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The Hall conductivity o.
~ of a two-dimensional metal in the weak-field, semiclassical, limit has a

simple geometric representation. o„~ (normalized to e /h, where e is the electron charge and h is
Planck's constant), is equal to twice the number of flux quanta $0 threading the area A&, where A& is

the total "Stokes" area swept out by the scattering path length l(k) as k circumscribes the Fermi
surface (FS). From this perspective, many properties of o.„~ become self-evident. The representa-
tion provides a powerful way to disentangle the distinct contributions of the three factors, FS area-
to-circumference ratio, anisotropy in Ik, and negative FS curvature. The analysis is applied to the
Hall data on 2H-NbSe2 and the cuprate perovskites. Previous model calculations of o.„~ are critical-

ly reexamined using the new representation.

I. INTRODUCTION

In the weak-field semiclassical limit, the Hall conduc-
tivity' o. of a metal is very sensitive to the local curva-
ture of the Fermi surface (FS). Since FS shapes may be
quite complex, it is usually a difficult task to compare the
observed o.„with predictions of band structure. In two-
dimensional (2D) systems, however, there exists an ap-
pealing geometric representation of the weak-field Hall
conductivity that brings out explicitly its precise relation
to FS curvature. The representation clarifies the way in
which the local curvature and anisotropy in the scatter-
ing length interact to determine the Hall current. It also
provides insight into the many attempts to systematize
model calculations of 0. using highly idealized FS mod-
els4 '

The geometric interpretation is as follows. Consider
moving a point k around the FS (Fig. 1). The "scattering
path length" vector, defined as l(k) =vi, rz, sweeps out, in
the plane l„—l (the "I space"), a closed curve that is
usually more complicated than the FS curve
(irtv&=t)E&/t)k and ~i, is the relaxation time). For in-
stance, the I curve may self-intersect at several points.
Regardless of the FS shape, however, the weak-field 0 y
(normalized to e /h) is equal to twice the number of flux
quanta Po threading the I curve (e is the electron charge
and h Planck's constant).

In Sec. II the Jones-Zener solution of the Boltzmann
equation is recast as a map from k space to I space, to
derive the representation. The nature of the l curve is
discussed in Sec. III with emphasis on self-intersecting
segments. The geometric consequences of this represen-
tation are described in Secs. IV and V, and the variation
of p „ in Secs. VI. In Sec. VII, applications to 2H-NbSe2,
and the cuprate perovskites are discussed. In the former,
a surprisingly good agreement between the band struc-
ture and the high-temperature Hall coefficient is ob-
tained. In the latter, the conventional Boltzmann model
fails. The analysis provides a clear statement of what is

anomalous about the temperature dependence of RH.
Previous model calculations are compared in Sec.
VIII. I conclude with a discussion of the physics under-
lying the geometric representation in Sec. IX.

II, GEOMETRIC REPRESENTATION OF cr y

I assume that the Boltzmann approach is valid, and
anomalous contributions to the Hall scattering (such as
magnetic skew scattering ) and magnetic breakdown
effects' are absent. From the Jones-Zener" solution to
the Boltzmann equation, the weak-field Hall conductivity
is
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Fermi Surface

FICr. 1. (a) Mapping from the FS in k space to the I curve in
the space of l(k). (b) Map from an elliptical FS to its I curve,
assuming isotropic ~.
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where fz is the Fermi-Dirac distribution and e the electronic energy. The magnetic field 8 is taken
~~

—z, and the elec-
tric field E~~x. For my purpose it is instructive to derive Eq. (1) as follows. The Hall current JH arises from the second-
order displacement of the FS by 5k+ =(equi, /A)v XB, i.e., JH =2e gi, u»(5kii V)5fE. Here, 5fE, the first-order displace-
ment due to E, is given by (erz/A')(E. V)fi, . Thus, JH=2E(e /A)B gk( —Bf&/r)e)(u rk)(vXB) V(u, rk), which is
equivalent to Eq. (1). For a 2D system (at temperatures T (&Fermi energy EF), Eq. (1) simplifies to

o.„=(e /2m. R)f dk, ~v~ '[u r„(vXB) V(u„rk)],

(2)

where ~v~
' is the density of states factor, k, the com-

ponent of k along t (the unit vector tangential to the FS
curve), and the integral, taken around the FS curve, is
evaluated at eF. Since v X 8/~ v

~

=Bt in a 2D system, the
integral reduces to B f dk, (t Vl„)l» =BAi, with AI
defined by

Ai =(B/B) f dl X 1 /2 . (3)

AI is the area swept out by the vector 1(k) as k moves
around the FS. Because its sign is determined by the
"circulation" of l(k), I will call it the "Stokes" area. In
terms of A, , Eq. (2) reduces to

o„»=(e /h)Ai/(n. lii)

= (e'/h )2(y/yo),

(4a)

(4b)

where l~=&fi!eB is the magnetic length, P=BA& the
magnetic fiux threading the 1 curve, and $0= h /e the fiux
quantum.

The transformation from an integral in k space [Eq.
(1)] to one in 1 space [Eq. (3)] is valid for arbitrary l(k)
and an arbitrary 2D FS. The geometric representation
immediately implies that (regardless of the symmetry of
the 2D crystal) o „ is a scalar quantity independent of ro-
tation of the x-y axes relative to the crystal's principal
axes in the x-y plane. (The shape of the 1 curve cannot
depend on the axis orientation)

Equations (3) and (4) are related to Tsuji's well-known
expression for o. in terms of FS curvature. However,
Tsuji s expression (an integral in k space) makes no refer-
ence to the curve in l space. The geometric relation be-
tween o„» and the fiux threading Ai (especially the
Stokesian nature of the 1 curve), and the many implica-
tions for real metals, seem to have gone unnoticed. '

The three-dimensional (3D) generalization of Eq. (4a) is

o„=(e2/lt) f (dk, /2rr)Ai(k, )/(+le), (5)

and 1 rotate in the same, or opposite, sense is determined
by the local curvature Ir of the FS. [a =d 8/ds, where 9 is
the angle l(k) makes with x, and s the arc length along
the FS. Hereafter, I rewrite dk, as ds. ] A positive a. im-
plies that k and 1(k) rotate in the same sense. I shall re-
strict attention to FS curves in which ~ is finite or zero
everywhere, i.e. , cusps are excluded. (Obviously, the FS
c'urve cannot self-intersect. ) If the FS is a convex closed
curve (a non-negative everywhere), the 1 curve is closed
and simple (does not self-intersect). For example, for an
elliptical FS with effective mass I and m along x and
y, respectively [Fig. 1(b)] the 1 curve is also an ellipse with
semiradii AkF„r/m, and iiikF r/m» (r is assumed isotro-
pic). Using Al=m. iri r (kF kF )/m, m in Eq. (4a), I ob-
tain the correct o. in the weak-field limit.

The more interesting cases arise when the FS is non-
convex and li, [=~l(k)j] is k dependent. The 1 curve is
then a nonsimple closed curve with the same symmetry as
the FS. Suppose we move k anticlockwise along a seg-
ment PQ in which ir first changes from positive to nega-
tive, and then back to positive (Fig. 2). In the l, —

1»

plane, l(k) reverses its sense of rotation each time a
changes sign. Hence, if Ik takes on difFerent values on the
negative and positive ~ segments, the I curve must inter-
sect itself, describing a closed loop that does not encircle
the origin. (To distinguish the closed loops from the sin-
gle loop that encircles the origin, I refer to them as secon-
dary and primary, respectively. ) The circulation of the
secondary loop is the same as (opposite to) that of the pri-
mary loop when lk is smaller (larger) on the negative-a'
segment, compared with its value on the neighboring seg-
ments (Fig. 2).

The elemental area 5AI=z I X6I/2 shares the same
sign as the local FS curvature a. Hence, as l(k) sweeps
out the secondary loop in the example above, the contri-

12

lx
where the integral is over slices of the FS, of thickness
dk„parallel to the x-y plane, and AI is as defined in Eq.
(3), with 1 replaced by its projection li = (1—1 z).

Fermi Surface 1 curve

III. SECONDARY LOOPS IN THE I CURVE

As the point k moves around the FS curve, the vector
1(k) traces out its own curve. %'hether the two vectors k

FICr. 2. The I curve generated by a fourfold symmetric FS .
The negative-a segments on the FS along [110]give rise to nega-
tive secondary loops in the l curve. I& and I~ are the scattering
path-length vectors at the points where a vanishes.
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bution of segment PQ to the total area A& includes the
area A, enclosed by the secondary loop, so the total area
1s

ky

12

l

2

A& = A~(primary)+g A, (secondary loop m ) .

The sign of A, is the sign of each secondary loop as
determined by its circulation. To summarize, each seg-
ment of the FS with negative sc generates a secondary
loop that is positive (negative) if 1& on that segment is
shorter (longer) than lk on its neighbors. The area of the
secondary loop adds algebraically to that of the primary
loop. The sensitivity of 3& to the sense of circulation is
conveniently expressed in the ffux language [Eq. (4b)],
since A&8 is precisely the net magnetic Aux threading the
self-intersecting l curve. The geometric representation
shows that o. , rather than being a simple sum over in-
dependent segments, actually describes a global property
of the FS curve (and the k dependence of lj, ). o, cannot
be computed by decomposing the 2D FS into a series of
arcs and summing the contribution from each arc. This
procedure introduces large errors at the points where
arcs join (see Sec. VIII). Each segment s contribution is
strongly influenced by the behavior of ~ and lk on its
neighbors.

IV. ARBITRARY FS WITH ISOTROPIC l

Some general results are easily derived. First, I consid-
er 2D closed FS curves, in which lk is a constant lp every-
where (the "isotropic-1" assumption). The area of all
secondary loops collapses to zero, and the primary loop is
a circle of radius lp ~ Thus, in the isotropic-l approxima-
tion, all closed FS shapes have the same value for o.zy,
aside from the scaling factor 10. [In this case the Hall
coefficient reduces to the isoperimetric ratio (Sec. VI).]
This simple result contradicts model calculations which
purport to show that (within the isotropic-1 assumption)
o. may become electronlike even though the FS cross
section has global holelike topology because large seg-
ments with electronlike curvature may dominate smaller
segments with holelike curvature (see Sec. VIII).

As a second example, I consider an open FS in 2D (Fig.
3). The vector 1(k) assumes the same orientation at two
Bragg planes separated by a reciprocal lattice vector. As
we move along the FS between the planes, 1(k) traces out
a closed loop which does not include the origin. If l& is a
constant, the area A& vanishes. Hence, o. of all open
surfaces is zero, unless lz is anisotropic, in which case the
sign of o. is determined by the segments with the largest

Fermi Surface curve

FIG. 3. The l curve (the two crescents) generated by an open
FS with anisotropic, lk. If lz is isotropic, cr„~ vanishes.

ky(a) (b)

lP////////
k„

(c)

symmetry in the plane and have segments with very large
curvature sandwiched between segments of small curva-
ture (the "fingers" along [100] in Fig. 4(a), and the
"fjords" along [110] in Fig. 4(b)). If I assume that lz is
larger on the low-~ segments than on the high-~ segments
on both FS (as drawn), their respective 1 curves are shown
in Figs. 4(c) and 4(d), respectively. In Fig. 4(c), the
"ffatter" segments along [110] generate the secondary
loops. Since lk is longer there, the loops are negative. In
Fig. 4(d), the large, negative-~ segments on the fjords gen-
erate secondary loops that are positive because lk is
shorter there. [If the opposite assumption on lz is adopt-
ed (i.e., lz is longer on the high-curvature segments), the
signs of the secondary loops will reverse in both FS.]

These examples illustrate the crucial role the anisotro-

py in lk plays in determining the sign of the contribution
from a particular segment. In Fig. 4(d), the secondary
loops are positive despite the existence of negative-~ seg-
ments, so o. is always positive, regardless of the magni-
tude of ~ on the negative-v segments. For a particular
segment to generate a negative contribution to o.

y lk
must be longer on that segment than on its neighbors (in

V. ARBITRARY CLOSED FS WITH k-DEPENDENT l

In general, when lk varies with k, the l curve will be far
from circular and, usually, non simple. As discussed
above, secondary loops are generated when x is negative
over finite FS segments. For concreteness, I consider the
two closed Fermi surfaces in Fig. 4. both have fourfold

FIG. 4. Two nonconvex closed FS and their corresponding l
curves. In panel a (b), the arc length of each negative-v segment
is long {short). If lk varies as drawn (short on the large-
curvature segments), the l curves qualitatively resemble the
closed curves in panel c (d). However, if lk has the opposite
variation, the l curves in c and d are interchanged.
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addition to a. being negative).
The global nature AI is nicely illustrated by the clover

leaf FS in Fig. 4(b). Let us consider the limit in which
both the arc length and lk of the high-curvature segments
(the fjords) become very short. (Thus, the conductivity
cr„„ is dominated by the positive-~ segments. ) It might be
inferred that the contribution of the fjords to o. is also
negligible. However, examination of Fig. 4(d) shows this
to be incorrect. In this limit, the secondary loops in-
crease in size until they are collectively comparable in
area to the primary loop, i.e., their contribution to AI be-
comes comparable to that of the primary (and of the
same sign). In general, small segments of high curvature
strongly inhuence o, their contribution is readily as-
sessed by examining Ai.

For a large class of FS curves that possess negative-~
segments, the secondary loops are negative. This is true
if lz decreases with increasing k = ~k~ everywhere [as in
Fig. 4(c)]. (A segment that has negative a is, on average,
closer to the origin than its positive-~ neighbors. Thus,
the condition dlk/dk (0 implies that lk assumes a small-
er value on this segment than on adjacent segments. ) A
common example occurs when the energy contours near
the Fermi level are similar in shape except for a uniform
scale factor. Under uniform dilation, segments with
large, positive ~ [the "fingers" in Fig. 4(a)] have contours
that are more widely separated compared with the small-
~ segments. Conversely, segments with large, negative ~
have closely separated contours [the "fjords" in Fig.
4(b)]. Thus, the velocity UI, is small in segments with
large, positive ~ (and large in segments with large, nega-
tive ir. ) I will call such behavior of U& "conventional. " If
I assume that ~ is isotropic, then lk is proportional to vz,
so that dlk/dk &0 is satisfied for both cases. Thus, FS
shapes which are scale invariant always generate negative
loops, provided ~ is isotropic.

In general, however, the anisotropy of l& is controlled
by the physics of electron scattering, rather than by
geometry. ' At high T( ~6D, the Debye temperature)
scattering of the electrons by phonons tends to be isotro-
pic so that the isotropic-~ assumption is valid. Dugdale
and Firth' report that this assumption accurately de-
scribes their Hall measurements in Cu and Al lightly
doped with impurities when T eD. In this regime, lk is
proportional to vk over the whole FS. At low tempera-
tures, however (T «6D), scattering by phonons becomes
more intense on FS segments with small calipers. ' This
tends to increase lk on large-x segments (the fingers and
fjords in Fig. 4), relative to small-x. segments which have
large diameters. In the case of Fig. 4(a), lowering T tends
to favor the formation of negative loops [4(c)],whereas in
the case of Fig. 4(b), it favors positive loops [4(d)].

In the impurity-scattering dominated regime at very
low T, the scattering path length tends to become isotro-
pic, since the average distance between impurities within
the 2D plane is independent of direction. In this regime,
AI approaches mlo, and p„approaches a number I
which just measures the area-to-circumference ratio (Sec.
VI). Such a situation may be realized experimentally by
studying the 1ow T 0 ~y in samp les doped with impurities .

Thus, in the Bloch-Boltzmann theory with phonon
scattering, ' the variation of the anisotropy b, l/1 with T
defines three characteristic regimes. In the first regime
(T 6D ) the isotropic-r approximation is valid, and k
dependence of lk follows that of v&. Since Al/l does not
change with further increase in T, R~ is T independent at
high temperatures. In the second regime, in the vicinity
of 0.26D, phonon scattering becomes highly anisotropic,
and segments with high curvature and small caliper suffer
increased scattering. RH is strongly T dependent, often
showing nonmonotonic behavior, as observed in transi-
tion metals. In the limit of zero T, however, the system
approaches the isotropic-l approximation in the presence
of impurities, and RH is again a constant. (Inclusion of
electron-electron interaction and weak localization effects
complicate this regime. ) The implications for p„~ will be
described next.

VI. VARIATION OF p„„WITH ANISOTROPY
AND TEMPERATURE

Single band. Band-structure effects can greatly alter
the value of the Hall coefficient RH from the "free-
electron" value 1/(ne). For a single band, it is customary
to define the "Hall factor" r = (B/ne)p, ~, with
p„=o„ /(o. „„o ). I consider crystals that have N-fold
symmetry in the x -y plane. If X is larger than 2, the in-
plane conductivity is a scalar given by (Appendix A)

o., /(e /h)=o /(e /h)=l, „S/(2'), (7)

where S is the FS circumference and l„,the average of lk
over the FS, is given by

l,„=fds" . (8)

Using Eqs. (4), (7), and (8), r is a scalar equal to

r =I Ai/(ml, „),
with

(9)

(10)

Here, 3„s is the area enclosed by the FS curve
[n = A „s/(2m )] and A& is the Stokes area defined in Eq.
(3). Equation (9) will be used to compare the present ap-
proach with calculations of p„on simplified FS models
(Sec. VIII).

If we specialize to the isotropic-l case, r is simply equal
to I (setting 1,„=10,and Ai =~la). By the isoperimetric
inequality, I 1, with equality holding for the circle.
Thus, for a 2D metal with N-fold symmetry (N & 2) and
an isotropic lk, the Hall factor r is a direct measure of the
FS area-to-circumference ratio, and is always & l. [The
oft-repeated "rule" that r ~ 1 in a wide range of FS
shapes is merely a restatement of the isoperimetric in-
equality. In effect, the author(s) tacitly adopt the
isotropic-1 assumption. ] For N =2, the same argument
applies if the quantity 4o „ /(o „„+o ) is used in place
of r (see Appendix A). If the FS is circular, but 1& is an-
isotropic, the inequality f (d8/2m )l I, )1,„, together with
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Eq. (9), implies that r ) 1. Thus, any anisotropy in a cir-
cular FS always increases r, a result previously known. '"

Returning to the general lz case, Eq. (9) shows that r
(or p„) is strongly infiuenced by three factors: the cir-
cumference S, the existence of negative curvature seg-
ments (which generate secondary loops in the l curve),
and anisotropy in I&. While the effect of S is always to
reduce r, as described for the case of isotropic l, the an-
isotropy in lk may reduce or enhance r, depending on the
local ~.

There are four cases to consider. For definiteness, I as-
sume fourfold symmetry (the extension to N-fold is
direct). These curves are either convex (cases I and II) or
nonconvex (cases III and IV). In case I (II), li, attains a
maximum (minimum) on segments of large curvature.
The nonconvex curves are distinguished by the sign of
their secondary loops which are either negative (case III)
or positive (IV). The results of Appendix B show that r
deviates from I significantly as hl/l changes from zero.
An examination of the four trends shows that, in the
high-temperature (isotropic-~) regime, cases II and III
may be considered as conventional in the sense of Sec. V
(i.e., Uz, hence lk, scales inversely as ~k~), while the other
two are anomalous. In the conventional cases, the bound
r ~ I'~ 1 is valid (at high 1}. (The other cases I and IV,
which require anomalous variation of /k over the FS,
have the opposite bound, r & I .)

Multiple bands. When the FS is comprised of several
pockets, the above considerations for RH are altered in
an interesting way. If the arguments above are general-
ized to multibands in the standard way, I get

eRH=(2m. ) g Al, ir g l,„;S;

m +1„,+n; (12)

In the important case when all pockets obey a quadratic
dispersion (low carrier density metals), l,„; is proportion-
al to QEF Qn, , viz—.,

1,„;=pQn, (E—k and ~ isotropic) (13)

(where p is a constant). For the numerator, the discus-
sion in Sec. V implies that for "conventional" variation of
lk in the isotropic-r limit

(14)

Using inequality (14) and Eq. (13) in Eq. (12), I get the
general bound

where subscript i denotes the ith band. (Each FS pocket
generates its own Ai. ) Again the two important regimes
are the isotropic-r (T)eD ) and isotropic-I (T~O) ex-
tremes. It is convenient to introduce the reduced quanti-
ty r'=(g; n;)eRH, where n; is the carrier density en-
closed in pocket i.

In the isotropic-~ case I„;scales as the Fermi velocity
in the ith pocket vF, . First, consider the denominator in
Eq. (13). By the isoperimetric inequality,
S; ~ Q[(2n ) n; ]. Thus, r' satisfies the inequality

2

~p gn,

gn, =1. (15)

gQn, =0, (16)

where M is the total number of pockets and the number
0 is as defined. It is readily seen that 0 & 1 for all [n; ],
so that a useful bound cannot be imposed on r' (except
when all the pockets are circular, in which case
r'=0 & 1). This situation contrasts with the single-band
case where r equals I ~1. The physical origin of this
difference is that in the isotropic-I limit, all pockets con-
tribute equally to o whereas o.„ is dominated by the
large caliper pockets. (We have not considered scattering
mechanisms other than impurity scattering in this limit.
The inclusion of electron-electron scattering may alter
this picture significantly. )

VII. APPLICATIONS

2H-NbSe2. The dichalcogenide 2H-NbSe2 is a quasi-
20 layered compound that undergoes a charge-density-
wave (CDW)' transition at 38 K. The band-structure re-
sults of Mattheiss' show that the FS in the first zone is
comprised of a cylindrical hole surface (FS1) with its axis
along KH (Fig. 5).' A second hole surface (FS2) is either
closed (an oblate spheroid centered at A) or an open
cylinder like FS1 with axis along I A (the calculation is
not accurate enough to decide).

The measured' Hall coefficient RH '" equals
+4.60X10 ' m /C, and changes by (2% between 350
and 60 K. Below -40 K, RH '" decreases steeply,
becoming negative at low T. From Mattheiss' calcula-
tions, ' ' the FS cross sections are very close to circular.
I compute the FS areas A „s„A„s2 to be 0.129 and 0.245,
respectively, in units of (2m. /a), which implies that
n, =2. 19X10' cm, n2=4. 14X10' cm . (The lat-
tice parameter a =3.440 A. Note that 2n, =n2, to a few

For this bound to hold, it is sufficient that ~ be isotropic,
and Eqs. (13) and (14) be valid in all pocketes. [We have
assumed that all AI,. 's & 0. If some of the A& s are nega-
tive, the second inequality in Eq. (15) is stronger. ] Actu-
ally, in physical systems, the interb and anisotropy
overwhelms the intraband anisotropy, i.e.,

~
hl /l ~;„„,&&

~
b I /i ~;„„„sothat the bound Eq. (14) is less

crucial than Eq. (13) for the derivation [i.e., the former
may be slightly violated without invalidating Eq. (15)].
Thus, in the high Tlim-it, the Hall coefficient of a 2D mul
tiband system, normalized to the total carrier density
(counting all FS pockets), is less than or equal to one, if
quadratic dispersion is valid. For the special case when
all FS pockets are circular r' is precisely 1 (even if the
l,„s are all distinct). We encounter an example in the
next section.

The zero-T case will be considered briefly. If lk is iso-
tropic with the same value in all FS pockets, Eq. (12)
reduces to
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A
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FIG. 5. The first zone of 2H-NbSe2 showing the holelike Fer-
mi surfaces calculated by Mattheiss (Ref. 16). The lower draw-
ing shows a vertical section the the zone. The surface FS2 is ei-
ther an oblate spheroid centered at 3 (broken lines) or an open
cylinder (solid lines).

% accuracy. ) Thus, the total density predicted from the
band structure is nzD =2n, +n2=8. 51X10' cm
(There are two FS1 pockets. ) This number (0.872/Nb) is
—13% lower than the "chemical" estimate of 1 hole/Nb.
However, if I calculate the reduced quantity
r'= n2DeRH '", instead, I find that it equals 1.00, i.e.,

eRH '"=1/(2n, +nz) (T—350 K) . (17)

Since the system is quasi-2D above 38 K ( the anisotropy

p, /p, is between 20—30, and T independent' ), I may ap-
ply the reasoning (in reverse) of Eqs. (11)—(15) to this
three-pocket system. From Eq. (11),

eRH=(2m) (2A»+ Biz)/vr(21, „&S,+l,„zSz) . (18)

As the FS pockets are close to circular, A&; =el„;, and
S;=&[(2m) n;]. Also, 2n, =nz Subst. ituting these in
Eq. (18), and comparing with the measured value in Eq.
(17), I obtain the equation (21,„, + l,„z )/(21,„,
+l,„z 2) =—,', which has the solution 1,„,/l„z= I/&2,
i.e., the path length on FS1 is shorter than that on FS2 by
the factor &2. Since the Fermi velocity ratio
vF, /vFz= 1/&2 (both FS1 and FS2 have quadratic
dispersion' ), I conclude that at 350 K the scattering time
is isotropic, and that the high- T RH in 2H-NbSe2
confirms Eq. (15).

The two assumptions that the dispersion in NbSe2 is
2D above 60 K, and that the FS cross sections are as
given by Mattheiss, provide a quantitatively accurate and
self-consistent analysis of the high-T Hall coefficient.
The scattering time is found to be isotropic, and the
scattering path lengths scale as the Fermi velocities in the
two inequivalent pockets, as expected for T ~ eD. The
self-consistency achieved favors an open cylinder for FS2
over an oblate spheroid.

This system should also provide a test of the T—+0
case [Eq. (16)], but the situation below the CDW transi-
tion is quite complicated. Magnetothermal oscillation ex-
periments' below 3.5 K reveal the existence of a small
FS pocket that is not apparent in the band structure. The
large swing of R~ to negative values implies a drastic
change in FS topology.

Layered cuprate peroUskites. An important class of

quasi-2D conductors are the cuprate oxides that become
superconducting at high T. Conductivity anisotropies in
these families range from 10 (in YBazCu307 or "1:2:3")
to 10 in the Bi-based materials (BizSrzCaCuzOs "Bi
2:2:1:2" and BizSrzCu06 "Bi 2:2:0:1"). The Hall
coefficient has been extensively studied in single crystals
of these compounds as well as in La& „Sr„Cu04
("214"). ' There appears to be a pervasive pattern of be-
havior in the RH vs T curves. In the compounds 1:2:3,
Bi 2:2:1:2, and 214 (0. 14&x &0.25), RH is strongly T
dependence, and approximates the behavior R~
=(c +dT) '. In Bi 2:2:0:1,the T dependence is less pro-
nounced, but still significant.

The interesting question is Can the T dependence of
RH (particularly in 1:2:3)be explained within the conven-
tional Bloch-Boltzmann theory, assuming phonon
scattering alone? As discussed in Sec. V, in the conven-
tional theory R& is T dependent only if the anisotropy
Al/1 changes with T. In principle, even with one band,
an increase of b, l/1 with decreasing T can cause RH to
grow significantly (as in case III).

However, if phonon scattering alone is operative, the
variation of b.l/1 must display the three distinct regimes
determined by eD (as discussed in Sec. V). At
T )eD(-440 K in 1:2:3), RH should saturate to a T
independent value. In 1:2:3,Fiory and Grader have mea-
sured RH up to 600 K, and find no evidence of satura-
tion. More high-temperature measurements of RH are
clearly desirable. At very low T, RH again saturates to a
different constant. Unfortunately, the low-T regime is
inaccessible in 1:2:3. Interestingly, in Nd2 Ce Cu04, in
which the superconductivity can be suppressed with an
8-T field, Wang et al. have found that RH remains
strongly T dependent down to 2 K, in contrast with o.

which is T independent below 20 K. The persistence of
the monotonic variation of RH with T in these cuprates
over such a wide range in T is anoma1ous. The absence
of any saturation in RH in 1:2:3at T above 440 K (if fur-
ther corroborated) shows that the T dependence is not
caused by phonon scattering. This anomaly shows, even
more clearly than the linear-T behavior of the resistivity,
that the scattering mechanism is not phononic alone but
dominated by an anomalous mechanism, probably elec-
tronic in origin.

VIII. COMPARISON WITH PREVIOUS
MODEL CALCULATIONS

0ver the years there have been systematic efforts to
understand the factors that infjluence the weak-field o.

Most of these studies have relied on direct calculations on
families of FS shapes approximated by simple geometric
figures (cubes, spheroids, dodecahedra, etc.). Some
empirical rules have been deduced, based on these stud-
ies. However, due to their empirical nature, these rules
have limited ranges of validity. A significant advantage
of the present geometric picture is that many such calcu-
lations are greatly simplified. Moreover, the insight
afforded clarifies why certain approaches fail in the
weak-field limit.
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First, we consider a cubic FS in 3D (or a square in 2D).
Early attempts found that, in the isotropic-l approxima-
tion, r equals —,

' in both 3D and 2D. ("Edge" and "face"
of a 3D polygon will be taken to mean "vertex" and
'side" when referring to a 2D polygon. ) Subsequently, it
was realized that the large Hall angle at the sharp edges
violated the weak-field assumption. Instead, if the edges
are replaced by a rounded surface of curvature 1/Ak,
then r is found to be vr/4 (in the limit b,k —+0). This may
be seen to be a direct consequence of the isoperimetric in-
equality. By Eq. (9), r simply equals I (when l is isotro-
pic) for any value of b,k, and I =~/4 for a square. It is
instructive to see why the direct computation yields an r
(=—,') that difFers from the limiting approach (7r/4) In.
the former scheme, the velocity [hence l(k)] is a con-
stant, say vx, along one face of the cube (or one side of
the square in 2D), and another constant v y along an adja-
cent face. I assume E~~x and H~~z. Under the Lorentz
force, all electrons on the (100) face and within 5k of the
edge "spill" over the edge onto the (010) face
(5k = ervH /h) Th. e total Hall current i equals
(4/h )5k(2k~eEr/A')ev [I will call this the "edge-
current" argument. For instance, this argument is cen-
tral to the "planar-faced energy surface" (PFES) scheme,
which approximates the FS by a finite number of plane
faces. ]

Now, since v is a constant vector over each planar
face, the whole face maps into a single point 1(k)=vr,
when we go into the space of l(k). Therefore, the edge-
current model for an ¹ided FS defines only N points in I
space, instead of a closed curve. Without specifying in
detail the path between two two points, the computation
of A& (and hence, r) is left ambiguous. In general, then,
o. cannot be computed by approximating a FS by a
finite number of planar surfaces (or polygon in 2D). The
contribution of the planes to o, is identically zero (be-
cause their image in I space has zero measure). On the
other hand, the jump in the angle of v at the edge actual-
ly accounts for all of the area, but its path is left
undefined in such models. The path corresponding to the
edge-current argument disagrees with the isotropic-l
path.

Six years after the introduction of the PFES scheme,
Cowley and Allgaier (CA) in effect showed its failure in

the weak-field limit by rounding the sharp cusps in the
four-fold "star" FS (Fig. 6). (CA relegate the PFES re-
sults to the "intermediate-field" regime, but this has not
been justified, to my knowledge. ) It is interesting to
derive their results from the present picture. To study
anisotropy effects, CA also let Ik vary linearly on each
face from lo on the "a edge" to l, on the "P edge. " They
obtain

r =(ir/8)(1+sina —cosa)(1+6q +q —8qa/m. ),
where q=(l, —lo)/(i, +lo). CA implicitly assume that
li, is frozen at the value lo(l, ) when k moves around the
smoothed a edge (P edge). Thus, the l curve is a compli-
cated self-intersecting loop that resembles a fan with four
blades (Fig. 6). Its Stokes area is that of the hub minus
that of the blades, i.e.,

3& =~lo —rr(l, —lo )(1 2a/vr—)

=~l o ( 1+6q +q
—8q a/ir ) /( 1+q ) .

Using the result that l,„=(lo+I, )/2, we see that r is just
the product of I =(rr/8)[1+sina —cosa] and the factor
3 /irl, „,in agreement with Eq. (9). [~hen q is (0 ( )0)
this example belongs to case III (IV), as described in Sec.
V.]

Banik and Overhauser also use the edge-current argu-
ment to explain why aluminum has an electron-type
weak-field o.

zy even though the FS has global holelike to-
pology. They approximate the FS by N arcs joined at a
sharp cusp. Using the isotropic-I approximation, they
purport to show that r is determined by the arcs and is
therefore electronlike. However, in the weak-field re-
gime, the results of Sec. VI show that r will be strictly
equal to I, and no change in sign can be expected. (The
contributions of the cusps, if appropriately rounded and
the limit 5k~0 taken, must dominate the negative cur-
vature arcs to give precisely ~ID for A&, as shown in Sec.
IV.) Banik and Overhauser add the caveat that their
model does not apply to the weak-field limit (the cusps
are assumed to be infinitely sharp).

The present picture also shows a way to calculate accu-
rately the weak-field cTzy of an arbitrary FS. The
prescription is that the actual summation must be done in
I space. If a 2D FS is approximated by an N-sided po-
lygon, the map into I space consists of N points. o„ is
best estimated by computing the Stokes area of the l
curve approximated by joining the X points with smooth
arcs, rather than by computing the edge current between
two adjacent faces. [From the preceding, it is also neces-
sary to know (or specify) how lz changes from face to
face, because by assuming an isotropic Ik, one merely re-
covers r =I .]

Fermi Surface l curve
IX. DISCUSSION

FIG. 6. The star-shaped FS studied in Ref. 6. On each plane
surface, lk varies linearly from l& to lo as shown. The l curve of
this FS resembles a fan with four blades. (Overlapping lines are
drawn displaced for clarity. )

The simple geometric representation for o. in 2D sug-
gests that there may exist a connection between the Aux
threading A& and the Hall current, that is more funda-
mental than indicated by the Boltzmann derivation. Al-
though I have not uncovered this connection, it seems
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that there are two lines of speculation worth pursuing. Is
there a relationship between Eqs. (4) and the quantized
Hall effect (QHE), i.e., is the former a semiclassical
"echo" of the latter? A positive answer may seem unlike-
ly since the two phenomena are at opposite extremes of
field. [In the QHE case, cr„~/(e /h)=neo/B, i.e., a„~
varies inversely with 8, whereas in the weak-field limit,
o. is linear in B.] Nonetheless, the fact that in both lim-
its the number of flux quanta (in a physically well-defined
area) precisely determines o ~ seems to me highly sugges-
tive. [The extra factor of 2 in Eq. (4b) is due to spin de-
generacy. ]

The close similarity between 3& and magnetic Aux

threading through a twisted loop also suggests the follow-
ing picture. Equation (4b) implies that the weak-field o „
normalized to e /h is the total change in the Aharonov-
Bohm phase b,P/2~ of a charged particle taken around
the closed I curve. Within the time ~, each electron
maintains phase coherence (I assume r is the dephasing
time). It may be possible to relate A I to the phase change
of electrons on the FS in the time ~, and from the phase
change to o. , in suggestive analogy with Thouless
et al. One may also interpret the area A& as a measure
of the "divergence" of the Aow of the electron gas in the
time r. (If the FS is fiat, both the divergence and A& are
zero, whereas for a convex FS both quantities are a max-
imum. ) It is plausible that the notion of spreading im-
plied by the divergence is related to the phase change of
the total wave function of the system, through the Aux
penetrating the spreading area in the time ~, although
this has not been demonstrated.

These speculations aside, the geometric representation
provides a powerfu1 way to assess the Hall current in
quasi-2D systems regardless of FS shape. A major
difficulty in comparing the experimental o.„with predic-
tions of band-structure models is that the integral in Eq.
(1) is difficult to estimate. ' However, most of this
difficulty stems from working in the wrong space, as I
have argued here. In k space, o.„„is dominated by FS re-
gions with very large curvature, and schemes such as the
edge-current argument exacerbate errors by introducing
artificially sharp edges. By going into the space of 1,
these difficulties are largely avoided. Part of the appeal
of the geometric representation is its simplicity. Regard-
less of the FS shape, o. may be effectively calculated,
often simply by approximating the area Ai, as shown in
Appendix B.

The new perspective enables one to disentangle the
influences of three major factors that determine o. „ the
ratio of 4m A„s/S, the anisotropy A, , and the local curva-
ture x. The separation of physical effects (scattering)
from purely geometric efFects (such as the isoperimetric
inequality) clarifies the variation of E~ with T. It seems
that Hall measurements performed near the Debye tem-
perature are considerably easier to compare with band-
structure calculations, than those obtained at low T. In
both single and multiband systems, the bound r ~ 1 is val-
id under a wide range of conditions for T eD, and this
is often sufficient to discriminate competing models ap-
plied to novel metals. Where the conventional Bloch-

Boltzmann theory with phonon scattering is valid, the
analysis is quite effective, as in the case of 2H-NbSe2.
Unfortunately, there seems to be a paucity of high-T Hall
results in anisotropic (2D) metals. In systems, such as the
cuprate perovskites, where the conventional theory fails,
the present analysis shows why the Rz-T profile is anom-
alous, and a nonphononic scattering mechanism is re-
quired.
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APPENDIX A

APPENDIX 8

The variation of r with anisotropy with a FS with four-
fold symmetry is estimated here for the four cases con-
sidered in Sec. V.

Cases I and II are closed convex curves with four short
segments that have large ~. The extreme example is a
square of side 2k+ with rounded corners that have curva-
ture 1/Ak. I assume that the anisotropy in I& is given by
a Gaussian curve centered at s =so, viz. ,

l (s) =10+6lexp[ —(s —so) /bs, ] . (Bl)

b, l is positive (negative) in case I (II). The width b,s, is
chosen to satisfy ds& /hk =m. /4, so that 1(s) is essentially
constant over the Aat segments. With this variation in
1(s), r becomes [Eq. (9)]

r =I [1+(&n)A,+(&m/8)A, ]/[1+(m /8)rlk, ], (B2)

where A, =hl /10 and r) =b, k /kF (( 1. For positive A, —

In 2D, the diagonal components of the conductivity
are given by' o„„=(e /hm) f ds lkcos 8i„where the in-

tegral is over the FS, and 8& is the angle between 1(k) and
x. For a 2D crystal with N fold sym-metry (N )2), I
divide the FS into N identical wedges, which may be
mapped into each other by one of the crystal group rota-
tions, except that 8i, is changed to (8i,+ma) on the mth
wedge. Hence, o. simplifies to

N
/(e'/h)=ir ' f ds li, g cos'(8„+ma),

b,S

(A1)

where a=(2m. ) N/. The integration is confined to one
wedge of length b,S=S/N. The sum equals N/2. Using
the relationship l,„S=N f ds li„ I get Eqs. (7) and (8).
The case N =2 needs a slight modification. Adding o.

and o together, I get (o.„+cr )/2=(e /h)(l, „/2~)S.
The discussion in Sec. VI on p„can be extended to in-
clude the X =2 case by considering the quantity
4o /(cr +a ), instead of p„ itself.
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(case I), r increases linearly with A, , and then saturates to
the value c/ri (c a constant) for very large 1,. In this lim-
it, the corners dominate both o.„and o, so that r is
mainly determined by a small FS "pocket" of effective
area rrhk . For negative b, l (case II), r decreases mono-
tonically to zero (as A. approaches —1, its largest possible
negative value). This limit corresponds to a large FS with
fiat surfaces. The isotropic-r regime ( T )eD ) corre-
sponds to case II, whereas the isotropic-I regime corre-
sponds to the point A, =O. (Case I is anomalous at high T
since the velocity at the corner is usually lower than on
the fiat face. )

In cases III and IV, the negative-~ segments generate
secondary loops which are negative and positive, respec-
tively (see Fig. 4). First, consider a negative loop. Its
area I estimate as follows. At the two points on the FS
where tc vanishes, let the vector 1(k) be l, (k, ) and 12(kz),
and their angles (relative to x) be 0, and 82, respectively
(see Fig. 2). Since k, and kz are "turning" points of l(k),
and are symmetrically located around a symmetry axis,

A, -(vr /2)b, ll, si n(b, 8 /2) . (B3)

I obtain the criterion for a negative o. by making 4A,
larger than A~. If I approximate l, by lo+ b, l /2) and A

by m l o, I find that the critical anisotropy (at which
o „vanishes) is given by (b, //lo),
= [1+[sec(bO/2)]/4] '~ —1.

For case III curves, the area 3& is the difference be-
tween A and X, A„with A, given by Eq. (B3). If l (s) is
given by Eq. (Bl) (b, l )0), and A is approximated by

halo, the Hall factor equals

the vectors I, and 12 define the cone that the secondary
loop subtends at the origin ( ~1& ~

= ~12 ~

= l, ) The cone an-
gle is the difference angle 60= 02 —0, given by 60
= f i ds tc. The secondary loop may be approximated by
an ellipse of semiradii b, l /2 and l, si n(b, O /2).
[b,l =(l,„—lo), where l,„ is the maximum value of lt,
on PQ and lo the minimum value of lz over the whole
FS.] The area A, for a single loop is approximated by

r =I [1—A(i+A/2)sin(b8/2)]/[I+4K(hs/S)&m ],(1,)0) . (B4)

The width As is of the order b,8/2~tr„~, where tc„ is the
average curvature on the negative-~ segments. As A, in-
creases from 0, r decreases linearly from I, reaching zero
at (b,l/l~), . For very large A, , r saturates to the negative
value —I (S/bs) /16m. The variation of case IV may be
estimated from Eq. (B4) with A, (0. As ~A,

~

increases from
0, r increases linearly, eventually saturating to a positive
value as A, —+ —1.

The high-T, isotropic-~ regime corresponds to case III
(negative secondary loops), but r may be of either sign de-
pending on X. As discussed in the main text, case IV is
anomalous since it requires negative-~ segments to have
shorter l&. For example, in Fig. 4(b) one physically ex-
pects l& to be larger at the fjords since the velocity is
higher there, so that negative loops are generated at high
T.
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