systems, the bound $r \leq 1$ is valid under a wide range of conditions for $T \geq \Theta_{D}$, and this is often sufficient to discriminate competing models applied to novel metals. Where the conventional Bloch-

Boltzmann theory with phonon scattering is valid, the analysis is quite effective, as in the case of $2 H-\mathrm{NbSe}_{2}$. Unfortunately, there seems to be a paucity of high- T Hall results in anisotropic (2D) metals. In systems, such as the cuprate perovskites, where the conventional theory fails, the present analysis shows why the $R_{H}-T$ profile is anomalous, and a nonphononic scattering mechanism is required.

ACKNOWLEDGMENTS

I thank Paul Wiegmann for helpful discussions. This research is supported by the Office of Naval Research (Contract No. N00014-90-J-1013) and a Grant from the Seaver Foundation.

APPENDIX A

In 2D, the diagonal components of the conductivity are given by ${ }^{12} \sigma_{x x}=\left(e^{2} / h \pi\right) \int d s l_{k} \cos ^{2} \theta_{\mathrm{k}}$, where the integral is over the FS, and $\theta_{\mathbf{k}}$ is the angle between $l(\mathbf{k})$ and $\widehat{\mathbf{x}}$. For a 2D crystal with N-fold symmetry $(N>2)$, I divide the FS into N identical wedges, which may be mapped into each other by one of the crystal group rotations, except that $\theta_{\mathbf{k}}$ is changed to ($\theta_{\mathbf{k}}+m \alpha$) on the m th wedge. Hence, $\sigma_{x x}$ simplifies to

$$
\begin{equation*}
\sigma_{x x} /\left(e^{2} / h\right)=\pi^{-1} \int_{\Delta S} d s l_{\mathbf{k}} \sum_{m=1}^{N} \cos ^{2}\left(\theta_{\mathbf{k}}+m \alpha\right) \tag{A1}
\end{equation*}
$$

where $\alpha=(2 \pi) / N$. The integration is confined to one wedge of length $\Delta S=S / N$. The sum equals $N / 2$. Using the relationship $l_{\mathrm{av}} S=N \int d s l_{\mathrm{k}}$, I get Eqs. (7) and (8). The case $N=2$ needs a slight modification. Adding $\sigma_{x x}$ and $\sigma_{y y}$ together, I get $\left(\sigma_{x x}+\sigma_{y y}\right) / 2=\left(e^{2} / h\right)\left(l_{\mathrm{av}} / 2 \pi\right) S$. The discussion in Sec. VI on $\rho_{x y}$ can be extended to include the $N=2$ case by considering the quantity $4 \sigma_{x y} /\left(\sigma_{x x}+\sigma_{y y}\right)^{2}$, instead of $\rho_{x y}$ itself.

APPENDIX B

The variation of r with anisotropy with a FS with fourfold symmetry is estimated here for the four cases considered in Sec. V.

Cases I and II are closed convex curves with four short segments that have large κ. The extreme example is a square of side $2 k_{F}$ with rounded corners that have curvature $1 / \Delta k$. I assume that the anisotropy in $l_{\mathbf{k}}$ is given by a Gaussian curve centered at $s=s_{0}$, viz.,

$$
\begin{equation*}
l(s)=l_{0}+\Delta l \exp \left[-\left(s-s_{0}\right)^{2} / \Delta s_{1}^{2}\right] \tag{B1}
\end{equation*}
$$

Δl is positive (negative) in case I (II). The width Δs_{1} is chosen to satisfy $\Delta s_{1} / \Delta k=\pi / 4$, so that $l(s)$ is essentially constant over the flat segments. With this variation in $l(s), r$ becomes [Eq. (9)]
$r=\Gamma\left[1+(\sqrt{\pi}) \lambda+(\sqrt{\pi} / 8) \lambda^{2}\right] /\left[1+\left(\pi^{3 / 2} / 8\right) \eta \lambda\right]^{2}$,
where $\lambda=\Delta l / l_{0}$ and $\eta \equiv \Delta k / k_{F} \ll 1$. For positive λ
(case I), r increases linearly with λ, and then saturates to the value c / η^{2} (c a constant) for very large λ. In this limit, the corners dominate both $\sigma_{x x}$ and $\sigma_{x y}$, so that r is mainly determined by a small FS "pocket" of effective area $\pi \Delta k^{2}$. For negative Δl (case II), r decreases monotonically to zero (as λ approaches -1 , its largest possible negative value). This limit corresponds to a large FS with flat surfaces. The isotropic- τ regime $\left(T \geq \boldsymbol{\theta}_{D}\right)$ corresponds to case II, whereas the isotropic-l regime corresponds to the point $\lambda=0$. (Case I is anomalous at high T since the velocity at the corner is usually lower than on the flat face.)

In cases III and IV, the negative- κ segments generate secondary loops which are negative and positive, respectively (see Fig. 4). First, consider a negative loop. Its area I estimate as follows. At the two points on the FS where κ vanishes, let the vector $l(\mathbf{k})$ be $l_{1}\left(\mathbf{k}_{1}\right)$ and $l_{2}\left(\mathbf{k}_{2}\right)$, and their angles (relative to \mathbf{x}) be θ_{1} and θ_{2}, respectively (see Fig. 2). Since \mathbf{k}_{1} and \mathbf{k}_{2} are "turning" points of $l(\mathbf{k})$, and are symmetrically located around a symmetry axis,
the vectors l_{1} and l_{2} define the cone that the secondary loop subtends at the origin $\left(\left|l_{1}\right|=\left|l_{2}\right|=l_{c}\right)$. The cone angle is the difference angle $\Delta \theta=\theta_{2}-\theta_{1}$ given by $\Delta \theta$ $=\int_{1}^{2} d s \kappa$. The secondary loop may be approximated by an ellipse of semiradii $\Delta l / 2$ and $l_{c} \sin (\Delta \theta / 2)$. [$\Delta l=\left(l_{\max }-l_{0}\right)$, where $l_{\max }$ is the maximum value of l_{k} on PQ and l_{0} the minimum value of l_{k} over the whole FS.] The area A_{s} for a single loop is approximated by

$$
\begin{equation*}
A_{s} \sim(\pi / 2) \Delta l l_{c} \sin (\Delta \theta / 2) \tag{B3}
\end{equation*}
$$

I obtain the criterion for a negative $\sigma_{x y}$ by making $4 A_{s}$ larger than A_{p}. If I approximate l_{c} by $l_{0}+\Delta l / 2$) and A_{p} by πl_{0}^{2}, I find that the critical anisotropy (at which $\sigma_{x y}$ vanishes) is given by $\left(\Delta l / l_{0}\right)_{c}$ $=\{1+[\sec (\Delta \theta / 2)] / 4\}^{1 / 2}-1$.

For case III curves, the area A_{l} is the difference between A_{p} and $N_{s} A_{s}$, with A_{s} given by Eq. (B3). If $l(s)$ is given by Eq. (B1) $(\Delta l>0)$, and A_{p} is approximated by πl_{0}^{2}, the Hall factor equals

$$
\begin{equation*}
r=\Gamma[1-\lambda(1+\lambda / 2) \sin (\Delta \theta / 2)] /[1+4 \lambda(\Delta s / S) \sqrt{\pi}]^{2},(\lambda>0) \tag{B4}
\end{equation*}
$$

The width Δs is of the order $\Delta \theta / 2\left|\kappa_{n}\right|$, where κ_{n} is the average curvature on the negative- κ segments. As λ increases from $0, r$ decreases linearly from Γ, reaching zero at $\left(\Delta l / l_{0}\right)_{c}$. For very large λ, r saturates to the negative value $-\Gamma(S / \Delta s)^{2} / 16 \pi$. The variation of case IV may be estimated from Eq. (B4) with $\lambda<0$. As $|\lambda|$ increases from $0, r$ increases linearly, eventually saturating to a positive value as $\lambda \rightarrow-1$.

The high- T, isotropic- τ regime corresponds to case III (negative secondary loops), but r may be of either sign depending on λ. As discussed in the main text, case IV is anomalous since it requires negative- κ segments to have shorter l_{k}. For example, in Fig. 4(b) one physically expects l_{k} to be larger at the fjords since the velocity is higher there, so that negative loops are generated at high T.
${ }^{1}$ C. M. Hurd, The Hall Effect in Metal and Alloys (Plenum, New York, 1972).
${ }^{2}$ The Hall Effect and Its Applications, edited by C. L. Chien and C. R. Westgate (Plenum, New York, 1979).
${ }^{3}$ M. Tsuji, J. Phys. Soc. Jpn. 13, 979 (1958).
${ }^{4}$ R. S. Allgaier, in The Hall Effect and its Applications (Ref. 2), p. 375.
${ }^{5}$ R. S. Allgaier, Phys. Rev. 165, 775 (1968).
${ }^{6}$ R. S. Allgaier and Robert Perl, Phys. Rev. B 2, 877 (1970).
${ }^{7}$ P. H. Cowley and R. S. Allgaier, Philos. Mag. 29, 111 (1974).
${ }^{8}$ N. C. Banik and A. W. Overhauser, Phys. Rev. B 18, 1521 (1978).
${ }^{9}$ J. J. Rhyne, Phys. Rev. 172, 523 (1969); A. Fert, Physica B 86, 491 (1976).
${ }^{10}$ L. M. Falicov, A. B. Pippard, and P. R. Sievert, Phys. Rev. 151, 498 (1966); L. M. Falicov and P. R. Sievert, Phys. Rev. 138, A88 (1965).
${ }^{11}$ H. Jones and C. Zener, Proc. R. Soc. A 145 (1934); see Colin M. Hurd, in The Hall Effect and its Applications (Ref. 2), p. 1, for an excellent survey.
${ }^{12}$ J. M. Ziman, Phys. Rev. 21, 1320 (1961); J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).
${ }^{13}$ J. S. Dugdale and L. D. Firth, J. Phys. C 2, 1272 (1969).
${ }^{14}$ K. Boning, Phys. Konden. Mater. 11, 177 (1970).
${ }^{15}$ J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Adv. Phys. 24,

117 (1975).
${ }^{16}$ L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
${ }^{17}$ John E. Graebner and M. Robbins, Phys. Rev. Lett. 36, 422 (1976).
${ }^{18}$ H. N. S. Lee, H. McKinzie, D. S. Tannhauser, and A Wold, J. Appl. Phys. 40, 602 (1969).
${ }^{19}$ T. W. Jing and N. P. Ong (unpublished).
${ }^{20}$ S. W. Tozer, A. W. Kleinsasser, T. Penney, D. Kaiser, and F. Holtzberg, Phys. Rev. Lett. 59, 1768 (1987); S. J. Hagen, T. W. Jing, Z. Z. Wang, J. Horvath, and N. P. Ong, Phys. Rev. B 37, 7928 (1988); D. A. Brawner, Z. Z. Wang, and N. P. Ong, ibid. 40, 9329 (1989).
${ }^{21}$ For a review, see N. P. Ong, in Physical Properties of HighTemperature Superconductors II, edited by D. M. Ginsberg (World Scientific, Singapore, 1990), p. 459.
${ }^{22}$ J. Clayhold, N. P. Ong, Z. Z. Wang, J. M. Tarascon, and P. Barboux, Phys. Rev. B 39, 7324 (1989).
${ }^{23}$ A. T. Fiory and G. S. Grader, Phys. Rev. B 38, 9198 (1988).
${ }^{24}$ Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang (unpublished); also see Physical Properties of HighTemperature Superconductors II (Ref. 21).
${ }^{25}$ For a survey, see The Quantum Hall Effect, edited by Richard E. Prange and Steven M. Girvin (Springer, Berlin, 1987).
${ }^{26}$ D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982); D. J. Thouless (Ref. 25).

