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Theory of multiharmonic generation and multiphoton electron emission at a metal surface
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The nonlinear-optical processes of multiharmonic generation and multiphoton electron emission
at the surface of a metal are studied. Results are derived for arbitrary-order perturbation theory.
Application is made to the Sommerfeld model, and estimates of the yields are given for simple free-
electron-like metals.

I. INTRODUCTION

In this paper we will study two nonlinear-optical pro-
cesses of relevance to the field of surface physics: multi-
photon electron emission and multiharmonic generation
from solid surfaces. In multiphoton electron emission
(MPEE) a number of photons are absorbed and the ener-

gy is used to promote an electron from some state below
the Fermi surface to a state above the vacuum level re-
sulting in the electron leaving the metal. Experimental
studies of multiphoton electron emission from a variety
of solids have been made by a number of research
groups. ' ' These solids include metals, semiconductors,
and insulators. MPEE was observed as a function of
laser intensity, work function, and laser frequencies.
The effect of surface heating was also discussed. ' In in-
sulators resonance enhancement due to the existence of
surface states was observed. Theoretical studies of multi-
photon electron emission have been reported. " ' In
multiharmonic generation (MHG), a number of photons
are absorbed from the incident laser beam, and a single
outgoing photon is created. The energy of the outgoing
photon is a multiple of the incident photon energy. Ex-
perimental studies of multiharmonic generation have
been reported in the literature. These studies include a
variety of metals, semiconductors, and insulators as well
as adsorbate-covered solids. ' In recent years,
theoretical studies of MHG have focused primarily on
metals. ' In recent years, a lot of studies have been
done on rough surfaces, mainly because of the obser-
vation of surface-enhanced Raman scattering. Second-
harmonic generation (SHG) has been studied extensively
due to its utility in probing surface chemistry and struc-
ture. It has also been argued that the SHG can give in-
formation about the electronic band structure of metal
surfaces. More recently, frequency dependence of SHG
at simple metal surfaces has been studied using the time-
dependent density-functional formalism.

Very little is known about the higher-order MHG or
MPEE. In this paper we will develop a perturbation
theory valid for any arbitrary order, both for MHG and
MPEE. We will restrict our attention to metal surfaces
and treat them in a rather primitive way. We will model
the metal as a free-electron gas terminated by an abrupt
step of finite size. In Sec. II we formulate the perturba-
tion theory for this model. In Sec. III we present calcula-
tional results and discuss them.

II. THEORY

0 if )0 (2.1)

where V0 is the depth of the inner core potential. It is re-
lated to the work function P, and the Fermi energy Ef by

VO=Ef+p . (2.2)

We use atomic units (A'=e =m =1). The solution to the
unperturbed Schrodinger equation

Pz

2
'+V(z) —e ~q)=0 (2.3)

is given by

~ (0)— exp(ikz)+r exp( —ikz) for z &0
(1+r)exp( —yz) for z & 0,

(2.4a)
(2.4b)

Let us start by considering the simplest form of a metal
described by the Sommerfeld model in which the metal is
taken to be a free-electron gas terminated by an abrupt
step in the potential. The electronic states are filled up to
the Fermi level and the electromagnetic field appears as a
perturbation to the Hamiltonian describing the system.

The form of the potential energy is

—V0 if z(0
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where k =[2(E+Vo)]' and y=( —2e)'~ and the
reAection coefficient is

ik+y
ik —y

(2.5)

We have let c represent the net energy associated with
the z motion (e =a, —k ~~!2). Here e, is the total energy.

The perturbed wave function satisfies the differential
equation

function and its derivative at z =0. We obtain

2ik @+ik
co q +k1

2ik y+ik
co q +k1

(2.15)

(2.16)

For n =2, the inhomogeneous differential equations are
+neo+a+ — —V(z) u'+'(z)=p, u'+ '(z) .

2 dz2

(2.6)

du(2')+ E, + u = I
2 cIZ2 dz

for z &0, (2.17a)

The solution will consist of a homogeneous and inhomo-
geneous part. The homogeneous solution is chosen to
correspond to either a wave propagating away from the
surface or an evanescent wave decaying away from the
surface. This applies both to the vacuum region (z )0)
as well as the solid itself (z &0). For example, let us look
at the n =1 case:

1 d2 du("
2co+c.+ V0+ — u' '= —i

2 dz cItz
for z&0.

Inserting the values of u ' "found before yields

q1u' '= A&exp(iq2z)+ A, exp(iq, z)

(2.17b)

~+ a. + — —V(z) u' '=p, u ' '1 d2
1 0

Jz
(2.7) 2

(1+r)exp( —yz) for z)0,2' (2.18a)

co+E+ — + Vo u =k exp(ikz) rk exp(—ikz)—1 8 (1)
GZ

for z &0, (2.8a)

co+E+ — u =iy(1+r)exp( —yz) for z )0 .
1 0 (1)
2 dz2

(2.8b)

We define k and y as

k) = [2(jco+e+ Vo)]'

y = [ —2(jco+ E ) ]'
(2.9)

(2.10)

If c+jco &0 then y is the attenuation constant for an
electron that has absorbed j photons but still decays into
the vacuum. However, if c, +jco & 0 then

k,u' '= B~exp( —ik2z) — B,exp( —ik, z)

k+ [exp(ik, z)+r exp( —ik, z)] for z &0 .2'
(2.18b)

The constants 22 and B2 are again obtained by matching
the wave function and its derivative at z =0.

From an examination of the n = 1 and 2 cases we can
conjecture the form of the perturbed wave function for
arbitrary n and verify that it indeed is the solution by in-
serting it into the inhomogeneous differential equation.
Thus

u'"'= g A'. "'exp(iq. z)+c„exp( —yz) for z )0
j=1

(2.19a)

y = —iq

where

qJ
= [2(E+jco)]'

(2 11) and

(2.12)

u'"'= g B,'"'exp( ik z)—
j=1
+d„[exp( ikz) + ( —1 )"r exp( —ikz) ]

This is the propagation vector in vacuum. Thus, for z & 0 for z &0 . (2.19b)

u = A, exp(iq, z)+ exp( —yz)
ly(1+r)

and for z &0

(2.13) For z )0 the inhomogeneous differential equation be-
comes

u"'= eBlp(x—iklz)+ —[exp(ikz) rexp( —ikz)] . —
2

(„) qn
n coc„exp( —yz) + g A ' "'

2

2
exp(iq z)J

(2.14)

These expressions are written as if a+co)0. The con-
stants A1 and B1 are determined by matching the wave

n —1

=iy „ce lp(x—yz)+ g 3'" "q exp(iq z),
j=1

(2.20)
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and

Cn
= Cn-1=. y

nm

from which it follows that

(2.21)

co= 1+7" . (2.23)

The value of co is fixed by the condition that u ' ' should
equal the unperturbed wave function

(2.22) Similarly, for z (0,

need„[exp(ikz) +( —1)"r exp( —ikz)]+ g B'"'
2

k.
2

exp( ik—z)

n —1

=kd„, [exp(ikz)+( —1)"exp( ikz—)]—g k B'" "exp( ik z—) (2.24)

from which it follows that

k
dn = dn-1 ~

nm

k B'"-"
B(n) J J

co( n —j)

(2.25)

(2.26)

PnJ

n —j

k k
On

co (n —j)!

(2.34)

(2.35)

The value of do is again set by the condition that u' '

should equal the unperturbed wave function
R„=

( n —j)! (2.36)

(2.27)

Iterating the above recurrence formulas leads to the fol-
lowing solutions:

(n j)! (2.37)

For n (j these are taken to vanish. We also define the
vectors

1

(n —j)!

C~= l
CO

1

(n —j)!B (n)=.
J

where 2 denotes 2 ' ',

n

(1+r),1

n!

(2.28)

(2.29)

(2.30)

T„=d„[1+( —1 )"r]—c„,
F„=d„k [1—( —1 )"r] i y c„. —

(2.38)

(2.39)

pA +aB =F (2.40)

There are now four triangular matrices (R, S, p, and o )

and four column vectors ( A, B, F, and T) in the problem.
In order to completely determine the perturbed wave
functions we must solve the matrix equations

where B.denotes B' ' and

k 1
d

co nf

and

RA —SB =T .
(2.31)

The solutions to these equations are

(2.41)

The constants 3 and B are determined from matching
the wave function and its derivative at z =0, and

3 =K 'U (2.42)

( A '. "' B'" ) =d„[1+(——1)"r]—c„,
j=l

(q A '"'+ k&B '"') =d„kz [1—
(
—1)"r] i yc„—

j=1

(2.32)

(2.33)

B=L 'V,
where

E =p+o S 'R,
L =o.+pR 'S,
V =F—pR 'T,
U=F+oS 'T .

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
Let us define the following triangular matrices for

j n: Since the K and L matrices are triangular matrices with
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vanishing upper components we may solve the equations

(2.48)

LB =V (2.49)

directly through the use of simple algebra. The result is

detM-
(2.50)

where

E21

0

K22

K32

0

0

U1

U2

U3

Kj 1 1 Kj 1 2 Kj 1 j 1 Uj 1

E 1 K2 . . K 1
U.

(2.51)

Similarly

detN.

L„
(2.52)

where

L»
L21

0

L22

L32

0

0

0

V1

V2

V3

FIG. 1. Feynman diagrams for multiharmonic generation for
the case n =4. Four photons of frequency co combine to create
one photon of frequency 4'.

0 (2.53)

j—1, 1 j—1,2

Lj1 Lj2

Note that M and X are nonsingular matrices here.

A. Multiharmonic generation

In developing a perturbation expansion for multihar-
monic generation (MHG) we note that for n-harmonic

generation, we are dealing with a closed Feynman loop
with n absorption vertices and one emission vertex. The
intermediate states involve, in general, both electrons and
holes. It is possible, however, to write the matrix ele-
ments so that all intermediate states are included without
the need for Fermi factors. Since there are n + 1 possible
time orderings for the emission and absorption we have
n +1 independent graphs. We illustrate the case n =4 in
order to elucidate the general structure of the matrix ele-
ment. The Feynman diagrams are illustrated in Fig. 1.
The matrix element is

where

q

4
~oe, 2~

2c

1/2

e' (M i +M2+M3+Mq+M~ )fq (2.54)

&qlp. lp &&pip. ln & &n lp. l~ & &~lp, l~&&ilp. lq &

(4'+ e —E )(3'+ Eq
—E„)(2'+E —E )(co+ Eq

—ei )

~ &qlp. lp &&pip. ln &&nip. lan &&n lp, lI &&ilp. lq &

~+ eq E~ )(3~+E~ E )(2~+ E~ E )(~+ e~

(2.55)

(2.56)
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I, m, n, p

I, m, n, p

l, m, n, p

&qlp, lp &&pip, ln &&nip, lm &&mlp, ll &&lip, lq&

(
—co+e —e )( —2co+c, —E„)(2co+E —e )(co+Eq —e))

&qlp, lp &&pip, ln &&nip, lm &&mlp, ll &&lip, lq &

(
—co+a. —e )( —2ro+c, —e„)(—3co+E —c. )(co+E —c,I)

&q p, lp&&pip, ~&&~lp, m &&mlp, ll&&lip, lq&

(
—co+ e —c. )( —2'+ E —E„)(—3'+ E~

—E )( —4~o+ E~
—

EI )

(2.57)

(2.58)

(2.59)

We introduce a set of perturbed states defined as fol-
lows:

The unperturbed states satisfy the inhomogeneous
differential equations

()) )
I

lu(2) )
I, m

lu)") ) —=y
I

Similarly

lu'"'
&

=—

Il)&lip. lq)
CO+ Eq EI

lm &&mlp, ll &&lip, lq &

(2'+ e —8 )(co+ eq
—

El )

ll &&lip, lu'")
2'+ Eq EI

ll)&lp, lu'+ ")
n CO+ E —EI

l lp,

CO+ Eq E)

ll)&lip, lu'"-')
&

n 63+ Eq EI

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(+gm+E, —H, )lug) & =p, lu'g (2.72)

where j =1,2, 3, etc. From the above example it is clear
that for nth-order multiharmonic generation

A0

2c

n

2'
CO

' 1/2

e,

xyf(-) y &u'~'lp, u'," J) &-,

g, S

(2.73)

where ~'=n~. The notation has been expanded to in-
clude spin states.

The previous equations were developed for the case in
which we were interested in u'+'. For u'"' we would sim-

ply replace co by —co and repeat the calculation. Thus we
could write for z )0,

It is convenient to define

u)+0) &=lu(0) &=l, &

so that for n ) 1

(2.65) u'") = g A' "'exp(iq z)+c„' 'exp( —yz) .
j=1

(2.74)

lm ) &mlp, lu(+ ")
+n Cc)+ E,

—
E,

For z (0,

In terms of the perturbed states we may ~rite the indivi-
dual matrix elements as

I,=&u'" lp, lu'~4) ), (2.67)

u'"'= g BI "'exp( —ik Jz)
j=1
+d„' ) [exp(ikz) + (

—1 )"r exp( —ikz) ], (2.75)

M, =&u'"lp, luI+3 ),
M =&uP) lp lu") &

M, =&u'"lp, lu'+" &,

M$=&u' 'lp lu' ')

(2.68)

(2.69)

(2.70)

(2.71)

where C„' ', A' "', q, d„' ', B' ', and k are calcu-
lated just like the corresponding quantities C„, . . . , k
except that co is replaced by —co. The matrix element of
Eq. (2.73) is

&u' 'lp, lu'+ i') = I dz d' '*[exp( —ikz)+( —1)ir*exp(ikz)]+ g B&' '*exp(ik*)z)
GO 1=1

n —j
X kd„[exp(ikz) —

( —1)" 'r exp( ikz)] —g B—('" "k)exp( ik)z)—
1=1

J n J
+ cI '*exp —yz + AI' '*exp —tq* Iz iy cn exp —yz + AI'" 'qIexp IqIz

0 I=1 1=1

(2.76)
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8

&u'~'lp, lu+-J')= y I. , (2.77)

where

The individual integrals are readily computed. Thus the scattering plane will not contribute to the MHCz sig-
nal. This rules out situations 1 and 2 in Fig. 2. Likewise,
situation 3 will also not contribute because the matrix
element also is proportional to e,'. Only situation 4 will
contribute and we may replace e, by —sin0 and e,' by—sinO' giving us

I, =—d,' '*d„[(—1)" r + (
—1)'r*],

l

n —j
I, = Ed,

~ —'* y a,'"-j'k, —
(
—1)J

k+k, I —k,

J 1 ~ —1 '" jrI, = Ey a,'—J"*kd„-+'
k+k*,

(2.78)

(2.79)

(2.80)

dk' 1 0

(2~) 16' 2c

2n

X f dq, (qI —q, )

Xy( ujlplun j)
j=0

Xsin "8 sin 8'5(cp' —ncp)
neo

(2.89)

lI, =—C,'-'*C„j,
2

(2.81)

(2.82)

If the initial light beam is unpolarized then we must
divide this expression by 2. If we introduce an element of
solid angle, dO, ', and use the dispersion relation co'=k'c
we obtain

n —j
( ( —)e ~ g(n —j)6j~ql I

1=1 y —iq,
(2.83)

2n
d I 1 &0

dco dA 64~ 2'
I

sin 0' sin "95(co'—neo)
C3

J
I7=iy g AI' j'*C„

'V+ Eq —
&

(2.84)
CfJ. n

x f dq, (qj q, ) y &—uI" lp, lu'+
0 j 0

2

j n —jI = i+ g—q 3'
1=11'=1

There is also an L-dependent term

I'=kd'. '*d„L[1—( —1)"lr ]

(2.85) (2.90)

where we have replaced the amplitude of the vector po-
tential by the amplitude of the electric field using the re-

but this term sums to zero when summed over j.
In evaluating the matrix element the sum over spins

gives a factor 2. Let S denote the term (u'j'lp, u'+ j').
Then

e

n d kg f' ' g S=2f, e(kj —
k~~

—k,')S . (2.86)
j=p (2~)

' 1/2
1

e,
4~

M'"'=
2c

k~ n

x f 'dk, (k,' —k,') g (u'"lp. lu'+ "& (287)
0 . 0

The three-dimensional integral can be reduced to a one-
dimensional integral by integrating out the parallel com-
ponent. So the matrix element becomes

n

A0e,

The scattering rate is

dl, =27r y IM'"'I'n(~' —ncp) .
k', A.

(2.88)

Either the incident or outgoing photon may be polarized
parallel to or perpendicular to the scattering plane. The
four possibilities are depicted in Fig. 2. Since M is pro-
portional to a power of e, it is clear that those states in
which the incident polarization vector is perpendicular to

FIG. 2. The four states of polarization. The propagation
vectors are denoted by k and k' and their respective polariza-
tion vectors by e and e'.
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lationship EO =ice A 0/c.
From the above expression it is clear that emission in

directions nearly parallel to the surface are favored. The
differential scattering cross section is

2n

sin "8sin 0'5( co' —n co )
d I ct) 1 0

dco d 0 c 64& 2ct7

kfx J dk(kf —k )
0

FIG. 4. Second-order photoemission.

n

x y & u '" lp, lu 'j'
&

j=0
(2.91)

andwhere kf =(2Ef )' and

p+kf /2= Vo.
The total radiation emitted into the half space

0 ~ 0' ~ ~/2 is obtained by integrating over solid angles.
The integration over co' can be used to eliminate the delta
function. Finally, dividing the rate by the incident Aux
provides us with a formula for the total scattering yield
for MHG:

' '
&flp, lq&

2c

'
&flp. (2.94)

4, and 5, respectively. These diagrams show electrons
and/or holes in the intermediate states.

The matrix element for the first-order process is

4 2n 2
eEOA

24m &c 2m toe
sin 'OT,

where

2

T= f 'dk, (k,' k,') y &u—'~'lp, lu'+~'&

j=0

Note that the units have been restored.

(2.92)

(2.93)

For the second-order process it is

&flp. l~ &&lip, lq &

2C Cd+ E& Em

2

&flp. lu'+' & . (2.95)

B. Multiphoton electron emission

Multiphoton photoexcitation of a solid is the process in
which n photons are absorbed and the electronic energy
is elevated by nkco. If the electronic energy is high
enough to overcome the work function then photoemis-
sion can occur. We will refer to this latter process as
multiphoton photoemission. The process results in a hole
being created in some state q & and the electron transfer-
ring to some excited state f &. Diagrams for the first-,
second-, and third-order processes are shown in Figs. 3,

FIG. 3. First-order photoemission. FIG. 5. ThIrd-order photoemission.
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For the third-order process it is

A ()e, &flp, lm &&mlp, ln &&nip, lq&

2c „(2'+E —E )(co+ ez
—e„)

3

&flp. u'+'& (2.96)

In deriving these concise formulas we have shown that
the diagrams involving intermediate electrons and holes
may be replaced by a single diagram in which all inter-
mediate states are included.

The nth-order process results in the matrix element

the 6 function c. and cf should actually refer to the total
energy including the kinetic energy associated with
motion parallel to the surface, qlI /2 and qll /2. Howev-
er, since qll

=
qlI this transverse kinetic energy cancels out

and we may take c. and cf as the kinetic energy associat-
ed with z motion.

We now need to calculate the matrix element for the
sharp step potential case. The matrix element for multi-
photon emission is

(2.99)

where
Roe,

2c

(2.97)

(1+p)exp( —ik„z) if z (0
)+~ (2.100)

Here we have included the integration over transverse
momentum states. The transition rate is obtained from
Fermi's golden rule:

The final state is chosen to be an "out state, " i.e., a
state which has a unit amplitude wave emerging from the
solid into vacuum. The reAection amplitude for the time
reversed state is

(2.98) q, +k,
p

q, —k„
(2.101)

Here s denotes the electron spin projection. Since multi-
photon excitation preserves spin projection there is only a
single spin common to both the initial and final state. In

Substituting the formula for u(+ ''
& and evaluating the

integral gives

& flp, lu'+ "&= i(1+p*—)kd„
1

n

1 'in n —1 l /Cn —1+i(1+ *) y a'"-" ' +
k —k,* k„' —k y+iq,*

n —1

gn —1 J

qn

'YP C —
& . , " ' „, qJ

lP
lqn J ] qJ + (2.102)

According to Fermi's golden rule, the rate per unit
area for the process in which n photons are absorbed and
an electron in state lq & and a hole in state lk & are creat-
ed is given by

1=2~ X IM'[(2~)'&(1~„—q„)I&(e +n~ —e, )f,' '

k, q, s

Using the relations
=q, /2=& +&~, we get

c., =k, /2 —Vo and

x Ml (2EF+2V() —k, )

k 2

&1 &p,)= 2 f dk, f dq, 5 —Vo+nco

Cz

xf(+'e(q, ) . (2.103) x B(2EF+2VO —k, ) . (2.105)

Since we are interested in those states producing elec-
trons which leave the solid, we have included the factor
e(q, ). We have also factored out (2m) 5(k~~

—
q(~) from

the square of the matrix element corresponding to the
conservation of transverse momentum. If we average
over the polarization of the incident photon then only
half the states contribute so we will include an additional
factor of —,'. A factor of 2 comes from the summation
over spins. Note that the factor B(q, ) forces f'+' to be
1. We may carry out the integral over transverse mo-
menta and find

f d2k f( —)f(+)e(q ) e(q )~(k2 k2)e(k2 k2)

(2.104)

This can be rewritten as

1 = f dk, , (kF k, ) . (2.106)—kF

8~ o (k, —2V +o2nco)'~

It has been assumed that the incident radiation is unpo-
larized so that only the part that is perpendicular to the
surface contributes. Here we take for M the expression
obtained previously,

n

Ao
sine &fIp, lu(~ (2.107)

Dividing the rate per unit area by the incident photon
Aux gives the yield. Restoring the units results in the
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-1010final formula
2/t 2

eEoh6meY=
cue

2fl g
4A ~roc 2m

I &fIp, Iu'+
—"

z k2 2y +2 1/2 F z
0

Z

(2.108) -2010
4 1.0

III. RESUSULTS AND DISCUSSION

-1010

'd d two nonlinear processes
'd 1' d 1 0

we consi ere
ro-hat occur at the suurface of an i eaiz

~ ~

m
'

eneration an d the other is mult-cess is m g
p

y o p rocesses w en
the

e
r field. In t is seced by an intense laser e

resu ts o
'ld Ydfi d he show the yie

h'd df hre
'

for first-, second-,revious section,
n of laser frequency

pre
h rmonic generat' ion as a function o

fre-the free-electron meta
a

ls Na an d K We start wit
to co=0.5 a.u. Note that
d the yield decrease p

a.u. and go up to co =q
c is increase

the
as eth laser frequency

'

all . In these ca cu a
'

1 1 tions we took th
b 235 d 222 Vwo f rNaandKto e . . rework functions o

din Fermi energiesd the correspondingspectively, an din

ield is sensitive to the
ield versus frequency

nsities. These intensities are re-oi wo
r arameter x w ic1 d to a nonlinear paate

cue ). We see that w enh the nonlinear pa-
ame

' '
theory works well.rameter x is smalle pr erturbation e
1 size of the expecte date the numerical size o

= 1.0.e in which the parameter x =

h h h
ly.

second-harmonic yield and eyield is larger than the secon - arm

I

3 0.1

-30'o 005
I

0.15 0.25

4 0.1

I

0.35 0.45

Frequency (ato mic units)

i . 6but for K instead off Na.FIG. 7. Same as Fig. u

Ip

Ip

n the third-harmonic
d strengths however the t ir-yie At weake fie st e g

of course fal more
f =01( hi hsee this or x =
0" W/ ') h tnds to an intensity o

ld 8 868X1second-harmo nic ie

y 1.247 X 1 o
ctricg - P

of
yie

'
ld versus photon req

are resente ord f r several orders odi erend'ff nt fields. Data are p
s lotted have an extrat factor of 4~ for

~ ~

MPEE. The curves p o e
ield decreases with in-notes that the yie

=0.25
the yield. One no

We start wi'th frequency m =
r the

g q y
a.u.an

h th electric field
)0, W/cm (corre

Wh hgo
W/ (corresponding to x =

h taken the angle of in
h MPEE ld

In a
2. We notice that t e

ield.of 10 ) t}1 th MHGmuch greater (of the order o

I

p-Io

~ ~ n-=4 x=l

~ ~

n=3, x= I

-20
10 1.0' ' '

4 1.0 ~ n = '3, x = O.I—

3 0.1
n = 4, x = 0. I

-30
1 0 005

I

0.1 5 0.25

o mic units)Frequency (atom

I

0.35

4 0.1
r-

0.45 I
0-20

0.25
I

0.50
I I I

I 50 I 750.75 I .00 I . 25
Frequency ( atom'mic units)

I

2.00 2.2 5 2.50

ield vs photon freque ync from Na
resented for two di eren

'
essur ace.f Results are presente

x = 1 (see text) an ord f r the cases n =2,labeled by x =0 and x = se
and 4.

ion ield vs photon fre-n electron emission yie
1

text). Results are presente or



1892 APARAJITA MISHRA AND JOEL I. GERSTEN 43

IO-)

IO

I

0-10

IO-(5

n=4, x= I

~ M,
n=5, x=0. I

IO zo
0.25 0.50

n=4, x=O. I

0.75 I.OO I.25 I 50 I.75 2 00 2.25 2.50
Frequency ( atomic units )

FIG. 9. Same as Fig. 8 but for K instead of Na.

This may be attributed to the greater availability of states
for MPEE than that available for MHG-.

We have also studied the dependence of the MHG
yield and the MPEE yield as a function of the Fermi en-
ergy and the work function parameters. We notice that
the MHG yield is essentially a function of the Fermi en-
ergy and not the work function and it decreases as the
Fermi energy decreases. The reasons for this behavior is
simple. As the Fermi energy is increased, the number of
electrons that contribute to the nonlinear response of the
system increases and so the yield also increases. Since it
is not necessary for the electron to leave the solid in the
case of MHG the work function plays only a minor role
in determining the size of the yield.

In the MPEE case we have found that the yield is a
function of both the fermi energy and the work function.
It decreases when the Fermi energy decreases and in-
creases when the work function decreases. This is
reasonable because in the case of MPEE, the electron gets
excited before leaving the surface. Again a decrease in
the Fermi energy implies a reduced number of active

electrons and hence an increased yield. On the other
hand, a decreased work function means both that more
electrons from the Fermi sea may be photoionized as well
as a weakening of the binding to the solid.

The frequency of the laser beam also plays a major role
in determining the magnitude of the yield. Notice that
for lower frequencies there is no MPEE yield because the
frequency is simply not large enough for the electron to
cross the photoemission threshold. At high frequencies,
the matrix elements become small due to the presence of
the energy denominators.

In principle it should be possible to get multiphoton
electron emission from a thermal process as well as from
the direct quantum process considered here. For exam-
ple, in the theory of thermionic emission it is the tail of
the Fermi distribution that extends above the vacuum
level that is responsible for the emitted electrons. The
energy distribution is approximately Maxwellian since it
is the high-energy tail of a Fermi distribution. If an in-
tense radiation field impinges on a solid the temperature
of the surface could become very high and this could
broaden the tail of the distribution considerably. One
would expect the temperature to be related to the energy
fluence of the pulse. One may distinguish the thermal
process from the quantum process discussed here by
shortening the duration of the pulse while maintaining
the same fIuence. This will drive the peak strength of the
electron field up and thereby accentuate the higher-order
nonlinear processes. Electrons would be emitted after
having absorbed two, three, or more photons. Thus we
should find that the electrons would start to be emitted
with a nonthermal distribution.

In this analysis we have completely disregarded the
effect of surface roughness in determining the yields. For
rough surfaces enhancement of the local fields can have
an extraordinarily large effect on higher-order multipho-
ton process. However, our results for the smooth step de-
rived in this paper may be combined with a knowledge of
surface field enhancement factors to allow one to extend
the present theory to such problems.
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