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Tunneling through highly transparent symmetric double barriers
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We consider the tunneling through double barriers with diA'erent heights for the outer and
inner edges. This diA'erence aAects the transmission coeKcient, which under some conditions has
non-Lorentzian behavior (absence of resonant tunneling), showing monotonic changes and a very
weak dependence on energy.
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FIG. 1. Schematic representation of the rectangular potential
double barriers for dift'erent outer edges V3. (a) Typical form of
the barrier of width d=b —a and height V2,' Eo is the quasi-
bound state, V3=0; (b) the potential-well equivalent to (a); Eo
is the single bound state, V3 = Vq, (c) the symmetric double bar-
rier with the edge V3 located at E, which divides the potential
configurations with (for V3 )E, ) and without (for V3 (E, ) a
bound state; (d) the double barrier with a shallow edge V3, (e)
the double barrier with a deep edge V3.

The transmission of particles through a potential bar-
rier represents one of the classical quantum-mechanical
problems. Detailed physical explanations and calculations
can be found, for example, in Ref. 1. Here we have re-
stricted the discussion to the simple case of a one-
dimensional system of two equal rectangular potential
barriers shown in Fig. 1. Although the potential
configuration in Fig. 1(a) does not have a bound state, it
has a quasibound state Eo in the sense that the appropri-
ate potential-well shown in Fig. 1(b) has the real bound
state Eo. The interesting phenomenon of resonant tunnel-
ing occurs when the energy E of the incident particles
from the left or from the right of the barrier of Fig. 1(a) is
close to Eo. The transmission coefficient for the incident
particles then becomes nearly unity even though each of
the barriers has a low transparency. The theoretical ex-
planation of this phenomenon is well known. ' " Howev-
er, as described in Ref. 3, the experimental results are
much weaker and less pronounced than expected from the
theory. A few possible explanations for this disagreement
are given in Ref. 3.

In this paper, we consider two highly transparent bar-
riers, i.e., we assume that they are narrow (small
d=b —a) and/or low (small V2). It is precisely the di-

mensionless quantity dQVz that will be treated as a small

parameter in our analysis. (Our results will be expressed
in terms of dimensionless variables. Therefore, for simpli-
city, we choose 6 =1 and m= 2 so that the energy has
the dimensions of the square of the wave vector. )

The highly transparent barriers may have a bearing on
the experiments described in Refs. 2-4, and they are also
interesting by themselves. Indeed, we show here that non-
trivial changes in the transmission coefficient occur with a
change in the barrier edge V3.

For V3=V2 [Fig. 1(b)] and V3 close to Vq [Fig. 1(d)],
a real bound state exists, whereas for V3 =0 [Fig. 1(a)] or
V3 (0 [Fig. 1(e)] it is replaced by the quasibound state.
The transition between these two different types of behav-
ior occurs at some V3=E, [Fig. 1(c)]. One can expect,
therefore, a different form for the transmission coefficient
T for barriers with V3 & E, and for those with V3 & E,.
In the former case, as a function of the energy E of the in-
cident particles, T has a Lorentzian form with its max-
imum shifted when V3 is changed from negative values
[Fig. 1(e)] through zero [Fig. 1(a)] to E, [Fig. 1(c)]. As
we will show, these maxima are located between E, and
another characteristic energy Ez such that E, & Eo & Eg.
Moreover, in spite of an existence of the quasibound state
Eo, no resonant tunneling will occur if V3 &0 and E~
& V2. Also, the widths of the Lorentzian curves change

nonmonotonically with V3 being very small in both limit-
ing cases, V3 & 0 and V3 ~ E„reaching maximum when
the peak is located near Eo.

On the other hand, for V3 & E„ there are no charac-
teristic energies in the problem, and one expects monoton-
ic behavior for T(E) for all allowed energies E ) V3. The
real bound state exists for V3 & E, which is located deep
inside the potential well and does not inAuence the mono-
tonic behavior of T(E). However, this bound state does
partially trap the incident particles, thereby decreasing
the transmission coefficient to less than unity.

The transition from the Lorentzian form of T(E) to
monotonic behavior as V3 passes E, must go through a
series of maxima and minima which we consider here in
detail. In fact, the maxima in question constitute a
geometric necessity.

Note that this nontrivial behavior of T(E) is important
only for highly transparent barriers, for which d JV2 —l.
When the d+V2)) 1, the energies Eo, E„and Eg practi-
cally coincide, and these phenomena probably cannot be
observed.

The potential-well shown in Fig, 1(b) always has, at
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V2 —
1

Ep
tan(a JEo) =

least, one bound state. We choose V2 and a such that only
a single bound state Ep exists. This level is defined by the
following transcendental equation: '

r ' 1/2

Let us consider now the shallow double barrier shown in
Fig. 1(d). The existence of the bound state E~ for such a
potential arrangement follows from the fact that V3 & E,.
Solving the appropriate Schrodinger equation and match-
ing the wave function and its derivatives at the boundaries
a and b leads to

]/2

tan(a JE~) = —
1 [[JV2 E~ sin—h(d JV, —E, )

+ JV3 Ei cosh—(d JV2 Ei)]/[ J—V2 Eico—sh(d JV2 Ei)—
+ JV3 E~ sinh(—d JVq E~)]j . — (2)

For V3 = Vq the potential barrier in Fig. 1(d) reduces to
that of Fig. 1(b) and, respectively, Eq. (2) reduces to Eq.
(1). On the other hand, the bound-state disappears as V3
approaches E,. One can see from Eq. (2) that the critical
value of V3 (equal to E, ), separating the configurations
which have the bound state (V3 & E, ) from those which
do not have such states (V3 & E,), is defined by

r i/2
V2 —1
Ec

tanh(d JVq E, ) . —(3)tan(a JE, ) =

Another characteristic energy ER, which defines the
maximal shift of the Lorentzian peak (see below) is given
by

tan(a JEg) = —1
ER

cotanh(d JV2 ER) . —(4)

One can ask what the connection is between the charac-
teristic energy ER and the height of the barrier V2. It fol-
lows from Eq. (4) (see also Fig. 2) that ER =Vq for
(d/a)„defined as

[aJV2tan(a JV2)] ' =(d/a), „. (5)

&s follows from Eqs. (1)-(5), the parameter d JVq
plays a special role. When this parameter is large, both
Eqs. (3) and (4) reduce to (1), i.e., Ez =E, =ED. For
the case considered, d JVq= 1, the three characteristic
energies Ep, E„and ER are all different with ER & Ep

l

& E,. The dependence of E,/Eo and Eg/Eo on d JV2 is
shown in Fig. 2.

Let us consider now the global coefficients of transmis-
sion T and reflection R as functions of the energy E of the
incident particles. All the barriers shown in Figs. 1(a),
1(c)-1(e) are symmetric about the origin. Consequently,
the appropriate Schrodinger equation is invariant under
space reflection and time reversal. These properties can
be exploited to derive the following general form for the
transfer matrix linking the incident particles with the
transmitted particles: '

p+iX iy
—iy p —iX

where the real functions p, k, y are subject to the addition-
al constraint: p +k = 1+y .

The transfer matrix (6) determines both the transmis-
sion and reflection coefficients:

1 1 ' R= (7)
p +X 1+y 1+y

Hence, the single function y(E) determines the transmis-
sion and reflection properties of symmetric barriers. After
some tedious but straightforward calculations, one obtains

y(E) = A(E)+aB(E), —1

where

A(E) = [sinh(K2d)cos(a JE )+P 'sin(a JE )cosh(K2d)] [Psinh(K2d)sin(aME) —cosh(E2d)cos(a JE )],

B(E)= [sinh(K2d)sin(a JE )+P ' cosh(IC2d)cos(a JE )][Pcosh(@21)sin(a JE ) —sinh(Eqd)cos(a JE )],
(9)

and

]/2
V2 —E
E —V3

JE
K2

E
V2 —E

(10)
Comparing Eqs. (9) and (10) with Eqs. (3) and (4), one
concludes that the zero of A(E) is located at E =ER and
that of B(E) at E =E,. Hence for the large negative V3
shown in Fig. 1(e), when a ( 1 the transmission

I

coefficient T(E) has a Lorentzian form with the max-
imum at ER and whose width is determined by
(dA/dE)F =E,. In the opposite limiting case of the very
shallow barrier V3 ~ E, [Fig. 1(b)], a & I and the
transmission coefficient again has a Lorentzian form with
the maximum at E, and whose width is proportional to
(dB/dE)~=E. It turns out that the width of the
Lorentzian peak changes nonmonotonically between these
two limiting cases, reaching a maximum when V3=2Ep—Vq, i.e. , a= 1. For V3 & Eg both A(E) and B(E) do
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larger values of this parameter. For the second parameter
d JV2, we choose d JVq=1.5, which corresponds to the
value 0.75 for the ratio of the width of the barrier and the
well, d/2a =0.75. This corresponds to an experimentally
achievable value which, according to Fig. 2, shows an ap-
preciable eAect. Note that in Fig. 3, we consider another
value d JVq=0. 5 (with d/2a =0.25) which is smaller
than that of Eq. (5) and hence gives no transparency at
all.

For the chosen parameters a JVq= 1 and d JVq =1.5,
one can easily calculate from Eqs. (1)-(4) the three di-
mensionless energies e, =E,/V—2 =0.478, @&=Ep/
V2 =0.546, and stt =Eg/Vz =0.646.

Figure 4 shows the graph of T(e) for three different
values of V3/Vq. a negative value V3/V2= —2 corre-
sponding to the barrier shown in Fig. 1(e) the usual case
V3 =0 [compare Fig. 1(a)], and the positive value
V3/V2 0.4 which is smaller than s, . In all these cases,
T(s') reaches its maximum value of unity (resonant tun-
neling) at s=sg for negative V3/Vq and at e=ep for
V3 2EO V2 which corresponds to V3 =0 for the chosen
parameters.

The drastic changes occur when V3 reaches the critical
value E, [the corresponding barrier is shown in Fig. 1(c)].
The entire range of the transition from Lorentzian to
monotonic behavior for T(e) is shown in Fig. 5 for
V3+E, . For V3=E„ the function T(s) still has a max-
imum equal to unity on the left boundary of the energies
available defined by V3/Vq. Then, for slightly larger
values of V3, the maxima decrease drastically in height
accompanied by smooth minima. Finally, at about

V3/VQ 0.55, the function T(s) becomes monotonic. The
graphs in Fig. 5 begin at the threshold energy E = V3. It
can be shown from Eqs. (7)-(9) that the dependence of
T(s) near that threshold is linear.

A very special case is depicted in Fig. 3. This graph
corresponds to the negative V3/Vq = —2 and to
d JVq=0. 5 which, according to Fig. 2, corresponds to
E~ & V2. No resonant tunneling occurs under these con-
ditions and T(c) is again monotonic and small, even
though resonant tunneling is expected.

The above-mentioned nontrivial behavior of T(s) exists
not only for our choice of parameters. More than one
bound state exists for the potential well shown in Fig. 1(b)
for a JVq & tr/2. Here, too, the transition to monotonic
behavior occurs for resonant tunneling on each of the
quasibound states. In other words, the graphs in Fig. 4
will now have several maxima, and each of them will
disappear as shown in Fig. 5. More serious is the follow-

ing restriction on the parameter d JV2. This parameter is
restricted from above (barriers have to be highly transpar-
ent) to make sure that E„Ep, and Ett [given by Eqs.
(1)—(4)] are practically indistinguishable.

We look forward to experimental verification of these
predictions by measuring the current-voltage characteris-
tics of semiconductor quantum wells created, for example,
by layers of Al„Ga[ — As. For a quantitative comparison
with experiment, some modifications to our simplified
model have to be introduced.
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