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Lowest-order vertex corrections to the energy gap in covalent semiconductors
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The accuracy of the G8' approximation is investigated by evaluating the lowest-order vertex
contributions to the energy gap of covalent semiconductors. %'e compare for silicon the energy
shifts of a plane-wave calculation with the results of a variational ansatz in local space. The gap
corrections at the I point are found to be less than O. l eV. An analysis of the diA'erent diagram-
matic contributions shows that there are two counteracting physical processes which lead to par-
tial cancellations.

INTRODUCTION

In recent years band-structure calculations for elemen-
tal semiconductors have come to an improved agreement
with experimentally determined quasiparticle spectra
(see, e.g. , Refs. 1-3). An essential ingredient in true cal-
culations has been the 68' approximation for the elec-
tronic self-energy. It corresponds to retaining the first-
order term only when an expansion of the self-energy in

powers of the screened electron-electron interaction 8' is
made. The electron Green's function 6 is thereby the one
which is obtained from a LDA (local-density approxima-
tion) calculation. In order to understand why the GW ap-
proximation seemingly works so well for calculating
quasiparticle excitation energies in semiconductors it is
necessary to investigate the contributions of higher-order
diagrams which are left out in a 68' calculation. The
most prominent ones are the second-order exchange con-
tributions. In the language of diagrams they correspond
to the lowest-order vertex corrections. When discussing
the importance of vertex corrections to the 68' approxi-
mation one must, in principle, calculate diagrams of
second order in the screened interaction 8'. That, howev-

er, is a formidable if not impossible task. To circumvent
this problem 8' is replaced by the bare interaction V.
Within that restriction a recent plane-wave calculation
indicates that the infIuence of the lowest-order vertex or
exchange contributions on the direct gap of Si is indeed
negligibly small.

It is the aim of our paper to elucidate the physical ori-
gin for the smallness of the gap corrections. We therefore
consider separately the contributions of the diff'erent ex-
change diagrams of second order evaluated in a plane-
wave basis and also in local space. In the calculations in
local space a variational ansatz is made for the ground-
state wave functions. Thereby a bond-orbital approxima-
tion (BOA) is made. Although the BOA limits the accu-
racy of the results, it has the virtue that analytical expres-
sions can be derived which allow for a simple and trans-
parent interpretation of the vertex contributions. In both

calculations we find a significant cancellation of two dis-
tinct sets of diagrams representing physical processes with
counteracting inAuence on the gap. Furthermore, we
come to the conclusion that the smallness of the lowest-
order vertex contributions applies to all covalent semicon-
ductors.

DESCRIPTION OF THE CALCULATIONS

In this section an outline is given of the two diferent
methods mentioned in the Introduction. We start with a
brief description of the plane-wave calculation. A detailed
discussion can be found in Ref. 5. Figure 1(b) shows the
lowest-order exchange diagrams which are of second or-
der in the Coulomb interaction. In evaluating them with
respect to a plane-wave basis a local, empirical pseudopo-
tential is used to generate the band energies and wave
functions. The idea behind using the empirical pseudopo-
tential is that in this way we meet in an approximate sense
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FIG. l. (a) The two vertex correction diagrams which are of
second order in the Coulomb interaction (dashed lines). Up-
ward running lines represent electrons in a conduction-band
state and downward running lines are holes in a valence-band
state. (b) Energy corrections to conduction-band states denoted
by e and to valence-band states denoted by h. In case of the
plane-wave calculation the dotted line is a Coulomb interaction
and the diagrams represent the expectation values of diagrams
El and E2. In case of the local calculation the dotted lines are
the correlation operators S&z and S&J, respectively.

1851 @1991The American Physical Society



1852 R. DALING, P. UNGER, P. FULDE, AND %'. van HAERINGEN

The operators
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the requirement of self-consistency since the empirical
pseudopotential yields a band structure which is close to
the exact one. The calcu. lotions involve the numerical
computation of a six-dimensional integral with an in-

tegrand containing summations over three band indices
and over four sets of reciprocal-lattice vectors. Due to
those summations the time needed to evaluate the in-

tegrand at one point in the integration volume and thus
the time needed to calculate the integral rises roughly as
the fourth power of the number of bands. Moreover, if we
increase the number of bands the number of independent
matrix elements needed to specify the diagram with re-
spect to a plane-wave basis also increases. Because of the
two eAects the calculation was limited to 15 plane waves.
Although this number is too small in order to give a very
accurate value for the vertex corrections, the calculations
are nevertheless expected to give semiquantitative results.

The second method uses a local ansatz for the treat-
ment of correlations combined with a BOA. For detailed
discussion see Refs. 6 and 7. Consider a lattice of dia-
mond structure built up from orthogonalized sp hybrids.
The latter form bonding and antibonding states with cor-
responding creation operators Bz and Az, respectively.
The index I denotes the bond. The Hamiltonian when ex-
pressed in terms of the sp basis set is divided into a self-
consistent field part HscF and a remaining part which
contains the residual interactions, i.e., H=HSCF+H„, .
In the BOA the ground state I@p) of HscF is of the form

I+o& =rlB'. Io& (I)
l, o

The operator A, (k) adds an electron with wave vector k
to the conduction band, i.e.,

W,'.(k)leo&= Za~c (~)&l I~'o&.
1 (2)
N r

The coeIcients a follow from a self-consistent-field
(SCF) calculation. N is the number of bonds. Correla-
tions are included by making the following ansatz for the
wave function:

I w, (k) & =e A,' (k) I@p),
(3)

S = X (&1JSIJ+lllJSlJ)

describe the polarization cloud of the added electron and
the reduction (by blocking) of the ground-state correla-
tions. The parameters xqJ and qqJ are chosen as to mini-
mize the energy. After some calculations the quasiparti-
cle energy e, (k) to lowest order in illj and qlJ is found to
be [Ref. 7, Eqs. (37-39)]:

;.(k) = ."(k)+e;.(k)+e;.(k),

e,a(k) = —g lrl j(A,~(k) I HrasSlJ I&~~(k))aalu, (s)

e" (k) = Zlllj&&c~(k)IH SlJIAc (k)& o

The contribution e, "(k) is the quasiparticle energy in
Hartree-Fock (HF) approximation. The expectation
values can be represented by diagrams (Ref. 7). The in-
dex "con" implies that only connected contractions are
taken when they are evaluated. They include all second-
order processes and therefore also the exchange shown in
Fig. 1(b). The correlation operators lrlJSlJ and lllJSlJ
may be considered as describing effective two-particle in-
teractions, the strengths of which are proportional to the
variational parameters z&J and g~J, respectively. The
same calculations can be repeated by adding a hole in-
stead of an electron to the system.

The blocking of ground-state correlations by the added
electron is described by e, (k) and is dominated by the in-
trabond parameter lip(=qll). The effect of the other rtlj
is to describe blocking of van der Waals correlations be-
tween bond I and bond J due to the added electron in
bond I. It is small and can be neglected. The parameters
lrjJ( zI/ —JI ) describe the effect of polarization of bond J
when the added electron is in bond I. They fall oA' slowly
with increasing bond separation. However, the exchange
diagram contributions to e, (k) contain as a factor a
Coulomb interaction integral V~,e,~,~, (in standard nota-
tion involving bonding and antibonding states in bonds I
and J). It depends on the overlap between those states in
diAerent bonds and is very small for nearest-neighbor
bonds and more distant ones. Because of the minima1
basis set which is used there is no polarization within the
bond in which the added electron is positioned. The pa-
rameters lip and lr~ are determined according to Eq. (34)
of Ref. 6 and Eq. (49) of Ref. 7. Thereby third-order pro-
cesses and the dependence of z& on the quasiparticle ener-
gy e, (k) are neglected. The following result is found for
the change in the energy gap at the I point, hEg p due to
the exchange diagrams:

L r~+A A A B 2 ~ AoB A Ao~ AoBlA IAo

E, —E,,

TX2
VA oBoA oBo

2(E, E,,)- (6)

e E, and E,, are mean values of the energy of the conduction and valence bands, respectively. They may be obtained
from a calculated HF band structure. The first term in Eq. (6) is the exchange contribution to the blocking of ground-
state correlations within the bond in which the extra particle (hole) is positioned. The remaining term describes the
effect of exchange on the polarization cloud of the added electron (hole) for the six neighboring bonds. The two contri-
butions cancel each other partially.



LOWEST-ORDER VERTEX CORRECTIONS TO THE ENERGY. . . 1853

EQUIVALENCE OF THE DIAGRAMS
AND THEIR INTERPRETATION

The diagrams used in the two computational methods
seem rather diA'erent at first sight. In the plane-wave cal-
culation they always contain two Coulomb interaction
lines. In the local calculations one line stands for the
Coulomb interaction, while the second line stands for a
correlation operator. The nature of this operator depends
on the particular diagram. In case of diagrams E~ and E~
it is proportional to xij while in the case of Eg and Eg it is
proportional to qlj. As pointed out before, the zlj fall oA
slowly while the giJ fall oA' rapidly with increasing bond
separation. In order to see how these diff'erent properties
are reflected in the plane-wave calculations we study the
behavior of the diagrams in the limit of small momentum
transfer q by the Coulomb interaction line which replaces
the correlation operator in the local diagrams [dotted line
in Fig. 1(b)]. To be more specific we redraw in Fig. 2 the
lower left vertices of diagrams Ep and Eg in Fig. 1(b) to-
gether with the momentum transfer through the incoming
and outgoing lines. For q 0 each vertex contributes a
factor which is the inner product between the incoming
and outgoing state. This implies for the vertex in Fig.
2(b) the inner product between an incoming hole state
and an intermediate particle state at the same value of k.
This product vanishes because the valence-band state of
the hole and the conduction-band state of the particle are
orthogonal to each other. Consequently the q singular-
ity of the Coulomb interaction is suppressed and with it its
long-range behavior. This corresponds to the fast de-
crease of qqj with increasing bond distance. The situation
is different when the vertex in Fig. 2(a) is considered.
Here the inner product between the identical conduction-
band states does not vanish and the q singularity re-
flects the slow decrease of xlj with increasing bond dis-
tance.

The signs of the energy contributions of the diAerent di-
agrams follow from the physical interpretation which one
can associate with each of them. For that purpose we
show in Fig. 3 the remaining second-order diagrams. It is
noticed that the diagrams E~ and E~ in Fig. 1(b) are the
exchange versions of the diagrams D~ and D~ of Fig. 3(a).
The latter correspond to processes in which the added par-
ticle (hole) polarizes its surroundings. They lower the en-
ergy of the added electron or hole, respectively. A lower-
ing of the hole energy causes an increase in energy of the
electron state in which the hole is situated. Therefore D~
is negative while D~ is positive. This implies that E~ and
E~ are positive and negative, respectively, since they are

P
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FIG. 3. Direct second-order diagrams. Their interpretation is
used in order to discuss the signs of the various vertex correc-
tions. Symbols have the same meaning.

RESULTS AND CONCLUSIONS

Table I contains the results for Si of the two calcula-
tions described before and also the gap corrections for dia-
mond and Ge by the local ansatz. A 15 band model, to
which we have to restrict ourselves, is not realistic enough
for Ge and diamond. Therefore the corresponding values
in the plane wave basis are missing. In the local calcula-
tion for Si the set of parameters listed in Table II is used.
Displayed are the energy corrections due to the second-
order exchange contributions for both the lowest con-
duction-band state and the highest valence-band state at
the I point. The next to last column contains the net
correction to the gap. If these corrections are compared
with the values of the direct gaps in the last column it is
seen that these corrections are small in all investigated co-
valent semiconductors. The introduction of a screened in-
teraction will certainly lower their values still more. One
notices that the various corrections have the expected sign
in both calculations. The results of the plane-wave calcu-

exchange versions of the former diagrams. The diagrams
Eg and Eg are the exchange corrections of the diagrams
D$ and Dg in Fig. 3(a). In order to understand the sign of
the energy contribution of the latter, consider the second-
order diagram shown in Fig. 3(b). It describes the nega-
tive contribution to the ground-state energy which arises
from van der Waals interactions between different bonds.
When a particle or hole is added to the system, the van der
Waals interactions are partially blocked due to Pauli's
principle (diagrams Ds and Dg ). This results in an energy
increase for the particle or hole, respectively. By the same
reasoning as before Dg is positive, Eg and Eg are therefore
negative and positive, respectively.

(a)
k-q

k (

(b)

Method Eg Ep Eg Ep AEgap Egap

TABLE I. Energy corrections to the lowest conduction-band
state (Eg, EI", ) at k=0 and the highest valence-band state at k
=0 (E~,E~). All energies are in eV. The last two columns
show the energy-gap correction and the direct gap (Ref. 7).

FIG. 2. Lower left vertices of E„' and Eg of Fig. 1(b). The in-
coming line represents the state for which the energy correction
is determined. The outgoing line is an intermediate particle
state.

Si Plane wave —0.46 0.73 0.49 —0.25 0.03' 3.4
Local ansatz —0.18 0.15 0.18 —0.15 —0.06

C Local ansatz —0.30 0.23 0.30 —0.23 —0.14 7.4

Ge Local ansatz —0.14 0.11 0.14 —0.11 —0.06 0.9



1854 R. DALING, P. UNGER, P. FULDE, AND W. van HAERINGEN

TABLE II. Coulomb integrals and mean values for the HF
conduction and valence bands of silicon (Ref. 7). The Coulomb

integrals are scaled according to Ref. 6 from the corresponding
values of diamond.

Vg gg p =2.6 eV
Vg g g, 8, =1.7 eV
Vg a,g, g =0.3 eV

E, =11.4 eV
E,. = —6.9 eV

lation exceed those of the local ansatz by a factor of 2-5.
This is not very surprising. On one hand bond orbitals of
Si are su%ciently localized so that a calculation with 15
plane waves can give semiquantitative results only. On
the other hand they are rather extended so that the BOA
is relatively crude for that system. In the simplified ver-
sion of the local ansatz particle-hole symmetry has been
assumed. This restriction leads to distinct deviations in

the results for the polarization diagrams E~,E~ of both
calculations.

In each covalent semiconductor the exchange contribu-
tion of the blocking of ground-state correlations is sig-
nificantly canceled by the corresponding polarization
term. Both processes are of the same order of magnitude
because they arise from the direct neighborhood of the ad-
ditional particle as Eq. (6) shows. As a result the gap

correction is one order-of-magnitude smaller. The inter-
play between polarization and blocking also appears, for
example, in the series of direct diagrams in Fig. 3(a),
which are included in the GR' approximation. However,
in that case the contributions of the long-ranged polariza-
tion diagrams Dp Dp clearly exceed the energy shifts due
to the short-ranged blocking diagrams D~, Dg. It is worth
pointing out that the ground-state energy is considerably
modified by lowest-order vertex corrections. There is
only one type of second-order exchange diagram and no
cancellation takes place.

In conclusion both computational methods indicate the
smallness of the lowest-order vertex contribution to the
energy gap in covalent semiconductors as a consequence
of the partial cancellation of difI'erent physical processes.
The nature of the processes has been clarified. The fact
that two independent calculations which are based on two
completely different descriptions of the electron band
structure came essentially to the same results provides a
firmer basis for the findings of Ref. 5.
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