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Renormalized theory of sticking and desorption for physisorption
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Sticking coefficients calculated conventionally in the distorted-wave Born approximation
(DWBA) often become greater than 1 even for particles interacting weakly with surfaces in phy-
sisorbed systems. We reexamine the quantum formulation of sticking and desorption within the
DWBA to correctly account for processes occurring on time scales of the order of the interaction
time of extended states with the surface. We obtain expressions for renormalized monochromatic
and total sticking coefficients, which are properly bounded by 1, as well as expressions for renormal-
ized desorption time and time-of-Aight (TOF) spectra. Standard relationships between sticking
coefficients, desorption times, and TOF spectra imposed by the thermodynamic detailed balance are
preserved for the renormalized quantities. We propose a modified master equation for physisorp-
tion kinetics containing renormalized transition rates between continuum and bound states. It can
be used in a conventional way to calculate properly behaving sticking coefficients, desorption times,
and TOF spectra. We also analyze the role of the continuum-continuum inelastic transitions in

sticking and desorption. Numerical examples of sticking coefficients illustrating the need for their
renormalization are also present.

I. INTRODUCTION

The kinetics of adsorption and desorption of molecules
physisorbed on solid surfaces is the most elementary pro-
cess serving as a starting point for detailed understanding
of more complex processes for chemisorbed species. It
has been extensively studied both experimentally' and
theoretically ' in recent years. (For a recent review see
Ref. 4.)

The motivation of our work is the observation that the
conventional expression for the momentum-dependent
sticking coefFicient Sk obtained in the distorted-wave
Born approximation (DWBA) may lead to values greater
than 1, clearly an unacceptable result. This can be ex-
plained by observing that, in the DWBA, when a particle
sticks to the surface upon scattering, the fIux is not re-
moved from the elastic channel, leading to an overcount-
ing of the trapping events.

Brenig approaches the problem of scattering, desorp-
tion, and sticking using a master equation with appropri-
ate transition rates leading in principle to a unitary
scattering matrix and correctly normalized sticking
coefficients. However, he does not calculate these rates
from first principles. Formally, the necessary scattering
rates could be obtained in the coupled-channel
transition-matrix method. ' The formalism is rather in-
volved and computationally expensive so that a simpler
approach such as that presented in this work is more
practical.

On the other hand, we argue that the overcounting of
scattering events inherent in the DWBA can be remedied
without going beyond one-phonon emission-absorption

processes. In order to do this we will consider an indivi-
dual trapping event as a process lasting ~L. For instance,
~1 can be interpreted as a period of time during which
the wave packet representing the extended state of a par-
ticle in the gas phase interacts with the trapping poten-
tial. If the rate of trapping calculated for this wave pack-
et is XV, one could be tempted to define a sticking proba-
bility as ~L'N, clearly obtaining an incorrect result when

is comparable with 1/lV. This prescription over-
counts the trapping by not excluding the possibility of
trapping the particle more than once during the time in-
terval &L. In this paper we attempt to properly account
for the quantum processes taking place during the in-
teraction time ~1 and obtain the expressions for sticking
coefficients bounded by 1. The result obtained is the sim-
plest one beyond DWBA, and we expect it to be valid in
cases in which the interaction of the gas particle with the
solid surface is weak enough for the processes in which
one phonon is either absorbed or emitted to be the dom-
inant ones. Interaction of rare gases with graphite,
alkali-metal halides, and some metallic surfaces belong to
this class of systems. Emission and absorption of single
phonons has been observed, for example, in helium
scattering from silver, copper, and alkali-metal halides.

Phenomenologically, one could obtain a sticking
coefficient by considering two scattering channels, one
elastic with rate ~,~

and one trapping with rate ~„. The
sticking coefficient could then be defined as the ratio
~,„/(~,~+~,„). This result is equivalent to the one ob-
tained by Brivio and Grimley. ' However, this statistical
approach does not describe properly the individual quan-
tum scattering events.
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II. STICKING COEFFICIENT

The monochromatic (k-dependent) sticking coefficient
is defined as the probability that a particle of momentum
Ak hitting a surface of a solid is trapped in the surface po-
tential. It is given by the ratio

g W(i, k)

Si, = (. ,[j""'(—n)]~ ' (2.1)

where the numerator is the probability of adsorption per
particle per unit time and the denominator represents the
number of particles reaching the entire exposed solid sur-
face per unit time. jI(,

'") is the incoming current density of
particles with momentum Ak, and n is a normal to the
solid surface of area A. W(i, k) is the transition rate
(e.g. , due to the interaction with a phonon system of the
solid) from the continuum state k to a bound state i of the
physisorption potential calculated in the distorted-wave
Born approximation. The vector i represents a set of
three quantum numbers identifying the quantum state of
the adsorbed particle. For instance, for mobile adsorbate

It is worth noting that similar difficulties with calculat-
ing probabilities per one scattering event using transition
rates between continuum and bound states are not unique
to physisorption. For instance, the problem of trapping
of thermal positrons into surface image states" belongs
to the same category.

General arguments of the thermodynamical detailed
balance require certain relationships between sticking
coefficient, desorption time, and time-of-Aight spectra for
desorption. ' In particular, for gas in equilibrium with
the solid, adsorption and desorption processes must bal-
ance each other. We show how the quantities character-
izing adsorption and desorption can be independently de-
rived in a manner preserving the relationships required
by the detailed balance.

In our approach to adsorption we analyze transition
processes from continuum to bound states of the surface
potential during one collision of a gas particle with the
surface. Such transitions need not be direct ones, e.g.,
the particle can be inelastically scattered into another
continuum state in the initial collision with the surface
and then trapped into a bound state. The first process
can obviously be replaced by a series of transitions
through continuum states. When continuum-continuum
transition rates are large such processes should be includ-
ed in the calculations of sticking. For desorption the or-
der of processes is reversed and the initial detrapping is
followed by a series of transitions through continuum
states.

We start in Sec. II with reexamination of theory of the
sticking coefficient. Section III is devoted to the desorp-
tion process. In Sec. IV we propose and discuss the
modified master equation for physisorption kinetics,
while in Sec. V we show how to include the inelastic
continuum-continuum transitions into calculations of
sticking and desorption. Numerical results for sticking
coefficients are presented in Sec. VI followed by summary
and final conclusions in Sec. VII.

i=(K, ,i), where K; is a wave vector for the free motion
along the surface and i identifies the bound state of the
one-dimensional surface potential.

The asymptotic form of the wave function representing
a particle in the gas phase is given by

%z" (z, R)= exp(iK R)(-) — 1 2
L

1/2

sin(kz +5)

—qyln(r ) iIIQU'tl r ) (2.2)

We use a convention according to which r=(R, z) and
k=(K, k) with k )0. L is the normalization box length
in the direction perpendicular to the surface. The term
%'i,

" representing the particle moving towards the surface
gives

Ajq"' (
—n)=.(;„) Ak

2mL
(2.3)

and thus

g„= g W(i, k) .
2L

Ak /m
(2.4)

n;(t) n,'"'f (t),
where

1 —exp( t lrd ), —
exp( —t lrd )

f(t)=

(2.5)

(2.6)

for adsorption and desorption, respectively. We can then
choose the interaction time ~L of the extended states with
the surface in such a way that

«7L «ad (2.7)

This condition can easily be satisfied in the experimental-

As pointed out in the Introduction Si, can become
greater than 1. This happens when the quantum time
~L =2Lm /erik of the duration of the interaction of the in-
coming particle with the surface per one elastic scattering
is longer than the inverse of the rate of sticking
[g;W(i, k)] '. In such a case we must take into account
the possibility that the particle can be adsorbed before
the interaction time wL has elapsed. To avoid any
misunderstanding we point out that although ~L depends
on L no experimentally accessible physical quantity con-
tains L. Heurestically, 2L can be interpreted as the
length of the wave packet whose time of interaction with
the surface is ~L. This length can be chosen arbitrarily
within the limits imposed by Eq. (2.7) since in the final
expressions for the sticking coefficient ~L is always multi-
plied by W(i, k) [cf. Eqs. (2.4) and (2.12)] and L cancels
out in such a product.

Firstly we consider the relationships between ~L and
other time scales characterizing adsorption. Kinetic
description of the adsorption processes is valid provided
the macroscopic relaxation time ~d is long in comparison
with a typical time ~, over which the quasistationary oc-
cupation distribution in the adsorbate is established. It
implies that for t ))~, we have
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ly interesting temperature regime because ~, is typically
of the order of the inverse Debye frequency (= 10 ' s)
while ~& is, e.g. , for He on nichrome, of the order of 10
sat T==4K..

The probability that a particle with momentum Ak is
adsorbed during one encounter with the surface lasting
from t until t+~L can be written in the following form:

L
S~(t, rL )= ~f, '(t, r)dr . (2.8)

0

Here ~& 'd~ is the probability that the particle is cap-
tured between t +~ and t +~+d~ provided it survived in
the k state during the time interval [t, t +r]. We have

~f, '(t, r)d7. = g W(i, k)dr exp —g W(i, k)r

(2.9)

Equation (2.8) can now be integrated over r after using
Eq. (2.9). The result does not depend on t and rt and
therefore we obtain the renormalized sticking coefficient

2 Sj [jj '( n)]"v ~
S=

g [jq"'( —n)]nqA
(2.11)

For the thermal Aux of incoming particle we get the re-
normalized total sticking coefficient

1/2
~A

2mk~ T g kn fq [1—exp( —S„)],
k

(2.12)

where

n f, =exp( E~lk—&T)I Q exp( Eq Ik&T—)
k'

with E& =A' k /2m. Equation (2.12) should be compared
with the conventional result

1/2

Si, =Si,.
The total sticking coefFicient S is defined as the average

of Si, over the spectrum of the incoming Aux

S„=1 —exp( —Sz ), (2.10)
(2.13)

where Sj, is given by Eq. (2.4). This is the central result
of our approach. It is worth noting that if Si, «1 then

Using (2.8) and (2.10) we can obtain the rate with
which the occupation number of the k state decreases:

1 2Lmn„(t):—n„(—t) S~(t, rL, )= —n„(t) [1—exp( —S„)]
+L

= —nq(t) g W(i, k)
1 —exp( —Sz )

Si «1
—nq(t) g W(i, k) . (2.14)

Clearly, in the limit of small Si, we again recover the
well-known result.

III. DESORPTION

desorbs into the k state between t +~ and t +~+d ~ pro-
vided it was not recaptured into any of the bound states
in the time interval [t +r+dr, t +rL] It is giv.en by

~„"(t,r)d~= g W(k, i)n;(t)dr
Let us consider now the isothermal desorption process

triggered at t =0, e.g. , by a sudden removal of the gas
phase. The time-dependent total numbers of particles in
the gas and in the adsorbed phase are, respectively,

Xexp —g W(i, k)(r~ —r) (3.4)

N (t)=NO+n„(t), N, (t)=Nolan;(t), (3.1)

exp( E; Ik~ T)—
n;(0) = nj, (0)=0

g exp( E; Ik~ T) '— (3.2)

where T is the temperature of the solid.
In order to calculate ri&(t) we observe that in analogy

to Eqs. (2.14) and (2.8)

where X, is the total number of initially adsorbed parti-
cles. We must have g; n(t) +gznz(t)=1, and the initial
condition is

provided condition (2.7) holds. n;(t) is the occupation
probability for the state i at time t. We have used the
fact that due to condition (2.7) n;( t) can be treated as a
constant during the interaction time &L. Inserting (3.4)
into (3.3) and integrating over r we get

riz(t)=g W(k, i)n;(t)
1 —exp( —S~ )

Si,

g W(k, i)n;(t) .
Si «1

(3.5)

Note the similarity between the results (3.5) and (2.14).
In the regime (2.7) we have from Eqs. (2.5) and (2.6) for
desorption

(3.3) n;(t)=n,'™exp( t/~q) . — (3.6)

where ~&"(t,~)d~ is the probability that the particle In the Appendix we have derived the expression for the
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TOF spectrum, Eq. (A10). Using definition (A2) of the
density of particles in the velocity space I (v, t) we have

3

where

:-(T)= g exp( Ek—/k~ T) / g exp( E;—/k~ T) .
ar(v, r)

at
V N, rit, = /a(t2~6

(3.7)

g 0
dO dt ' g 2+4

3 3
jq rd

since X,nk is the rate of creation of particles in the k
state. Here V = AI. is the volume of the gas phase.

Using (3.5), (3.7), and (A10) we get the TOF signal in
the following form:

Similarly, with (3.12) the TOF spectrum becomes

0 4
d&tas &a I'g cose mX
d Qdt (2~)' t fit

I [I—exp( —S~))nk' Ik= ~instX
g k [1—exp( —St, ) ]n fq
k

(3.15)

1 —exp( —Sk ) stat

I k= m%/fit

(3.8)

g f ri&(r)dr =1 .
0

(3.9)

where A is the position of the detector window with
respect to the desorbing surface.

In order to obtain the desorption time ~d we note that
since all particles will eventually have desorbed after long
time we have the condition

where 0 is the angle between the normal to the surface
and %. Equation (3.15), expressing the TOF spectrum in
terms of the renormalized sticking coeKcient, satisfies the
requirements of the thermodynamical detailed balance. '

The conventional result for the TOF spectrum is ob-
tained by replacing 1 —exp( —Sk) with St, in (3.15).

IV. RENORMALIZATION OF TRANSITION RATES
AND THE MASTER EQUATION

The rate equations (2.14) and (3.5) describe adsorption
and desorption processes, respectively. In situations
when both adsorption and desorption are present we
should add (2.14) and (3.5) to get

Using Eqs. (3.5), (3.6), and (3.9) we obtain the renormal-
ized desorption time: rik(t)= g W""(k,i)n;(t) —g W""(i,k)n„(t), (4.1)

ki

1 —exp( —S )
W'(k, i)n,'"',

Sk
(3.10) where we have introduced the renormalized transition

rates between bound and continuum states:

which should be inserted into Eq. (3.8). This result can
be compared with the conventional expression

1 —exp( —St, )W""(i,k) = W(i, k) = W(i, k)%(Sk ),
Sk

rd '= g W(k, i)n,'"' .
ki

(3.1 1) (4.2a)

W(i, k)exp( Ek /kz T) = W(k, i)e—xp( E; /kz T) . —

(3.12)

Equations (3.10) and (3.11) then read, respectively,

7d
—1 :-(T)g knkq[1 —exp( —S&)]

1/2
A:~T

L 2wm
:"(T)S (3.13)

and
1/2

1 kaT
:-(T) g kn kqS~ =—

2L m k I. 2wm
:-(T)S,

(3.14)

Further simplification is obtained if the quasistationary
distribution n,""is replaced by the equilibrium distribu-
tion n;(0). This is known to be a very good approxima-
tion for the isothermal desorption in the experimentally
interesting regime of temperatures. ' We can then use
the detailed balance condition satisfied by the transition
rates

1 —exp( —Sk)W""(k,i)= W(k, i)=%(St, )W(k, i),
Sk

(4.2b)

with

%(x)= 1 —exp( —x)
(4.3)

7Lf exp
' —r g W(i, k) d~=A(S&) .

7L 0
(4.4a)

In case of a transition from i to k [Eq. (4.2b)] the survival
probability exp[ —(~L —r)g;W(i, k)] of the particle in
the state k from ~ until ~1 must be averaged giving the
same factor %(Sk) since

] f exp —(rL —w) g W(i, k) d~=&(Sk) .
7L 0

(4.4b)

Equation (4.2a) lends itself to the following interpreta-
tion. Assume that the transition from k to i takes place
at an instant ~ between ~=0 and ~L. In order for the
process to take place the particle must have survived un-
til ~, the probability of survival being exp[ rg; W'(i, k)]. —
Averaging this probability over all possible transition in-
stances produces the factor %(SI,) since
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It is obvious that the renormalized rates 8'"" satisfy
the detailed balance (3.12). It is important to note that
(4.1) is valid only when n;(t) and n1, (t) remain constant
on the time scale of ~~. The role of the fast transients
(time scale ~, ) is to establish a quasistationary distribu-
tion (2.5) varying appreciably only on the time scale
determined by ~& ))~z . To close the system of the mas-
ter equations we should supplement (4.1) with an equa-
tion for n;(t). We write it as

ri;= g W(i, j)n, (t) —g W(j, i)n;(t)
J

+ g W""(i,k)n1, (t) —g W""(k,i)n;(t) . (4.5)
k k

The presence of the renormalized rate in the third term
on the rhs of (4.5) is justified because n1, (t) varies slowly.
However, its presence in the last term can only be treated
as a postulate. We can argue, however, that such a form
of the master equation [(4.1) and (4.5)] guarantees conser-
vation of particles, and thermal equilibrium occupations
are its stationary solutions. It is a challenging task to
derive (4.1) and (4.5) starting from the microscopic Liou-
ville equation.

In this paper we have restricted our attention to the
prompt sticking coefficient and desorption times. The
prompt sticking coefficient accounts for the trapping pro-
cess occurring on the time scale ~z. However, the parti-
cle is effectively adsorbed if it stays trapped for times of
the order of ~&. To get the nonprompt sticking
coefficient one must solve the master equation (4.5). The
solution of (4.5), averaged over time scale ~L, provides a
quasistationary solution (2.5) which can be used in (4.1).
If n,'"' differs from the equilibrium distribution (3.2), one
obtains the nonprompt sticking coefficient and the
nonprompt desorption time.

V. ROLE OF CONTINUUM-CONTINUUM
TRANSITiONS

In the development presented so far we have ignored
the transitions between the continuum states of the sur-
face potential. In order to show how they can change our
results we first focus our attention on adsorption.

We begin with derivation of the expression for the rate
of direct transition from i to k, W""(i,k). In analogy
with Eqs. (4.2a) we have

~~ (k)
W""(i,k) = f d~W(i, k)

zL(k) o

X exp[ —(S1,+ C1, )w/wL ( k) ]

1 —exp[ —(S1,+C1, ) ]= W(i,k)—:W(i, k)A„,
Si, +Ci,

(5.1)
I

where

%1,=%(S1,+C1,), (5.2)

with %(x) defined in Eq. (4.3). S1, is given by (2.4) and

C1, = g W(k', k)~L(k) .
k'

(5.3)

=—%1, W(k', k)%1, . (5.4)

Here the factor %1,. results from averaging over the
creation time of the state k' [cf. Eq. (4.4b)] while the fac-
tor A1, arises from averaging over the destruction time of
the state k [cf. Eq. (4.4a)].

From Eq. (5.4) we obtain the probability of scattering k
to k' per one encounter with the surface by multiplying it
by &L(k). In order to calculate the probability of the
second-order process in which the particle scatters
through the intermediate state k& we write

g [ W""(k',k, )~L(k, )][W""(k„k)~L(k)]
k}

y +k'W(k &k1)+L(k1 )+k1W(kltk)+k+L(k)
1c}

(5.5)

The factor %1, arises from the independent averages over
1

the creation time ~, and the destruction time ~& of the
particle in the state k&. However, for this process we
should average instead the probability of survival of the
wave packet from time ~, to ~& subject to the condition
7 ( 1 g. Therefore, the factor rL ( k, )A1 should be re-

}
placed in Eq. (5.5) by

For clarity of further discussion, from now on we indi-
cate explicitly the dependence of wL on k. The result (5.1)
differs from Eq. (4.2a) since now we have taken into ac-
count the possibility of particle escaping from the k state
to any k' state before time t+~. This introduces addi-
tional terms involving C1, in Eq. (5.1). If we drop C1,
from Eq. (5.1), sum it over i, and multiply by ~L (k) we re-
cover the result (2.10) for S1,.

Equation (5.1) underestimates the trapping rate since
we have left out the possibility that a particle that es-
caped into state k' can still be trapped; it may even be
trapped after transition through a series of continuum
states. In order to include such processes we have to cal-
culate continuum-continuum transition rates.

The rate W""(k',k) of direct transition from k to k'
can be derived in analogy to Eq. (5.1). We get

1 —exp[ —(S1,. +C1,. )]Wl'ell( k 1 )—
Si,. +Ci,

X W(k', k)
1 —exp[ —(S„+C„)]

Si, +Ci,

L(k}) ~~(k})
C'T(k1)= f d~, f dc&exp —(S1, +C1, )

+L 1 C ~L(k,
=~L(k, )

1 —%(S1, +CL )
—+ —,'~L(k, ) .

Sq +Cq (sk +c„)«&
} } } }

(5.6)
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Thus, for the second-order process we have

W"'"(k', k) =%i, W„(k', k)%i, , (5.8)

where W'„(k', k) satisfies either of the integral equations

W„(k', k) = W{k',k)+ g W(k', k, )V'{k, ) W„(k,, k)
kl

(5.9a)
or

W„(k', k)=W(k', k)+ g W (k', k, )V'(k, )W(k, , k) .
kl

(5.9b)

Now we can return to Eq. (5.1). It describes the pro-
cess of direct transition from k to i. As we have already
mentioned a different process is also possible in which a
particle scatters from k into another continuum state (or
goes through a sequence of them) before getting trapped
into the bound state i. The transition through a sequence
of continuum states is described by the rate given in Eqs.
(5.8) and (5.9). Therefore, the total transition rate from
the continuum state k into the bound state i is given by

W'„'"(i,k) = W (i, k)%i, ,

where

(5.10)

W„(i,k)=W(i, k)+ g W{i,k, )V(k, )W (k, , k) .
kl

(5.1 1)

W (k, , k) is the total rate of continuum-continuum tran-
sition given by Eq. (5.9). The monochromatic sticking
coefficient is then obtained using Eq. (5.10):

Si, —= g W""(i,k)rL (k)

V(k, )S„+g S„W„(k,, k)rL (k)"& rL(k, )
1

(5.12)

where Si, is given in Eq. (2.4) and W„(k, , k) is the solu-
tion of the integral equation (5.9). Equation (5.12)
reduces back to (2.10) when W(k', k) =0.

Analysis of the desorption process, similar to that for
adsorption leading to Eq. (5.1), gives the rate of direct
transitions between i and k in the following form:

W~'"(k', k) =%i, g W(k', k, ) V (k, ) W(k„k) Ai, ,
k)

(5.7)
and the all-order sum can be immediately written as

W„(k,i)=W(k, i)+ g W„(k,k, )V(k, )W(k, , i) .
k)

(5.15)

The direct transition rates W"" [Eqs. (5.1), (5.4), and
(5.13)] satisfy the condition of detailed balance since the
rates 8'do. It is easy to show that also the total transi-
tion rates W"'" [Eqs. (5.8), (5.10), and (5.14)] satisfy the
same conditions:

W""(k,k')exp( E&.I—ks T)

= W"„'"(k',k)exp( E& I—ks T), (5.16)

W"'"(k, i)exp( E; Ik~ —T) = W""(i,k)exp( Ei, Ik—~ T) .

(5.17)

In Sec. IV we have shown that the adsorption-
desorption kinetics can be described by the conventional
master equations (4.1) and (4.5) provided the transition
rates are renormalized according to Eq. (4.2). We have
demonstrated in this section that when the continuum-
continuum transitions are important, the rates 8'""
[(5.10) and (5.14)] should replace those given by Eq. (4.2)
in the master equations (4. 1) and (4.5). Obviously the
rates W"" reduce to W"" given by (4.2) when the
continuum-continuum transitions are absent.

VI. PHONON-INDUCED STICKING AND DESORPTION

The approach developed in the preceding four sections
is general since it does not depend on particular micro-
scopic mechanisms of sticking or desorption. For phy-
sisorbed species the microscopic energy exchange process
between the solid and the adsorbate is dominated by
emission and absorption of phonons. The phonon-
cascade approach to sticking and desorption was
developed with the kinetics described by a master equa-
tion in which the transition rates were calculated for
one-phonon processes. Desorption times and TOF spec-
tra were analyzed in detail; however, the problem of
sticking was left out because the approach did not
guarantee the proper normalization of sticking
coefficients.

We present here numerical examples of sticking
coefficients for He-graphite and He —solid argon. The
necessary rates W(i, k) were calculated by Gortel and
Kreuzer for a model of a mobile adsorbate, in which the
adsorbed particle can move freely along the surface (the
surface potential depends on z only) and the particle
momentum parallel to the surface is conserved in any ele-
mentary phonon emission or absorption process. In this
case

W"'"(k, i) =A„W(k, i) . (5.13) W(k, i) = W(k, i)6~ ~ (6.1)

W"„'"(k,i) =%i,W„(k,i),
where

(5.14)

Consequently, when the scattering to the k state is pre-
ceded by a series of transitions to other continuum states,
the total transition rate from i to k is given by the expres-
sions analogous to Eqs. (5.10) and (5.11):

where 6z ~ is the Kronecker delta. The rates W(k, i)
were calculated for the Morse surface potential of depth
VQ and the range parameter y with the derivative cou-
pling used to represent the particle-phonon interaction; '

the Debye model characterized by the Debye frequency
coD was used to describe the phonon spectrum. The re-
sult for the transition rate can be written in the form
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FIG. 1. Monochromatic prompt sticking coefficient for He-
graphite system vs energy of He atoms for T=30 K. Dotted
line: conventional result [Eq. (2.4)]; solid line: renormalized re-
sult [Eq. (2.10)]. Parameters: cro= 4 88, r =. 27.46, TD = 185 K.
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FIG. 2. Same as Fig. 1, but for He —solid argon at T=3 K.
o.0=10.2, r =60, TD =92 K.

3rr m 2o o 2J 1 rI sinh(2mr) ) [(~o—j ,' )'+ n'—]'—
+ (k,j)=~. . . r(-,'+~,+ iq) ~'

2yLr4M, j!I(2tro —j) cos (pro o)+sinh (~r)) ' exp[[(cro —j —
—,') +i) ]5/r I

—1

XB(r —(cro j —
—,') ——rI ), (6.2)

where

2m Vo
0'

z
r=

y

2m coD 15coD5=
gy

' k~T' y
(6.3)

&d S
S (6.4)

I is the mass of the particle, and M& is the mass of the
unit cell of the solid.

Inserting (6.1) and (6.2) into (2.4) we obtain Sk, and
from (2.10) we get the renormalized sticking coefficient
SI, . In Figs. 1 and 2 we plot Sk and Sk for two model sys-
tems: He-graphite and He —solid argon, respectively. We
have checked numerically that for lower energies
C„«S„[cf.Eqs. (5.1) and (2.10)] and thus we can ignore
the effects of the continuum-continuum transitions. At
higher energies, when the sticking probability gets small-
er the continuum-continuum scattering will be more im-
portant. Each discontinuity in Figs. 1 and 2 appears at
the energy for which one of the bound states of the sur-
face potential becomes inaccessible by one phonon transi-
tion. Clearly, even for these weakly interacting systems,
for which the one-phonon approximation is expected to
be valid, renormalization (2.10) of the sticking coefficient
proves necessary.

Temperature dependence of the isothermal total stick-
ing coefficient S and S is plotted in Figs. 3 and 4. Note
that for He-graphite S becomes greater than 1 at higher
temperatures.

In order to obtain the renormalized desorption time we
note that using Eqs. (3.13) and (3.14) we have

VII. CONCLUSIONS

In this paper we have reexamined the problem of stick-
ing and desorption to account for quantum processes tak-
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FIG. 3. Total isothermal prompt sticking coefficient for He-
graphite vs temperature. Dotted line: conventional result [Eq.
(2.13)]; solid line: renormalized result [Eq. (2.12)]. Parameters
as in Fig. l.

The renormalized desorption time ~d may differ from ~d
by a factor of up to 2 for He-graphite. However, this re-
normalization affects only the preexponential factor in
the Frenkel-Arrhenius parametrization of the desorption
time and its effect is hardly seen on the usual Arrhenius
plot of log, o(~d ) vs I/T.
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APPENDIX
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In this Appendix we outline a derivation of the expres-
sion for the angular resolved time-of-Right spectrum in
desorption. This derivation is based on the one presented
in Ref. 4 and is given here in order to establish appropri-
ate normalization.

Let f (r, v, t) be the configuration-space particle num-
ber density of particles in the gas phase. The particle
density, v-space particle density, and the total number of
particles in the gas phase, respectively, are given by

FIG. 4. Same as in Fig. 3 but for He —solid argon. Parame-
ters as in Fig. 2.

p(r, t)= ff(r, v, t)d u,

1(v, t)= ff(r, v, t)d r,
& (t)= f ff(r, v, t)d u d r .

(A1)

(A3)

ing place on the time scale ~L, the quantum oscillation
period of the extended states. We have derived the ex-
pression for the sticking coefficient substantially different
from the conventional one. In contrast to the latter our
result for the sticking coefficient is appropriately bounded
by 1. We have demonstrated that the renormalized TOF
spectrum is related to the renormalized sticking
coefficient, satisfying the requirements of the thermo-
dynamical detailed balance. We have also shown how to
modify the calculations of sticking and desorption for the
case when the rates of inelastic continuum-continuum
transitions are comparable with the rates of transitions
between continuum and bound states of the surface po-
tential.

The renormalized sticking coefficients, TOF spectra,
and desorption times can be obtained in the conventional
manner from the master equation if we modify the transi-
tion rates between continuum and bound states according
to Eqs. (4.2) Ior Eqs. (5.10) and (5.14) when the inelastic
continuum-continuum transitions are important]. The
renormalized master equation can be used to obtain
nonprompt quantities characterizing sticking and
desorption. It might be possible to derive the modified
master equations (4.1) and (4.5) from the Liouville equa-
tion using, e.g. , methods employed by Tsukada and Gor-
tel, ' who have incorporated into the master equation a
competition between processes occurring at various com-
peting time scales.

We have demonstrated on a particular example of rela-
tively weakly physisorbed systems (He-graphite and
He —solid argon) that the renormalization of the sticking
coefficient can reduce it by a factor of 2 or more. For
He —solid argon our calculated sticking coefficient at
T = 3 K agrees with the experimental value of 0.48. '
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The function f (r, v, t) satisfies the Boltzmann equation

—+v V', f (r, v, t)=o.(r, v, t), (A4)

where cr(r, v, t) is the source term due to the desorption
process. Integrating (A4) over r and using (A2) we obtain

f o(r, v, t)d r = Bl (v, t)
Bt

(A5)

For the TOF spectra we approximate the solid surface by
a point source at r„obtaining

(A6)

For the desorption process triggered at t =0 the solution
of the equation (A4) is

f (r, v, t)= f o.(r v(t ~),v, ~)d~—

5(r —r, —v(t —r)) ' dr .
&I (, )

o Bw
(A7)

The rate at which particles are registered by a small
detector at ra is given by

diV „
dt
"' =j(A, t) dS= j(%,t) ~ A dQ, (A8)

where A=rD —r„and dQ is the solid angle subtended
by the detector window of area dS assumed to be normal
to %. Since the current density j(r, t) is given by

j(r, t)= fd3uvf(r, v, t), (A9)

we get, using (A7) and (A8),
3

d~reg (' & dT A Bl (Alz t z)
dndt ~o ~ Bt

(A10)

The above result can be easily generalized to the case of
the extended source by integrating (A10) over r, over the
desorbing surface and dividing by the area of the surface.
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