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Tetracoordinated quasicrystals
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Current model networks for amorphous Ge contain five-membered rings and pentagonal dode-

cahedra to explain why in the radial distribution function the third peak of the diamond structure is

missing. By presenting an algorithm based on a decoration of the three-dimensional Penrose quasi-

lattice, we prove that this local pentagonal symmetry can be extended globally to an icosahedral
quasicrystalline tetracoordinated network. Its structural elements and topological properties coin-
cide with previous hand-built models of random networks. Thus it is suitable for simulating bulk

properties of amorphous semiconductors.

The radial distribution function (RDF) of a-Si and a
Ge, derived from the ring-shaped diffraction patterns, in-
dicates that the basic tetrahedral coordination of crystal-
line Si and Ge is preserved with bond-length variations of
about 3% to 6% (Refs. 1 and 2) and bond-angle distor-
tions of 5% to 10'. ' The low intensity of the third
RDF peak as compared to the crystalline RDF, however,
indicates fundamental modifications in the dihedral-angle
distribution, which are not yet clearly elucidated. ' The
dihedral angle measures the relative rotation of neighbor-
ing tetrahedral arrangements about their common bond.
In the diamond structure, all dihedral angles are 60'. In
the continuous-random-network (CRN) models for amor-
phous semiconductors of Polk and of Connell and Tem-
kin the dihedral angle varies continuously from 0'
(denoted "eclipsed" ) to a modest maximum at 60' (denot-
ed "staggered" ).

Exclusive use of the eclipsed configuration leads to pla-
nar five-membered rings and to clusters in the form of
pentagonal dodecahedra, Fig. 1(a). Earlier models of
Coleman and Thomas and of Grigorovici and Manaila '

used mixtures of the diamond structure and of pentago-
nal dodecahedra to explain the missing peak and thus ad-
mitted only staggered and eclipsed configurations. How-
ever, no rule was provided on how to interconnect the

FIG. 1. With staggered and eclipsed bonds, a planar five-
membered ring can only be continued to form a pentagonal
dodecahedron (a) or the so-called "barrelan" (b); dots indicate
the boat-type six-membered rings' creases and do not represent
bonds. The "hexadecahedron" (c) includes planar hexagons and
distorted tetrahedral arrangements.

two structural elements.
In 1980, Dandoloff, Dohler, and Bilz investigated the

low-lying TA-phonon branches of crystalline Si and Ge,
which contain only "seat-type" six-membered rings. A
softening of the TA mode at the L point would transform
the seats into more flexible "boat-type" six-membered
rings. With the boat-type rings and with planar five-
membered rings they developed a new elementary subunit
in addition to the dodecahedron: a barrel-shaped 15-
atom cluster called "barrelan, " Fig. 1(b). Stacking both
subunits and thus using only staggered and eclipsed
bonds, they obtained a finite macrocluster of exact dode-
cahedral symmetry. However, a global packing of dode-
cahedra and barrelans could not be achieved.

All these models were hand built and limited to less
than 500 atoms. The RDF's fit quite well —though not
perfectly ' ' —with experimental data. The major prob-
lem was the lack of any systematic construction rules,
which would allow one to create nearly perfect
tetrahedrally connected networks of arbitrary extension.

One characteristic feature of the models, the incor-
poration of planar five-membered rings, is indeed sup-
ported by the observation of pentagonal structures in

multiply twinned Ge, ' ' and in the crystalline Ge-III
(ST-12) structure. ' The pentagonal dodecahedron and
icosahedron are dual and possess the same symmetry. If
dodecahedra are building blocks of amorphous networks,
the question poses itself, whether the local symmetry can
propagate to a global one.

First, systematic principles came from the "crystallog-
raphy of the amorphous state" in metallic glasses by
Kleman and Sadoc, ' Sethna, ' ' and Nelson. ' In amor-
phous metals the doihinating substructures are assumed
to be icosahedra, the locally densest packing of 13 atoms.
This packing cannot be continued in flat Euclidean space,
but can in the form of the polytope I3, 3, 5I on the posi-
tively curved hypersphere S embedded in four-
dimensional space. By dualizing this polytope, i.e., re-
placing each of its 600 tetrahedral cells by a vertex, the
tetracoordinated polytope I 5, 3, 3 I was constructed,
which consists of 120 dodecahedra. Substitution of all
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vertices in the polytope I5, 3, 3I by centered tetrahedra
results in a polytope of 3000 vertices, which is a packing
of dodecahedra and barrelans and which is locally identi-
cal to the hand-built model of Dandoloff et al.

Decurving procedures ' ' were developed, but no
systematic algorithms were presented for space-filling
structures. Again, help came from the theory of metallic
glasses, which share the problem of decurving 5 and of
the space-filling continuation of l~vefold symmetric clus-
ters. For the structure of metallic alloys, which display
diffraction patterns of icosahedral symmetry, '

icosahedral quasilattices were proposed. These "three-
dimensional Penrose tilings" tesselate space with two
types of rhombohedral cells in a quasiperiodic way.
Can, for networks, the local fivefold symmetry be so
dominant as to give rise to quasicrystalline semiconduc-
tors? Tetracoordinated quasicrystals were constructed by
dualizing the "truncated-icosahedra" decoration of the
Penrose quasilattice, which divides three-dimensional
space into distorted tetrahedra. ' However, these net-
works include four-membered rings which excessively
distort the bond angles and hence should not be accepted
as reasonable structural elements. Further attempts were
made by Ishii' and Olami and Alexander, but the re-
sulting structures contain an abundant amount of dan-
gling bonds.

Summarizing, it seems that up to now no systematic al-
gorithms have been available which allow construction of
infinite networks that are nearly perfectly tetrahedrally
coordinated, nonperiodic, and almost isotropic with regard
to bond directions and local cluster orientations.

Here, we present an almost perfect tetrahedrally coor-
dinated network (0.78%%uo of dangling bonds) based on a
symmetric decoration of the two Penrose rhombohedra
(Fig. 2). These tesselate the whole three-dimensional
space in the form of a Penrose quasilattice. The resulting
tetraco ordinated quasicrystals are systematically con-
structable and hence not random. But they can be re-
garded as an excellent approximation of the amorphous
state because (i) they are nonperiodic, (ii) the icosahedral-
ly symmetric distribution of their bond-directions is al-
most isotropic, and (iii) the local structure coincides
with that of current models of the disordered state.

FIG. 2. Penrose tiles: a prolate and an oblate rhombohedron
spanned by icosahedrally oriented edges. The four types of
corners are designated according to their internal solid angles
(in units of ~/5) as P, , P3, 0&, and 07. The dash-dotted lines
represent threefold axes.

From metallic quasicrystals we know that many of their
macroscopic properties resemble much more those of
their amorphous modifications than of their crystalline
ones.

One model unites several previously proposed ideas.
We restrict ourselves to staggered and eclipsed bonds,
thereby limiting the set of elementary structures. Ex-
clusive use of either staggered or eclipsed bonds leads to
the seat-type six-membered ring or the planar five-
membered ring, respectively, whereas the boat-type six-
membered rings are formed wherever both bond types
meet. Five-membered rings necessarily lead to the
structural subunits dodecahedron and barrelan (Fig. 1).
Our model's local order is very close to that of Dandoloff
et al. We derived a systematic modification of their lo-
cal dodecahedron-barrelan packing towards an infinite
structure by using the "decorated-quasilattice" concept.

An essential demand is a symmetric decoration of the
two Penrose rhombohedra, such that they can be stacked
without matching rules or a subsequent removal of
atoms. The neighborhood of a Penrose quasilattice ver-
tex is classified by the types of its surrounding rhom-
bohedral corners, which are denoted I'&, P3, 0&, and 07
(Fig. 2). Inspection of the possible vertex and edge neigh-
borhoods forbids the positioning of atoms on the rhom-
bohedral corners or edges. Symmetric decoration
therefore allows atoms to be placed only inside the rhom-
bohedra or on their faces.

Using the common icosahedral symmetry of both the
dodecahedron and all the quasilattice edge directions, we
center a dodecahedron on each Penrose vertex with its
pentagonal faces oriented normal to the edges of the
rhombohedral tiles. Since all these dodecahedra sur-
rounding the vertices are aligned, their mutually facing
pentagons stand in a "staggered" position. To achieve
face matching, an additional (n/5)-rotated dodecahedron
must be inserted along the rhombohedral edges. But sim-
ple stacks of three successive dodecahedra cause overlaps
and wrong coordinations of two dodecahedra along the
short diagonal of the oblate rhombohedron. We
resolved these problems by including the central struc-
ture of the Dandoloff-Dohler-Bilz model: barrelans are
inserted between the dodecahedra, perfectly fitting along
the rhombohedral edges and with minor distortions be-
tween mid-edge dodecahedra (Fig. 3).

Continuation of the tetrahedral network into the pro-
late rhombohedron (PR) is straightforward: the 24
hatched pentagons (Fig. 3) inside the PR are capped with
barrelans. These group with minor cracks around two
"hexadecahedra, " Fig. 1(c), each bounded by 12 pentago-
nal and 4 hexagonal faces. They are centered on the PR's
threefold axis and face each other with a hexagonal ring.
This pair of hexagons is automatically connected via the
boat-type six-membered rings of some barrelans. (The in-
clusion of planar hexagons is encouraged by RDF mea-
surements showing a small peak corresponding to their
diagonal distance. )

It is more dificult to complete the tetrahedral network
inside the oblate rhombohedron (OR). The dodecahedra
surrounding the 07 corners in Fig. 2 provide a pair of
atoms on the short OR-diagonal separated by 1.49 (in
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FIG. 3. Stacking of dodecahedra and barrelans along the
rhombohedra's edges (dash-dotted line) and inserted barrelans
between mid-edge dodecahedra; the crack angles are 5 .

units of the dodecahedral edge length). After a modest
distortion of the two dodecahedra, these atoms are con-
nected by a staggered bond. Of the six barrelans next to
the 07 corners some atoms are not yet tetracoordinated
inside the OR. They can be grouped to form six slightly
distorted tetrahedra, which we center by additional
atoms. Except for one atom of each of the six adjoining
mid-edge dodecahedra, all OR-internal atoms now are
tetracoordinated. As a consequence of several topologi-
cal peculiarities of their neighborhood, these six atoms
per OR must be left only threefold coordinated, each
showing one dangling bond.

This decoration yields 170 atoms per prolate and 110

FIG. 4. Radial distribution function of the relaxed quasicrys-
talline network scaled to an average bond length of 0.24 nm for
Ge and comparison with experimental values from Ref. 31.

per oblate rhombohedron, leaving six of the OR atoms
with one dangling bond. Interesting connections to the
close-packed (Al, Zn)49Mn3z quasicrystal structure of
Henley and Elser will be reported elsewhere.

When the decorated rhombohedra are stacked to an
infinite Penrose quasilattice, one obtains the following
statistical data: the ratio of five- to six-membered rings is
1:2.062, the ratio of staggered to eclipsed bonds is
1:1.420, and the dangling-bond density is 0.78%.

The rational approximants of the decorated quasilat-
tice are most suitable for simulations of physical proper-
ties with periodic boundary conditions and hence without
surface eQ'ects. Even for the lowest indices
(1/0, 1/1,2/1, . . . ) of the rational approximation, the
numbers of 1120,4720,20000, . . . , atoms per cubic unit
cell are very large. Thus a model network is available,

TABLE I. Comparison among the numbers of returning walks of n steps in the diamond-lattice, two
CRN models (selected starting atom) (Refs. 4 and 6), Sadoc and Mosseri's polytope "240" (taken from
Ref. 5 . 474), p. ), and in our 1/1 approximant (averaged for arbitrary starting atom).

Diamond
lattice

Connell's
CRN'

Polytope
c c2409 &

Polk's
CRXb

Present
model

1

2
3
4
5
6
7
8
9

10

0
4
0

28
0

256
0

2716
0

31 504

0
4
0

28
0

268
0

2982
0

35 895

0
4
0

28
0

268
0

3004
0

36 784

0
4
0

28
4

244
90

2416
1564

26 016

0
3.98
0

27.8
4.88

242.4
102.5

2406.9
1704.9

25 999.5

'Reference 4.
Reference 6.
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constructed by a well-defined algorithm and adjustable in
its size to physical requirements and to computer power.
Randomness can be gradually introduced by applying the
decoration to random Penrose tilings.

We have investigated the 1/1 rational approximant
with 4720 atoms and 72 dangling bonds per unit cell.
Considering the cyclic boundaries, we relaxed the struc-
ture by minimizing the Keating energy, which rates all
bond-length and bond-angle distortions. ' The structure
proved quite stable apart from minor shifts of the atoms:
During the relaxation the standard deviation of the
bond-length distribution was reduced from 12% to 4%,
while that of the bond-angle distribution remained stable
at 6.5%, in good agreement with the experimental values

of 3% to 6% and 5% to 10%, respectively. The density
of 96.5% as compared to the crystalline phase is in the
range of experimental data. In the calculated RDF (Fig.
4) the third crystalline peak at 0.46 nm is missing, as ex-
pected. The typical dodecahedral shell at 0.55 nm, how-
ever, is too pronounced compared with the RDF's shown
in Refs. 4, 6, and 8. Finally, we compared the statistics of
returning walks (reilecting the network topology) with
several existing models and found a strong resemblance
to Polk's CRN model (Table I). Thus, although our in-
tention primarily has been to construct a tetracoordinat-
ed quasicrystal, we have found a structure which shares
many properties with model networks for amorphous
semiconductors.
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