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Charge-density-wave instabilities expected in monophosphate tungsten bronzes
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On the basis of tight-binding band calculations, we examined the electronic structures of the
tungsten oxide layers found in the monophosphate tungsten bronze {MPTB) phases. The Fermi sur-

faces of these MPTB phases consist of five well-nested one- and two-dimensional pieces. We calcu-
lated the nesting vectors of these Fermi surfaces and discussed the expected charge-density-wave in-

stabilities.

I. INTRODUCTION

The essential structural building blocks of the
monophosph ate tungsten bronzes (MPTB),
(PO2)4(WO3) (WO3) (p, q being integers), are the
perovskite-type layers made up of W06 octahedra. '
These tungsten oxide (W-0) layers are linked by PO4
tetrahedra. Depending upon how the P04 tetrahedra
link the W-0 layers, the MPTB phases have either pen-
tagonal or hexagonal tunnels between their W-0 layers
(and hence called the MPTB& and MPTBh phases, re-
spectively). The MPTB& phases are found with alkali-
metal atoms Na or K in their hexagonal channels, so
that their formulas are given by
A„(PO2)4(WO3) (WO3) . In the absence of alkali-metal
atoms, the MPTB phases possess the pentagonal tunnels, '

and thus the MPTB phases have the formulas
(PO2)4( WO3)( WOB)

The Magneli phases y- and g-Mo40& i contain the
perovskite-type layers made up of Mo06 octahedra,
which are isostructu. al with the perovskite-type W-0
layers of the MPTB phases, and these Mo-0 layers are
linked by Mo04 tetrahedra. With the notation designed
for the MPTB phases, the Magneli phase Mo40» is writ-
ten as (Mo02)4(Mo03)6(Mo03)6, which is equivalent to
(Mo~O»)~. Therefore, the crystal structures of y- and g-
Mo40 i i are very similar to those of the MPTB and
MPTBt, phases, i.e. , (PO, )4( WO, ),( WO, ), and

A~ ( PO2)4( WO3) 6( WO3 )6, respectively. The Magneli
phases y- and g-Mo40&& exhibit resistivity anomalies re-
sulting from a charge-density wave (CDW) associated
with the partially filled t2g-block bands of their
perovskite-type Mo-0 layers. Since the W-0 layers of
the MPTB phases are isostructural with the Mo-0 layers
of the Magneli phases and since the W and Mo atoms are
in the same family of the Periodic Table, the MPTB
phases are expected to exhibit CDW instabilities. The
formal oxidation state of P in the P04 tetrahedra of the
MPTB phases is +5, while that of Mo in the Mo04
tetrahedra of the Magneli phases is +6. Consequently,
the Mo-0 layers of the Magneli phase have more d elec-

trons than do the W-0 layers of the corresponding
MPTB phase, so that the electronic instabilities of the
Mo-0 and W-0 layers are expected to differ somewhat.

Recently, the MPTB phase (POz)&(WO3) (WO3)6 has
been found to have resistivity anomalies which resemble
those of NbSe3, a well-established CDW material. The
band electronic structure study of (POz)4(WO3)6(WO3)6
shows that it has well-nested one-dimensional (1D) and
two-dimensional (2D) Fermi surfaces. Thus the resistivi-
ty anomalies of (POz)~(WO3)6(WO3)6 are suggested to
originate from the CDW instabilities associated with the
Fermi surface nesting. Recently, we have examined the
band electronic structures of a series of MPTB phases
which reveals that all these MPTB phases possess 1D and
2D metallic bands as in the case of the Magneli phases y-
and g-Mo40i i and the MPTB phase
(PO2)4(WO3)6(WO3)6.

In the present study, we examine the Fermi surfaces of
all MPTB phases with known crystal structure. Our ob-
jective is to probe how the Fermi surface topologies vary
as a function of the number of d electrons per unit cell
and the thickness of the perovskite-type W-0 layers. The
CDW vectors we calculate for the various MPTB phases
should be verifiable experimentally by diffuse x-ray
scattering and neutron-diffraction measurements.

II. CRYSTAL STRUCTURE

The indices p and q used in the formulas
(PQz)&(WO3) (WO3) or A„(PO2)4(WO3) (WO3) refer
to the number of WO6 octahedra (per unit cell) needed to
form the W-0 layers. In most cases, p and q are identical
so that one obtains alternative formulas (PO2)4(WO3)2
and A„(POz)4(WO3)2 (m being an integer). In certain
cases, however, the indices p and q are different as in
(PQ2)4(WQ3)4( WO3)6.

Let us now describe the structural patterns of the
perovskite-type W-0 layers by considering the W-0 layer
with p =4 as an example. The W~Oz, unit of Fig. 1(a) is
constructed from four W06 octahedra by sharing the
equatorial corners, and the W4O» chain of Fig. 1(b) is ob-
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FIG. 3. (a) Projection view of the W6026 chain and (b) projec-
tion view of the W60» step layer.

FIG. 1. (a) Perspective view of the W40» unit, (b) perspec-
tive view of the W40&& chain, and (c) projection view of the
W40» chain.

of one W40i8 chain shares its axial oxygen atom with the
third octahedron of the adjacent W40, s chain [i.e., (13)-
condensation]. Shown in Fig. 2(b) is a perspective view of
the W40&6 layer which is a step layer with each W&0&8
chain as a step. In a similar manner, one can condense
the W6026 chains [Fig. 3(a)] to form the W60z2 step layer
Fig. 3(b) by (13)-condensation. Figure 4 shows projection
views of the three-dimensional (3D) lattices of several
representative MPTB phases, where solid triangles
represent PO4 tetrahedra.

tained by condensing the W402, units. For simplicity,
the W&O&s chain of Fig. 1(b) can be represented by the
projection view shown in Fig. 1(c) along the chain direc-
tion. The W40&8 chains of Fig. 1(c) can be condensed to
form the W40, 6 layers of Fig. 2(a) by sharing their axial
oxygen atoms. In the W40, 6 layer, the first octahedron

III. COMPUTATIONAL METHOD

The band electronic structures of the MPTB phases
presented in our work are obtained by performing tight-
binding band calculations based upon the extended
Huckel method. ' In the tight-binding method, the elec-
tronic structure of a crystalline solid is described by con-
structing band orbitals as a linear combination of atomic
orbitals. With a set of Slater type atomic orbitals g;, the

(o)

(c)

FIG. 2. (a) Projection view of the W40&6 layer and (b) per-
spective view of the W40&6 layer.

FIG. 4. Projection views of the MPTB phases: (a)
(PO2)4(WO3)4(WO3)4, (b) Na (PO2)4(W03)4(WO3)4, (c)
(P02)4(WO3)4(W03)6, and (d) Na„(PO&)4(W03)7(W03)7.
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extended Huckel Hamiltonian H' is specified by defining
its off-diagonal matrix elements H~ = (y; ~

H'
~y~ ) as

H, =KS; (H;;+H&i)/2 .

In this Wolfsberg-Helmholz approximation, " S, is the
overlap integral (g; ~gj ) between the orbitals g; and g~,
K is a constant (i.e. , 1.75), and the diagonal elements
H;;=(g;~H' ~g; ) and ~~J. = (gj ~H' ~y ) are the valence
shell ionization potentials (VSIP) of the orbitals y, and

y, respectively. The VSIP values are treated as empiri-
cal parameters like the exponents of the Slater-type orbit-
als. Details of the atomic parameters employed in the
present work are taken from our previous studies. ' In
the present study, we employ the modified Wolfsberg-
Helmholz approximation, ' in which the constant E of
Eq. (1) is repaced with another constant
K'=K+6, +b. (1 K), —where b, =(H;; H~~)/—
(H;;+HJ) ).

Over the past decade, the extended Huckel tight-
binding (EHTB) method has been successfully applied to
investigate the electronic structures of numerous low-
dimensional inorganic solids containing transition-metal
elements. The EHTB calculations on the CDW materials
such as niobium and tantalum chalcogenides "' and
molybdenum oxides ' are in excellent agreement with
the experiment.

IV. BAND ELECTRONIC STRUCTURE
OF THE IDEAL W-O LAYER

M=(a*/2, b*/2). In order to discuss the Fermi surfaces
associated with these bands, we consider the electron
counting appropriate for the MPTB phases
(PO2)q(WO3) (WO3), where m is the number of W
atoms per unit cell in each W-0 layer. With the typical
oxidation scheme of P + and 0, the average oxidation
state of W in (PO2)4(WO3) (WO3) is given by (6m-
2)/m. Consequently, each step layer has two d electrons
per unit cell [i.e., 6m-m (6m —2)/m =2], regardless of
the m value. For A„(POz)~(WO3) (WO3), the oxida-
tion state of the alkali metal is + 1, so that each step lay-
er has 2+x/2 electrons per unit cell to fill its t2 -block
bands. The dashed lines of Fig. 5 refer to the Fermi level
for cases when the number of d electrons per unit cell
(i.e., N) is two, three, or four. The X =2 case is appropri-
ate for the MPTB& phases. The X =4 case is appropriate
for the Magneli phases y and g-Mo40&& because, as al-
ready noted, their formulas are equivalent to
(MoOz)4(Mo03)6(Mo03)6 and because the Mo oxidation
state in the Mo04 tetrahedra is +6 instead of +5 found
for the P atom in the P04 tetrahedra of the MPTB
phases. Note that, for all three case of %=2, 3, and 4,
only the bottom three bands of Fig. 5 become partially
filled (labeled a and b). Band a is 1D is nature, while
band b consists of two subbands and have 2D character.
The orbital nature of these bands has been analyzed in
detail elsewhere.

The electron and hole Fermi surfaces of the three par-

Our previous study showed that the band electronic
structures of various MPTB phases are very similar, and
their characteristic features are also exhibited by an ideal
W-0 layer made up of regular WO6 octahedra. Thus in
this section we describe their essential features on the
basis of the band electronic structure calculated for the
ideal W40&6 step layer of Fig. 2 which we construct from
regular WO6 octahedra (with the average W-0 distance
of 1.916 A).

Figure 5 shows the dispersion of the tz~-block bands
calculated for the ideal W40&6 step layer, where
I =(0,0), X=(a*/2, 0), Y=(0,b*/2), and

(b)

-9 7-

N=0
M=3
N=2

(c)

FIG. 5. Dispersion relations of the t&~-block bands calculated
for the ideal W4O&6 layer (Fig. 2), where the dashed line refers to
the Fermi level for %=2, 3, and 4.

FIG. 6. Fermi surfaces associated with the partially filled
bands of Fig. 5 for % =2, where the filled regions of wave vec-
tors are shown by shading.
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(a)

(c)

FIG. 7. Fermi surfaces associated with the partially filled
bands of Fig. 5 for X =3, where the filled regions of wave vec-
tors are shown by shading.

FIG. 8. Fermi surfaces associated with the partially filled
bands of Fig. 5 for N =4, where the filled regions of wave vec-
tors are shown by shading.

tially filled bands calculated for the cases of X =2, 3, and
4 are shown in Figs. 6, 7, and 8, respectively. We com-
bine the hole and electron Fermi surfaces of Fig. 6 in Fig.
9(a), those of Fig. 7 in Fig. 9(a), and those of Fig. 8 in Fig.
9(c). The combined Fermi surfaces of Fig. 9(a) originate
from the 1D surface associated with the 1D band a [Fig.
10(a)] and the two 2D surfaces associated with the 2D
bands b [Figs. 10(a) and 10(c)]. These features are also
present in the combined Fermi surfaces of Figs. 9(b) and
9(c). The Fermi surface of Fig. 10(b) consists of rhom-
buses centered at I and M, while that of Fig. 10(c) con-
sists of rhombuses centered at X and Y. We now examine
why these rhombus-shaped Fermi surfaces arise from the
2D band b of Fig. 5. Figures 11(a) and 11(b) show disper-
sion relations of the t2 -block bands along I —+P~M
and X~P~ Y. Here the wave vector P is the crossing
point of the I ~M and X~ Y lines in the first Brillouin
zone (Fig. 12). Band b consists of two subbands. Along
I ~P~M [Fig. 11(a)], the lower subband is nearly tlat
but the upper subband is dispersive with a maximum at
P. At I and M, the two subbands are degenerate. Along
X~P—+ Y' [Fig. 11(b)], however, the lower subband is
dispersive with a minimum at P but the upper subband is
nearly Rat. At X and Y, the two subbands are degenerate.

The two subbands have a lower energy at I and M than
at X and Y. Consequently, along I ~P —+M, the upper
subband is cut twice by the Fermi level nearly symmetri-
cally around P, while along X~P~ Y the lower subband
is cut twice by the Fermi level nearly symmetrically
around P. This topology of the dispersion relations of the
two subbands is responsible for the rhombus-shaped 2D
Fermi surfaces centered at I and M in Fig. 10(b) and
those at X and Y in Fig. 10(c). A detailed analysis of the
orbital nature of the two subbands along I ~P ~M and
X~P~ Y is given elsewhere. '

The 1D Fermi surface of Fig. 10(a) has the nesting vec-
tor q, D as shown in Fig. 13(a). The rhombus-shaped 2D
Fermi surfaces centered at I, M, X, and Y in Figs. 10(b)
and 10(c) have the nesting vectors q„, qM, qz, and qr, re-
spectively, as shown in Fig. 13(b). If the sides of the
rhombuses centered at I and M are parallel to the corre-
sponding sides of the rhombuses at X and Y, one obtains
a single nesting vector q2D or q2D (instead of qr, q~, qx
and qr) as shown in Figs. 14(a) and 14(b). Inspection of
Figs. 9(a)—9(c) shows that the rhombuses are nearly
parallel only when the N value (i.e., the number of d elec-
trons per unit cell) is close to 4 [i.e., Fig. 9(c)]. The Mo-O
step layers of the Magneli phases y- and g-Mo40&& corre-
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FIG. 9. Combined Fermi surfaces of Figs. 6, 7, and 8 in (a),
(b), and (c), respectively.

spond to this electron counting, and their Fermi surfaces
are very close to those shown in Fig. 9(c). Experimental-
ly, y- and g-Mo40]& are found to exhibit a CDW with
nesting vector qzo.

FIG. 10. 1D and 2D Fermi surfaces leading to the combined
Fermi surfaces of Fig. 9(a); (a) 1D Fermi surface, (b) 2D Fermi
surfaces centered at I and M, and (c) 2D Fermi surfaces cen-
tered at X and Y. The rhombus-shaped 2D Fermi surfaces cen-
tered at X, Y, and M can be readily constructed by repeating the
patterns of (b) and (c) in an extended zone scheme.

V. CDW NESTING VECTORS OF REAL W-0 LAYERS

Our EHTB calculations carried out for various W-0
step layers of the MPTB and MPTB& phases with
known crystal structure show that their tz -block bands
are qualitatively very similar to those of the ideal
W40, 61ayer described in the previous section. The CDW
nesting vectors q, (i =1D,I,M, X, Y) expected from the
Fermi surfaces of these W-0 step layers may be expressed
as

-8. 2

q; =aa*+Pb*, (2)

where the reciprocal vectors a* and b* correspond to the
intrastep and interstep repeat vectors a and b respectively
[e.g. , the vecors a and b, respectively, in the W~O, 6 layer
of Fig. 2(b)]. According to this description based upon
the ideal W-0 layers, the a values of q„and qz (or qr
and ql) or the P values of qr and qz (or qz and qM) add
up to be 0.5. The a and P values of the nesting vectors q,

(a)

-9 7-
X Y

(b)

FIG. 11. Dispersion relations of the t~g-block bands of the
ideal W4O&6 layer (Fig. 2) along (a) I ~P ~M and (b)
X~P~ Y. The dashed line refers to the Fermi level for N =2.
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X

FIG. 12. First Brillouin zone for an ideal W40&6 step layer
(Fig. 2).

FIG. 14. Alternative CDW nesting vectors: (a) q» and (b)
q ~~ constructed on the basis of Fig. 9(c).

(i =1D,I,M, X, Y) calculated for the various W-0 step
layers studied in the present work are summarized in
Table I ~

Important points of Table I can be summarized as fol-
lows: (a) The "ideal" description of the CDW vectors
given by Eq. (2) applies perfectly for the W6022 and

W7025 layers. In general, the W40, 6 layers deviate
slightly from the ideal description in that the o. values of
qr and qz (or q~ and q~) or the P values of qr and qz (or

q~ and qM) do not exactly add up to be 0.5. (b) The
departure from the ideal description is caused by the dis-
tortion of the W-0 layer from the ideal structure made

up of regular W06 octahedra. The extend of distortion in
the W-0 layers is generally larger for the thin W-0 layer
(e.g. , W&OI6 layer) than for the thick W-0 layer (e.g. ,

W602z or W7025 layer). (c) The sides of the Fermi sur-
face rhombuses at I and M become more parallel to the
corresponding sides of the Fermi surface rhombuses at X
and Y as the X values becomes close to 4. This is also the
case for the W&0, 6 layers, although their structures are
generally more distorted than those of the W6022 or the
W70z5 layers. Therefore, the q2& and qz~ vectors be-
come relevant when %=4. The Fermi surfaces of the
MPTB& and MPTB& phases calculated for N=4 show
that qzz, —-0.25a*, in good agreement with the experi-
mental observation that q2~ ——0.23a* for y- and
Mo40». The a and P values for the qzo and qzz& can be
easily estimated from those of qr-, qM, and q~, and a~,
and therefore are not listed in Table I.

„X
VI. CONCLUDING REMARKS

q(o

(a)

(b)

FIG. 13. CDW nesting vectors associated with the Fermi
su~faces of Fig. 10: (a) q» and (b) q &, qM, and q&, »d q &.

The present EHTB calculations show that the MPTB
phases have well-nested Fermi surfaces with nesting vec-
tors q&z, qz, q~, qz, and qz. Thus these phases may in
principle exhibit five different CDW instabilities when
their W-0 layers contain less than four d electrons per
unit cell (e.g. , 2(X(3). When the value of X becomes
close to 4, the four vector ql-, qM, and qz, and qz are ex-
pected to merge thereby leading to the alternative nesting
vectors and q2~ and qz~. Energy lowering associated
with a CDW formation increases as the area of the nested
Fermi surface increases. ' For the rhombus-shaped Fer-
mi surfaces centered at I, M, X, and Y, the nested area
increases with the size of the rhombus. Therefore, for the
W-0 steplayers with X value close to 2, CDW's resulting
from q~ and q~ are more likely to be observable than are
those from qz and qM. To confirm the CDW nesting vec-
tors predicted in the present work, diffuse x-ray scatter-
ing and/or neutron-diffraction measurements would be
necessary. Our analysis of the W-0 layer band orbitals
show that their partially filled bands are represented by
the orbitals of all the W06 octahedra including those of
the W-0 layers surfaces. This situation differs consider-
ably from that found for many Mo-0 layers, ' ' ""in
which the Mo06 octahedra of the Mo-0 layer surfaces
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TABLE I. Components a and P of the CDW nesting vectors q;=aa*+Pb* calculated for the vari-
ous W-0 step layers of the MPTB phases.

Compound

( P«2)4( W«3 )4( W«3 )4'

Step layer

W4«i6 1D
r
M

0.41
0.09
0.09
0.28
0.37

0.00
0.10
0.10
0.40
0.26

( PO2 )4( WO )6( W«3 )6 W6«~2 1D

M
X
Y

0.26
0.21
0.15
0.29
0.35

0.00
0.22
0.14
0.36
0.28

( P«2 )4( W«3 )4( W«3 )6 W4«i6 1D
r
M
X
Y

0.38
0.16
0.08
0.29
0.38

0.00
0.16
0.10
0.40
0.29

W6«~2 1D
r
M
X
Y

0.30
0.21
0.14
0.29
0.36

0.00
0.21
0.13
0.37
0.29

Kx ( P«p )4( W«3 )4( W«3 )4

(x =0.8 —3.0)
2.40

(x =0.8)
1D
r
M
X
Y

0.47
0.09
0.14
0.24
0.30

0.00
0.09
0.16
0.34
0.23

3.50
(x =3.0)

1D
r
X
Y

0.50
0.26
0.29
0.16
0.19

0.00
0.27
0.29
0.21
0.14

Na (P«2)4(W«3)4(W«3)4'
( =1.1 —1.5)

W4«6 2.55
(x =1.1)

1D
r
M
X
Y

0.43
0.17
0.18
0.22
0.28

0.00
0.20
0.19
0.31
0.21

2.75
(x =1.5)

1D
r
M

Y

0.44
0.20
0.20
0.22
0.30

0.00
0.21
0.22
0.28
0.20

Kx (PO2)4( W«3)7( W«3)7
(x = 1.4-1.7)

W7«2s 2.70
(x =1~ 4)

1D
r
M
X
Y

0.36
0.26
0.23
0.24
0.27

0.00
0.27
0.23
0.27
0.23

2.85
(x = 1.7)

1D
r
M
X
Y

0.38
0.28
0.25
0.22
0.25

0.00
0.29
0.24
0.26
0.21
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TABLE I. (Continued).

Compound

Na (PQ~)4(WQ ) (WQ3)6

'Reference 1(a)
Reference 1(b).

'Reference 1(c).
Reference 2(a).

'Reference 2(b).
'References 2(c) and 2(d).
Reference 2(b).

Step layer

W6Q22 2.80
(x =1.60)

4.0
(x =4.0)

1D
r
M
X
Y

1D
I
M
X
F

0.33
0.28
0.26
0.22
0.24

0.47
0.39
0.37
0.11
0.13

0.00
0.28
0.24
0.26
0.22

0.00
0.39
0.37
0.13
0.11

have practically no orbital contribution to their partially
filled bands. Therefore, the CDW formation in the W-0
layers of the MPTBt, phases, A„(PO2)4(WO3) (WO3),
can be prevented by the random potentials that cation
disorder in the hexagonal channels may create, because
the alkali-metal cations are close to the W06 octahedra of
the W-0 layer surfaces. In observing CDW phenomena
of the MPTB phases, it would be more fruitful to investi-
gate the MPTB phases (PO2)4(WO3)~(WO3)~ rather
than the MPTBt, phases A„(POz)4(WO3)~(WO3)~. Our
study strongly suggests that the MPTB phases should ex-

hibit very rich CDW phenomena and therefore would be
very exciting materials to study.
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